Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Synthesis of Chiral α-Hydroxy Acids via Palladium-Catalyzed C(sp³)–H Alkylation of Lactic Acid

Kai Chen, †, ‡,§ Xin Li, †,§ Shuo-Qing Zhang,† and Bing-Feng Shi†, *

[§]These authors contributed equally to this work

Table of Contents	
General Information	S02
Experimental Procedures	S03-S22
Preparation of Lactic Acid Substrates	S03-S05
Optimization of Reaction Conditions for Alkylation	S06-S09
General Procedure for Mono-alkylation of 1a	S10-S21
Removal of 8-AQ Auxiliary	S22-S23
References	S24
NMR Spectrum	S25-S59

[†]Department of Chemistry, Zhejiang University, Hangzhou 310027, China

[‡]Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, US

^{*}To whom correspondence should be addressed. Email: <u>bfshi@zju.edu.cn</u>.

General Information: Unless otherwise noted, all commercial materials were used without further purification. Anhydrous solvents obtained from Aladdin and Adamas were used directly without further purification, and solvents obtained from other commercial suppliers were used after purification as specified in *Purification of Laboratory Chemicals*, *6th Ed.* Optical rotations were measured on a Perkin-Elmer 241 polarimeter equipped with a Na-lamp. HPLC analyses were performed on a Shimadzu SPD-20A. Nuclear magnetic resonance (NMR) spectra were recorded with a Bruker AVANCE 400MHz instrument. ¹H and ¹³C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak (CHCl₃ = 7.26 (¹H NMR), DMSO = 2.50 (¹H NMR), CDCl₃ = 77.16 (¹³C NMR)) unless otherwise noted. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance. High-resolution mass spectra for new compounds were recorded at Mass Spectrometry Facilities, Zhejiang University. X-ray diffraction experiments were performed at X-Ray Facilities, Zhejiang University.

Experimental Procedures:

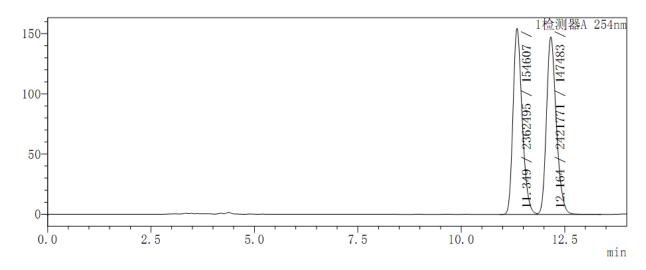
Preparation of Lactic Acid Substrates

(S)-2-Methoxy-N-(quinolin-8-yl)propanamide (1a)

To a stirred solution of (S)-2-methoxypropanoic acid ¹ (10.41 g, 100 mmol) in dry dichloromethane (300 mL), 4-methylmorpholine (NMM, 11.5 mL, 105 mmol) was added slowly at 0 °C. After the solution was stirred for five minutes, iso-butyl carbonochloridate (13.3 mL, 105 mmol) was added dropwise slowly at 0 °C. The mixture was then stirred at room temperature for 1.5 h. A solution of 8-aminoquinoline (8.65 g, 60 mmol) in dry dichloromethane (50 mL) was slowly added to the reaction at 0 °C. After the reaction was stirred at room temperature overnight, the resulting mixture was then washed by aqueous HCl (100 mL, 0.1 M), saturated Na₂CO₃ (100 mL), brine (100 mL), and dried over anhydrous MgSO₄. Evaporation of organic solvent and purification by silica gel column chromatography in 6:3:1 petroleum ether: dichloromethane: ethyl acetate, afforded the pure 8-aminoquinoline amide 1a (13.12 g, 95%) as a white solid. $[\alpha]_D^{20} = -66.3$ (CHCl₃, c=1.0). HPLC Chiralpak® AD-H column, n-hexane/isopropanol = 95: 5, flow rate = 1.00 mL/min, λ = 254 nm, 11.3 (minor), 12.1 (major), 97% ee. ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 8.86 (dd, J = 4.0, 1.6 Hz, 1H), 8.80 (dd, J = 6.4, 2.4 Hz, 1H), 8.16 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.46 (dd, J = 8.4, 1H), 7.58 (dd, J = 8 $= 8.4, 4.4 \text{ Hz}, 1\text{H}), 3.99 \text{ (q, } J = 6.8 \text{ Hz}, 1\text{H}), 3.58 \text{ (s, 3H)}, 1.55 \text{ (d, } J = 6.8 \text{ Hz}, 3\text{H}); {}^{13}\text{C NMR (101 MHz)},$ CDCl₃) δ 170.89, 148.63, 138.92, 137.77, 136.20, 133.95, 129.51, 128.38, 128.03, 127.27, 126.60, 122.06, 121.69, 116.63, 84.55, 59.32, 39.58; HRMS (EI) m/z: 230.1058(M⁺), calc. for C₁₃H₁₄N₂O₂: 230.1055.

Chiral HPLC Data

HPLC Conditions

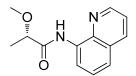

Chiral Stationary phase: Chiralpak® AD-H, n-hexane/isopropanol = 95:5, 1.00 mL/min

Signal: VWD1 A, Wavelength = 254 nm

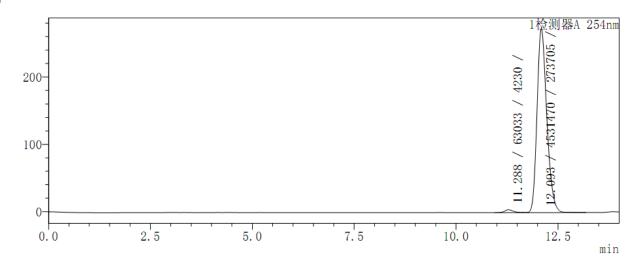
rac-1a

- 3 -

mV



峰表


检测器A 254nm

100 IV(1 HH 11	20 111111				
峰号	保留时间	面积	高度	标记	面积%
1	11. 349	2362495	154607		49. 381
2	12. 164	2421771	147483	V	50.619
总计		4784266	302090		100.000

L-1a

mV

检测器A 254nm

mile U.S. HH.	= 0.4 HH					
峰号	保留时间	面积	高度	标记	面积%	
1	11. 288	63033	4230		1. 372	
2	12. 093	4531470	273705	V	98. 628	
总计		4594504	277935		100.000	

(S)-2-Benzyloxy-N-(quinolin-8-yl)propanamide (1b)

The preparation of **1b** followed the same procedure of **1a** except using (*S*)-2-benzyloxypropanoic acid instead of (*S*)-2-methoxypropanoic acid. The compound **1b** was obtained as a light yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 11.09 (s, 1H), 9.16 – 8.69 (m, 2H), 8.15 (dd, J = 8.2, 1.3 Hz, 1H), 7.79 – 7.51 (m, 4H), 7.51 – 7.27 (m, 4H), 4.80 (d, J = 11.3 Hz, 1H), 4.70 (d, J = 11.3 Hz, 1H), 4.22 (qd, J = 6.7, 6.7, 0.8 Hz, 1H), 1.62 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.04, 148.47, 138.98, 137.43, 136.23, 134.18, 128.56, 128.16, 128.07, 127.34, 121.93, 121.72, 116.54, 77.13, 72.47, 18.92; HRMS (EI) m/z: 306.1369(M⁺), calcd. for C₁₉H₁₈N₂O₂: 306.1368.

Optimization of Reaction Conditions for Mono-alkylation of 1a

(1) Optimization of Silver Salts (KOCN and t-AmylOH used as Base and Solvent)

Entry	Ag(I) salt	Yield 3a	RSM
1	Ag ₂ CO ₃	34%	59%
2	AgF	<2%	>80%
3	AgOAc	<2%	>80%
4	AgOPiv	~3%	>80%
5	Ag_2O	22%	71%
6	Ag_3PO_4	<2%	>80%
7	AgOCN	~3%	>80%
8	Ag ₂ SO ₄	<1%	>80%
9	AgSCN	<1%	>80%
10	/	0	>90%

Reaction conditions: **1a** (0.20 mmol, 1.0 eq), **2a** (0.40 mmol, 2.0 eq), Pd(OAc)₂ (0.02 mmol, 10 mol%), Ag(I) salt (0.40 mmol, 2.0 eq), KOCN (0.40 mmol, 2.0 eq), *t*-AmylOH (2.0 ml), reaction for 20 hours at 90 °C and under N₂ atmosphere.

(2) Optimization of Solvent (KOCN and Ag₂CO₃ used as Base and Silver Salt)

Entry	Solvent	Yield 3a	RSM
1	^t AmylOH	34%	59%
2	^t BuOH	49%	33%
3	ⁱ PrOH	0	>90%
4	DMF	0	>80%
5	THF	<5%	>80%
6	2-Me-THF	<10%	>70%
7	Acetone	~10%	>70%
8	DME	~10%	>80%
9	AcOEt	22%	72%
10	CF ₃ CO ₂ Et	0	>90%
11	HFIP	0	>80%

 12	PhMe	~2%	>80%
13	1,4-dioxane	$\sim 2\%$	>80%
14	MeCN	0	>80%
15	^t BuCN	0	>80%

Reaction conditions: **1a** (0.20 mmol, 1.0 eq), **2a** (0.40 mmol, 2.0 eq), $Pd(OAc)_2$ (0.02 mmol, 10 mol%), Ag_2CO_3 (0.40 mmol, 2.0 eq), KOCN (0.40 mmol, 2.0 eq), solvent (2.0 ml), reaction for 20 hours at 90 °C and under N_2 atmosphere.

(3) Optimization of Base (t-BuOH and Ag₂CO₃ used as Solvent and Silver Salt)

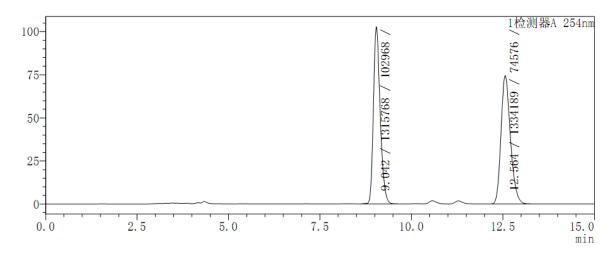
-			
Entry	Base	Yield 3a	RSM
1	/	~3%	>80%
2	KOCN	49%	33%
3	K_2CO_3	61% (62%)	22%
4	K_3PO_4	58%	27%
5	KF	43%	51%
6	KOAc	50%	44%
7	MesCO ₂ K	49%	43%
8	KTFA	45%	37%
9	Li ₂ CO ₃	~3%	>80%
10	Li ₃ PO ₄	~5%	>80%
11	LiOAc	~2%	>80%
12	Na ₂ CO ₃	33%	55%
13	Na ₃ PO ₄	29%	55%
14	NaOAc	20%	64%
15	Cs_2CO_3	35%	54%
16	CsOAc	45%	46%
17	Rb_2CO_3	61%	24%
18	RbOAc	53%	38%
19	K ₂ CO ₃ (1.0 eq)	61% (62%)	21%
19	K ₂ CO ₃ (0.5 eq)	58%	27%
20	K ₂ CO ₃ (0.2 eq)	53%	33%
21	K ₃ PO ₄ (0.2 eq)	32%	47%
22	KOAc (0.2 eq)	51%	38%
23	Rb ₂ CO ₃ (0.2 eq)	55%	32%
24 ^b	K ₂ CO ₃ (1.0 eq)	63% (64%)	21%

Reaction conditions: **1a** (0.20 mmol, 1.0 eq), **2a** (0.40 mmol, 2.0 eq), Pd(OAc)₂ (0.02 mmol, 10 mol%), Ag₂CO₃ (0.40 mmol, 2.0 eq), base (0.40 mmol, 2.0 eq), *t*-BuOH (2.0 ml), reaction for 20 hours at 90 °C and under N₂ atmosphere; ^a 100 °C; ^b Isolated yields indicated in the parentheses.

(S)-2-Methoxy-N-(quinolin-8-yl)heptanamide (3a)

The title compound was prepared under the optimized condition. The crude product was purified by silica gel column chromatography in 12:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3a** as a colorless oil (36.9 mg, 64%) with **1a** (9.9 mg, 21%) recovered. [α] $_{D}^{20}$ = -50.0 (CHCl₃, c=1.0). HPLC Chiralpak® AD-H column, n-hexane/isopropanol = 95: 5, flow rate = 1.00 mL/min, λ = 254 nm, 9.0 (minor), 12.5 (major), 94% ee. HNMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.2, 1.6 Hz, 1H), 8.81 (dd, J = 6.7, 2.1 Hz, 1H), 8.15 (dd, J = 8.3, 1.5 Hz, 1H), 7.59 – 7.49 (m, 2H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 3.84 (dd, J = 7.3, 4.4 Hz, 1H), 3.57 (s, 3H), 1.99 – 1.78 (m, 2H), 1.57 – 1.45 (m, 2H), 1.38 – 1.29 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 171.89, 148.70, 139.06, 136.28, 134.18, 128.14, 127.37, 121.94, 121.72, 116.65, 83.70, 58.85, 33.22, 31.79, 24.89, 22.63, 14.14; HRMS (EI) m/z: 286.1680 (M⁺), calc. for C₁₇H₂₂N₂O₂: 286.1681.

Chiral HPLC Data

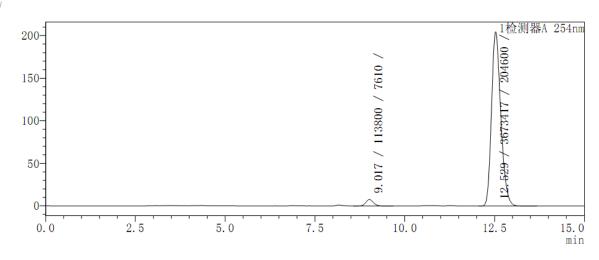

HPLC Conditions

Chiral Stationary phase: Chiralpak® AD-H, n-hexane/isopropanol = 95:5, 1.00 mL/min

Signal: VWD1 A, Wavelength = 254 nm

Rac-3a

 $\, mV \,$


峰表

检测器A 254nm

E IVITHE TO THE					
峰号	保留时间	面积	高度	标记	面积%
1	9.042	1315768	102968		49. 652
2	12. 564	1334189	74576		50. 348
总计		2649956	177544		100.000

L-3a

mV

峰表

检测器A 254nm

J 757 1073 J HH 11	TO 111111					
峰号	保留时间	面积	高度	标记	面积%	
1	9.017	113800	7610		3. 005	
2	12. 529	3673417	204600		96. 995	
总计		3787217	212210		100.000	

General Procedure (GP) for Mono-alkylation of Lactic Acid Derivative

To a 30-mL resealable Schlenk flask were added **1a** (46.1 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), alkyl iodide (0.4 mmol), Ag₂CO₃ (110.3 mg, 0.4 mmol), K₂CO₃ (27.6 mg, 0.2 mmol), and *t*-BuOH (2.0 mL). The Schlenk flask was charged with 1 atm of N₂. The mixture was stirred at 100 °C for 20 hours (for deuterated alkyl iodides, the reactions were run at 90 °C). The reaction vessel was allowed to cool to room temperature, and dichloromethane (5 mL) was added. The resulting mixture was filtered through a pad of Celite, which was subsequently washed with additional dichloromethane (20 mL). Evaporation of the organic solvent and purification by silica gel column chromatography gave the corresponding product.

Scope of alkyl iodides:

(S)-2-Methoxy-N-(quinolin-8-yl)butanamide (3b)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 12:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3b** as a white solid (33.4 mg, 68%) [α] $_0^{20}$ = -88.2 (CHCl₃, c = 0.75), with **3b**' (10.2 mg, 20%) isolated. ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.2, 1.6 Hz, 1H), 8.82 (dd, J = 6.8, 1.9 Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.64 – 7.48 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.82 (dd, J = 6.5, 4.5 Hz, 1H), 3.58 (s, 3H), 2.07 – 1.82 (m, 2H), 1.04 (d, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.60, 148.69, 139.05, 136.27, 134.15, 128.13, 127.35, 121.94, 121.71, 116.64, 84.46, 58.73, 26.07, 9.40; HRMS (EI) m/z: 244.1215 (M⁺); calc. for C₁₄H₁₆N₂O₂: 244.1212.

(S)-2-Methoxy-3-methyl-N-(quinolin-8-yl)butanamide (3b')

¹H NMR (400 MHz, CDCl₃) δ 10.75 (s, 1H), 8.86 (d, J = 4.1 Hz, 1H), 8.82 (dd, J = 6.7, 1.9 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.60 – 7.48 (m, 2H), 7.45 (dd, J = 8.2, 4.2 Hz, 1H), 3.63 (d, J = 4.4 Hz, 1H), 3.59 (s, 3H), 2.31 – 2.18 (m, 1H), 1.10 (d, J = 6.9 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.38, 148.74, 139.11, 136.28, 134.13, 128.17, 127.40, 121.92, 121.74, 116.65, 88.67, 59.84, 32.12, 19.20, 17.34; HRMS (EI) m/z: 258.1369 (M⁺); calc. for C₁₅H₁₈N₂O₂: 258.1368.

(S)-2-Methoxy-N-(quinolin-8-yl)pentanamide (3c)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 12:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3c** as a colorless oil (30.3 mg, 59%). [α] $_{0}^{20}$ = -104.2 (CHCl₃, c = 1.0). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.2, 1.6 Hz, 1H), 8.81 (dd, J = 6.8, 1.9 Hz, 1H), 8.14 (dd, J = 8.2, 1.4 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.86 (dd, J = 7.1, 4.6 Hz, 1H), 3.57 (s, 3H), 1.98 – 1.78 (m, 2H), 1.53 (dq, J = 14.9, 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.89, 148.69, 139.04, 136.27, 134.16, 128.13, 127.36, 121.93, 121.72, 116.63, 83.48, 58.85, 35.30, 18.51, 14.01; HRMS (EI) m/z: 258.1366 (M⁺); calc. for C₁₅H₁₈N₂O₂: 258.1368.

(S)-2-Methoxy-N-(quinolin-8-yl)hexanamide (3d)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 12:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3d** as

a colorless oil (32.4 mg, 59%). [α] $_{\mathbf{D}^{20}}$ = -94.6 (CHCl₃, c = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.2, 1.6 Hz, 1H), 8.81 (dd, J = 6.8, 1.7 Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.61 – 7.49 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.85 (dd, J = 7.1, 4.5 Hz, 1H), 3.57 (s, 3H), 2.00 – 1.78 (m, 2H), 1.48 (dt, J = 15.4, 7.5 Hz, 2H), 1.42 – 1.31 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.87, 148.69, 139.05, 136.26, 134.17, 128.13, 127.36, 121.93, 121.71, 116.63, 83.66, 58.83, 32.94, 27.32, 22.68, 14.06; HRMS (EI) m/z: 272.1529 (M⁺); calc. for C₁₆H₂₀N₂O₂: 272.1525.

(S)-2-Methoxy-N-(quinolin-8-yl)nonanamide (3e)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 14:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3e** as a colorless oil (39.9 mg, 63%).[α] $_0^{20}$ = -68.0 (CHCl₃, c = 1.0). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.0, 1.3 Hz, 1H), 8.82 (dd, J = 6.8, 1.7 Hz, 1H), 8.15 (dd, J = 8.2, 1.3 Hz, 1H), 7.62 – 7.49 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.85 (dd, J = 7.2, 4.4 Hz, 1H), 3.58 (s, 3H), 2.00 – 1.77 (m, 2H), 1.57 – 1.44 (m, 2H), 1.36 – 1.23 (m, 8H), 0.86 (t, J = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.88, 148.68, 139.05, 136.26, 134.18, 128.13, 127.37, 121.92, 121.71, 116.64, 83.69, 58.84, 33.26, 31.90, 29.56, 29.26, 25.21, 22.73, 14.18; HRMS (EI) m/z: 314.1997 (M⁺); calc. for C₁₉H₂₆N₂O₂: 314.1994.

(S)-2-Methoxy-N-(quinolin-8-yl)undecanamide (3f)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 15:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3f** as a colorless oil (41.7 mg, 61%). $[\alpha]_D^{20} = -55.0$ (CHCl₃, c = 1.0). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.0, 1.4 Hz, 1H), 8.81 (dd, J = 6.8, 1.9 Hz, 1H), 8.15 (dd, J = 8.1, 1.2 Hz, 1H), 7.61 – 7.48 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.84 (dd, J = 7.2, 4.4 Hz, 1H), 3.57 (s, 3H), 1.99 – 1.77 (m, 2H), 1.56 – 1.44 (m, 2H), 1.27 (s, 12H), 0.86 (t, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.88, 148.69, 139.06, 136.27, 134.19, 128.14, 127.38, 121.92, 121.72, 116.65, 83.70, 58.85, 33.27, 31.99, 29.65, 29.60, 29.40, 25.21, 22.78, 14.22; HRMS (EI) m/z: 342.2306 (M⁺); calc. for C₂₁H₃₀N₂O₂: 342.2307.

(S)-2-Methoxy-N-(quinolin-8-yl)henicosanamide (3g)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 20:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3g** as a white solid (58.4 mg, 61%). $[\alpha]_D^{20} = -47.4$ (CHCl₃, c = 1.2). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.0, 1.1 Hz, 1H), 8.82 (dd, J = 6.8, 1.6 Hz, 1H), 8.14 (dd, J = 8.2, 1.3 Hz, 1H), 7.61 -7.47 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.85 (dd, J = 7.2, 4.4 Hz, 1H), 3.57 (s, 3H), 2.00 -1.78 (m, 2H), 1.54 -1.44 (m, 2H), 1.25 (s, 32H), 0.88 (t, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.87, 148.67, 139.06, 136.25, 134.19, 128.13, 127.37, 121.91, 121.70, 116.65, 83.70, 58.83, 33.27, 32.05, 29.83, 29.79, 29.76, 29.72, 29.61, 29.49, 25.22, 22.82, 14.24; HRMS (EI) m/z: 482.3876 (M⁺); calc. for C₃₁H₅₀N₂O₂: 482.3872.

(S)-5-Cyclohexyl-2-methoxy-N-(quinolin-8-yl)pentanamide (3h)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 15:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3h** as a colorless oil (40.3 mg, 59%). [α] $_0^{20}$ = -68.9 (CHCl₃, c = 1.2). ¹H NMR (400 MHz, CDCl₃) δ 10.78 (s, 1H), 8.85 (dd, J = 4.2, 1.6 Hz, 1H), 8.81 (dd, J = 6.8, 2.0 Hz, 1H), 8.14 (dd, J = 8.3, 1.6 Hz, 1H), 7.62 – 7.48 (m, 2H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 3.84 (dd, J = 7.3, 4.4 Hz, 1H), 3.57 (s, 3H), 1.94 – 1.76 (m, 2H), 1.72 – 1.58 (m, 5H), 1.56 – 1.46 (m, 2H), 1.28 – 1.11 (m, 6H), 0.91 – 0.79 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.88, 148.67, 139.05, 136.26, 134.17, 128.12, 127.36, 121.91, 121.70, 116.64, 83.72, 58.87, 37.61, 37.38, 33.58, 33.50, 33.45, 26.81, 26.50, 22.53; HRMS (EI) m/z: 340.2151 (M⁺); calc. for C₂₁H₂₈N₂O₂: 340.2151.

(S)-2-Methoxy-6-phenyl-N-(quinolin-8-yl)hexanamide (3i)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 10:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3i** as a colorless oil (43.3 mg, 62%). [α] σ ²⁰ = -65.2 (CHCl₃, c = 1.0). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.3, 1.5 Hz, 1H), 8.81 (d, J = 6.8 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 7.27 – 7.19 (m, 2H), 7.18 – 7.10 (m, 3H), 3.85 (dd, J = 6.7, 4.6 Hz, 1H), 3.56 (s, 3H), 2.61 (t, J = 7.6 Hz, 2H), 2.02 – 1.83 (m, 2H), 1.71 – 1.62 (m, 2H), 1.60 – 1.51

(m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.73, 148.69, 142.62, 139.04, 136.27, 134.12, 128.47, 128.35, 128.12, 127.35, 125.73, 121.96, 121.72, 116.65, 83.54, 58.85, 35.89, 33.03, 31.45, 24.94; HRMS (EI) *m/z*: 348.1835 (M⁺); calc. for C₂₂H₂₄N₂O₂: 348.1838.

(S)-7,7,7-Trifluoro-2-methoxy-N-(quinolin-8-yl)heptanamide (3j)

$$F_3C$$

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 12:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3j** as a colorless oil (37.9 mg, 56%). [α] σ^{20} = -88.5 (CHCl₃, c = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 8.86 (dd, J = 4.1, 1.5 Hz, 1H), 8.80 (dd, J = 6.1, 2.8 Hz, 1H), 8.16 (dd, J = 8.3, 1.5 Hz, 1H), 7.61 – 7.49 (m, 2H), 7.46 (dd, J = 8.2, 4.2 Hz, 1H), 3.86 (dd, J = 6.8, 4.6 Hz, 1H), 3.59 (s, 3H), 2.16 – 1.99 (m, 2H), 1.99 – 1.82 (m, 2H), 1.66 – 1.52 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 171.34, 148.76, 139.04, 136.33, 134.02, 131.38, 128.63, 125.88, 123.14 (q, J_{C-F} = 277.4 Hz), 128.16, 127.36, 122.11, 121.78, 116.70, 83.18, 58.90, 34.17, 33.88, 33.60, 33.32 (q, J_{C-F} = 28.6 Hz), 32.59, 24.32, 21.93, 21.90, 21.87, 21.85 (q, J_{C-F} = 2.8 Hz); HRMS (EI) m/z: 340.1401 (M⁺); calc. for C₁₇H₁₉F₃N₂O₂: 340.1399.

(S)-8-Chloro-2-methoxy-N-(quinolin-8-yl)octanamide (3k)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 12:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3k** as a colorless oil (39.7 mg, 59%). [α] $_0^{20}$ = -61.1 (CHCl₃, c = 1.08). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.1, 1.6 Hz, 1H), 8.80 (dd, J = 6.5, 2.3 Hz, 1H), 8.15 (dd, J = 8.3, 1.6 Hz, 1H), 7.64 – 7.47 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.85 (dd, J = 7.1, 4.5 Hz, 1H), 3.57 (s, 3H), 3.50 (t, J = 6.7 Hz, 2H), 1.98 – 1.80 (m, 2H), 1.79 – 1.70 (m, 2H), 1.56 – 1.47 (m, 2H), 1.46 – 1.32 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 171.68, 148.70, 139.02, 136.27, 134.09, 128.12, 127.34, 121.98, 121.73, 116.63, 83.50, 58.84, 45.14, 33.01, 32.61, 28.81, 26.82, 24.96; HRMS (EI) m/z: 334.1449 (M⁺); calc. for C₁₈H₂₃ClN₂O₂: 334.1448.

(S)-Methyl 7-methoxy-8-oxo-8-(quinolin-8-ylamino)octanoate (31)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 6:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **31** as a colorless oil (39.5 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 10.77 (s, 1H), 8.84 (dd, J = 4.1, 1.6 Hz, 1H), 8.79 (dd, J = 6.5, 2.4 Hz, 1H), 8.14 (dd, J = 8.3, 1.6 Hz, 1H), 7.61 – 7.46 (m, 2H), 7.43 (dd, J = 8.2, 4.2 Hz, 1H), 3.83 (dd, J = 7.1, 4.5 Hz, 1H), 3.63 (s, 3H), 3.56 (s, 3H), 2.28 (t, J = 7.5 Hz, 2H), 1.97 – 1.78 (m, 2H), 1.62 (dt, J = 15.1, 7.5 Hz, 2H), 1.55 – 1.45 (m, 2H), 1.41 – 1.31 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.20, 171.63, 148.68, 138.99, 136.25, 134.07, 128.10, 127.31, 121.96, 121.70, 116.61, 83.44, 58.82, 51.51, 34.06, 32.91, 29.03, 24.87, 24.77; HRMS (EI) m/z: 344.1740 (M⁺); calc. for C₁₉H₂₄N₂O₄: 344.1736.

(S)-Benzyl (7-methoxy-8-oxo-8-(quinolin-8-ylamino)octyl)carbamate (3m)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 5:4:1 petroleum ether: dichloromethane: ethyl acetate, providing **3m** as a white solid (54.1 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 3.9, 1.4 Hz, 1H), 8.80 (dd, J = 6.3, 2.4 Hz, 1H), 8.15 (dd, J = 8.2, 1.4 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 7.40 – 7.26 (m, 5H), 5.08 (s, 2H), 4.78 (s, 1H), 3.84 (dd, J = 6.9, 4.5 Hz, 1H), 3.57 (s, 3H), 3.16 (q, J = 6.3 Hz, 2H), 1.96 – 1.80 (m, 2H), 1.56 – 1.43 (m, 4H), 1.39 – 1.28 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 171.73, 156.48, 148.70, 139.02, 136.80, 136.27, 134.09, 128.59, 128.18, 128.13, 127.34, 121.97, 121.72, 116.63, 83.50, 66.63, 58.82, 41.13, 33.00, 29.95, 29.16, 26.64, 25.00; HRMS (ESI) m/z: 449.2309 (M⁺); calc. for C₂6H₃1N₃O₄: 449.2315.

(S)-6-((tert-Butyldiphenylsilyl)oxy)-2-methoxy-N-(quinolin-8-yl)hexanamide (3n)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 15:2:1 petroleum ether: dichloromethane: ethyl acetate, providing **3n** as a colorless oil (67.2 mg, 64%). [α] $_0^{20}$ = -49.0 (CHCl₃, c = 0.9). ¹H NMR (400 MHz, CDCl₃) δ 10.83 (s, 1H), 9.10 – 8.63 (m, 2H), 8.15 (dd, J = 8.4, 1.3 Hz, 1H), 7.79 – 7.63 (m, 4H), 7.59 – 7.51 (m, 2H), 7.49 – 7.31 (m, 7H), 3.87 (dd, J = 6.2, 4.6 Hz, 1H), 3.69 (t, J = 5.8 Hz, 2H), 3.59 (s, 3H), 2.01 – 1.81 (m, 2H), 1.74 – 1.54 (m, 4H), 1.04 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.72, 148.66, 139.02, 136.23, 135.66, 134.15, 134.12, 129.58, 128.10, 127.68, 127.34, 121.92, 121.69, 116.64, 83.55, 63.82, 58.82, 32.98, 32.50, 26.95, 21.56, 19.28; HRMS (ESI) m/z: 526.2653 (M⁺); calc. for C₃₂H₃₈N₂O₃Si: 526.2652.

(S)-10-Cyano-2-methoxy-10,10-diphenyl-N-(quinolin-8-yl)decanamide (30)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 20:3:1 petroleum ether: dichloromethane: acetone, providing **30** as a colorless oil (35.5 mg, 35%). [α] $_0^{20}$ = -51.3 (CHCl₃, c = 1.08). ¹H NMR (400 MHz, CDCl₃) δ 10.78 (s, 1H), 8.85 (dd, J = 4.1, 1.5 Hz, 1H), 8.81 (dd, J = 6.5, 2.2 Hz, 1H), 8.15 (dd, J = 8.3, 1.6 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.45 (dd, J = 8.2, 4.2 Hz, 1H), 7.40 – 7.26 (m, 10H), 3.83 (dd, J = 7.0, 4.5 Hz, 1H), 3.57 (s, 3H), 2.41 – 2.27 (m, 2H), 1.95 – 1.76 (m, 2H), 1.50 – 1.38 (m, 4H), 1.36 – 1.27 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.79, 148.71, 140.50, 139.04, 136.28, 134.14, 128.93, 128.13, 127.87, 127.36, 126.98, 122.59, 121.96, 121.74, 116.64, 83.58, 58.84, 51.90, 39.74, 33.11, 29.49, 29.43, 29.20, 25.69, 25.04; HRMS (ESI) m/z: 505.2734 (M⁺); calc. for C₃₃H₃₅N₃O₂: 505.2729.

(S)-8-(1,3-Dioxoisoindolin-2-yl)-2-methoxy-N-(quinolin-8-yl)octanamide (3p)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 5:4:1 petroleum ether: dichloromethane: ethyl acetate, providing **3p** as a white solid (53.6 mg, 60%). 1 H NMR (400 MHz, CDCl₃) δ 10.76 (s, 1H), 8.83 (dd, J = 4.1, 1.6 Hz, 1H), 8.78 (dd, J = 6.5, 2.4 Hz, 1H), 8.12 (dd, J = 8.3, 1.5 Hz, 1H), 7.80 (dd, J = 5.4, 3.0 Hz, 2H), 7.66 (dd, J = 5.4, 3.0 Hz, 2H), 7.56 – 7.46 (m, 2H), 7.42 (dd, J = 8.2, 4.2 Hz, 1H), 3.82 (dd, J = 7.1, 4.5 Hz, 1H), 3.64 (t, J = 7.2 Hz, 2H), 3.55 (s, 3H), 1.94 – 1.77 (m, 2H), 1.70 – 1.59 (m, 2H), 1.54 – 1.43 (m, 2H), 1.41 – 1.29 (m, 4H); 13 C NMR (101 MHz, CDCl₃) δ 171.70, 168.48, 148.66, 138.98, 136.21, 134.08, 133.88, 132.23, 128.07, 127.30, 123.20, 121.91, 121.68, 116.60, 83.48, 58.80, 38.04, 33.05, 29.13, 28.61, 26.82, 25.04; HRMS (EI) m/z: 445.2004 (M⁺); calc. for C₂₆H₂₇N₃O₄: 445.2002. (*S*)-N⁹,2-Dimethoxy-N⁹-methyl-N¹-(quinolin-8-yl)nonanediamide (3q)

The title compound was prepared according to the **GP**. The crude product was purified by silica gel column chromatography in 3:1 petroleum ether: acetone, providing **3q** as a colorless oil (41.5 mg, 53%). 1 H NMR (400 MHz, CDCl₃) δ 10.77 (s, 1H), 8.85 (dd, J = 4.1, 1.5 Hz, 1H), 8.79 (dd, J = 6.4, 2.4 Hz, 1H), 8.14 (dd, J = 8.3, 1.5 Hz, 1H), 7.59 – 7.48 (m, 2H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 3.83 (dd, J = 7.2, 4.4 Hz, 1H), 3.65 (s, 3H), 3.56 (s, 3H), 3.15 (s, 3H), 2.38 (t, J = 7.4 Hz, 2H), 1.96 – 1.78 (m, 2H), 1.68 – 1.56 (m, 2H), 1.50 (dt, J = 14.6, 7.3 Hz, 2H), 1.40 – 1.29 (m, 4H); 13 C NMR

(101 MHz, CDCl₃) δ 174.68, 171.69, 148.59, 138.93, 136.15, 134.03, 128.01, 127.23, 121.83, 121.61, 116.51, 83.47, 61.18, 58.73, 33.03, 32.20, 31.83, 29.26, 29.22, 24.93, 24.56; HRMS (EI) *m/z*: 387.2158 (M⁺); calc. for C₂₁H₂₉N₃O₄: 387.2158.

(2S,6R)-2-Methoxy-6,10-dimethyl-N-(quinolin-8-yl)undec-9-enamide (3r)

The compound **3r** was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15:2:1. **3r** was obtained as a colorless oil (30.5 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 10.78 (s, 1H), 8.85 (dd, J = 4.1, 1.5 Hz, 1H), 8.81 (dd, J = 6.7, 2.0 Hz, 1H), 8.15 (dd, J = 8.2, 1.3 Hz, 1H), 7.60 – 7.47 (m, 2H), 7.45 (dd, J = 8.2, 4.2 Hz, 1H), 5.07 (t, J = 6.3 Hz, 1H), 3.84 (dd, J = 7.2, 4.4 Hz, 1H), 3.58 (s, 3H), 2.06 – 1.74 (m, 4H), 1.66 (s, 3H), 1.58 (s, 3H), 1.54 – 1.47 (m, 1H), 1.46 – 1.37 (m, 2H), 1.36 – 1.28 (m, 2H), 1.20 – 1.08 (m, 2H), 0.86 (d, J = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.88, 148.70, 139.06, 136.28, 134.18, 131.10, 128.14, 127.38, 125.11, 121.94, 121.72, 116.67, 83.74, 58.88, 37.17, 36.90, 33.61, 32.45, 25.83, 25.66, 22.76, 19.67, 17.74; HRMS (EI) m/z: 368.2466 (M⁺); calc. for C₂₃H₃₂N₂O₂: 368.2464.

(S)-2-Methoxy-N-(quinolin-8-yl)-10-(triisopropylsilyl)dec-9-ynamide (3s)

The compound **3s** was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15:2:1. **3s** was obtained as a colorless oil (43.0 mg, 45%). [α] $_0^{20}$ = -39.7(CHCl₃, c = 0.95). ¹H NMR (400 MHz, CDCl₃) δ 10.78 (s, 1H), 8.85 (dd, J = 4.1, 1.5 Hz, 1H), 8.81 (dd, J = 6.7, 2.0 Hz, 1H), 8.15 (dd, J = 8.3, 1.5 Hz, 1H), 7.62 – 7.49 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.84 (dd, J = 7.2, 4.4 Hz, 1H), 3.57 (s, 3H), 2.22 (t, J = 6.7 Hz, 2H), 1.98 – 1.78 (m, 2H), 1.58 – 1.46 (m, 4H), 1.46 – 1.33 (m, 4H), 1.11 – 0.92 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 171.79, 148.68, 139.05, 136.26, 134.16, 128.13, 127.37, 121.93, 121.71, 116.65, 109.32, 83.65, 80.14, 58.84, 33.20, 29.04, 28.88, 28.65, 25.12, 19.90, 18.74, 11.41; HRMS (EI) m/z: 480.3171 (M⁺); calc. for C₂₉H₄₄N₂O₂Si: 480.3172.

(S)-tert-Butyl 4-methoxy-5-oxo-5-(quinolin-8-ylamino)pentanoate (3t)

The compound 3t was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 6:3:1. 3t was obtained as a colorless oil (49.1 mg,

71% using **2ta** as alkylating reagent; 47.2 mg, 68% using **2tb** as alkylating reagent). ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 8.84 (dd, J = 4.1, 1.6 Hz, 1H), 8.80 (dd, J = 5.9, 2.9 Hz, 1H), 8.14 (dd, J = 8.2, 1.4 Hz, 1H), 7.61 – 7.47 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.91 (dd, J = 6.8, 4.7 Hz, 1H), 3.57 (s, 3H), 2.51 – 2.35 (m, 2H), 2.30 – 2.21 (m, 1H), 2.19 – 2.08 (m, 1H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.38, 170.89, 148.69, 139.00, 136.27, 134.01, 128.10, 127.31, 122.06, 121.73, 116.68, 82.29, 80.40, 58.80, 31.16, 28.17, 28.11; HRMS (EI) m/z: 344.1729 (M⁺); calc. for C₁₉H₂₄N₂O₄: 344.1736.

(S)-Ethyl 4-methoxy-5-oxo-5-(quinolin-8-ylamino)pentanoate (3u)

$$\begin{array}{c|c} O & O & H & N \\ \hline O & O & O & \end{array}$$

The compound **3u** was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4:1. **3u** was obtained as a colorless oil (32.4 mg, 51% using **2za** as alkylating reagent; 16.0 mg, 25% using **2zb** as alkylating reagent). [α] σ^{20} = -58.5 (CHCl₃, c = 1.0). ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 8.84 (dd, J = 4.1, 1.6 Hz, 1H), 8.79 (dd, J = 5.6, 3.3 Hz, 1H), 8.15 (dd, J = 8.3, 1.5 Hz, 1H), 7.62 – 7.48 (m, 2H), 7.45 (dd, J = 8.2, 4.2 Hz, 1H), 4.12 (qd, J = 7.1, 2.2 Hz, 2H), 3.92 (dd, J = 6.9, 4.7 Hz, 1H), 3.58 (s, 3H), 2.64 – 2.39 (m, 2H), 2.29 (dtd, J = 12.0, 7.5, 4.8 Hz, 1H), 2.19 (ddd, J = 14.3, 8.5, 6.8 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.12, 170.77, 148.71, 138.98, 136.29, 133.94, 128.10, 127.31, 122.12, 121.75, 116.70, 82.18, 60.53, 58.85, 29.97, 28.00, 14.29; HRMS (EI) m/z: 316.1421 (M⁺); calc. for C₁₇H₂₀N₂O₄: 316.1423.

(S)-tert-Butyl 4-benzyloxy-5-oxo-5-(quinolin-8-ylamino)pentanoate (3y)

The compound **3v** was prepared according to the **GP** (using **1b** and **2tb** as substrate) and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 6:3:1. **3v** was obtained as a colorless oil (54.0 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 11.06 (s, 1H), 9.02 – 8.62 (m, 2H), 8.16 (d, J = 8.2 Hz, 1H), 7.76 – 7.51 (m, 4H), 7.46 (dd, J = 8.2, 4.2 Hz, 1H), 7.44 – 7.27 (m, 3H), 4.81 (d, J = 11.2 Hz, 1H), 4.65 (d, J = 11.2 Hz, 1H), 4.15 (dd, J = 6.6, 4.8 Hz, 1H), 2.47 (t, J = 7.7 Hz, 2H), 2.38 – 2.27 (m, 1H), 2.27 – 2.12 (m, 1H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.32, 170.91, 148.50, 138.95, 137.15, 136.27, 134.03, 128.57, 128.47, 128.21, 128.08, 127.34, 122.05, 121.77, 116.61, 80.43, 79.93, 73.22, 31.23, 28.40, 28.16; HRMS (EI) m/z: 420.2049 (M⁺); calc. for C₂₅H₂₈N₂O₄: 420.2046.

(S)-2-(Benzyloxy)-N-(quinolin-8-yl)-5-((triisopropylsilyl)oxy)pentanamide (3w)

The compound **3w** was prepared according to the **GP** (using **1b** and **2u** as substrate) and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15:2:1. **3w** was obtained as a colorless oil (46.8 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 11.05 (s, 1H), 9.02 – 8.63 (m, 2H), 8.16 (dd, J = 8.2, 1.1 Hz, 1H), 7.69 – 7.50 (m, 4H), 7.45 (dd, J = 8.2, 4.2 Hz, 1H), 7.44 – 7.27 (m, 3H), 4.82 (d, J = 11.2 Hz, 1H), 4.64 (d, J = 11.2 Hz, 1H), 4.13 (dd, J = 7.2, 4.4 Hz, 1H), 3.91 – 3.60 (m, 2H), 2.18 – 2.06 (m, 1H), 1.98 (dt, J = 14.0, 7.3 Hz, 1H), 1.86 – 1.75 (m, 2H), 1.22 – 0.97 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 171.66, 148.50, 139.03, 137.43, 136.25, 134.21, 128.55, 128.44, 128.13, 127.39, 121.93, 121.75, 116.62, 81.12, 73.11, 63.17, 29.79, 28.75, 18.15, 12.09; HRMS (EI) m/z: 506.2965 (M⁺); calc. for C₃₀H₄₂N₂O₃Si: 506.2966.

(S)-2-Methoxy-N-3-(methyl- d_3)-(quinolin-8-yl)propanamide (3x)

The compound 3x was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 12:2:1. 3x was obtained as a white solid (30.0 mg, 60%) with 3x' (15.8 mg, 30%) isolated. ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.1, 1.4 Hz, 1H), 8.81 (dd, J = 6.8, 1.9 Hz, 1H), 8.14 (dd, J = 8.2, 1.3 Hz, 1H), 7.61 – 7.47 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.82 (dd, J = 6.6, 4.7 Hz, 1H), 3.58 (s, 3H), 1.96 (dd, J = 13.9, 3.6 Hz, 1H), 1.87 (dd, J = 14.1, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.63, 148.69, 139.04, 136.27, 134.14, 128.13, 127.35, 121.94, 121.71, 116.64, 84.43, 58.72, 25.83; HRMS (EI) m/z: 247.1403 (M⁺); calc. for C₁₄H₁₃D₃N₂O₂: 247.1400.

(S)-2-Methoxy-N-3,3-di(methyl-d₃)-(quinolin-8-yl)propanamide (3x')

¹H NMR (400 MHz, CDCl₃) δ 10.75 (s, 1H), 8.85 (dd, J = 4.1, 1.5 Hz, 1H), 8.82 (dd, J = 6.8, 2.0 Hz, 1H), 8.15 (dd, J = 8.3, 1.5 Hz, 1H), 7.61 – 7.49 (m, 2H), 7.45 (dd, J = 8.2, 4.2 Hz, 1H), 3.63 (d, J = 4.5 Hz, 1H), 3.59 (s, 3H), 2.21 (d, J = 4.5 Hz 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.40, 148.73, 139.09,

136.27, 134.12, 128.16, 127.39, 121.91, 121.73, 116.63, 88.62, 59.81, 31.66; HRMS (EI) *m/z*: 264.1746 (M⁺); calc. for C₁₅H₁₂D₆N₂O₂: 264.1745.

(S)-2-Methoxy-N-3-(ethyl-d₅)-(quinolin-8-yl)propanamide (3y)

The compound **3y** was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 12:2:1. **3y** was obtained as a colorless oil (35.5 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.1, 1.6 Hz, 1H), 8.81 (dd, J = 6.8, 1.9 Hz, 1H), 8.14 (dd, J = 8.3, 1.5 Hz, 1H), 7.62 – 7.48 (m, 2H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 3.86 (dd, J = 7.2, 4.6 Hz, 1H), 3.58 (s, 3H), 1.85 (qd, J = 14.0, 5.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.89, 148.68, 139.02, 136.26, 134.15, 128.11, 127.34, 121.92, 121.70, 116.61, 83.46, 58.82, 35.02; HRMS (EI) m/z: 263.1681 (M⁺); calc. for C₁₅H₁₃D₅N₂O₂: 263.1682.

(S)-2-Methoxy-N-(quinolin-8-yl)-8-(((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methoxy)octanamide (3z)

The compound 3z was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4:1. 3z was obtained as a white solid (69.5 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 10.77 (s, 1H), 8.85 (dd, J = 4.1, 1.6 Hz, 1H), 8.80 (dd, J = 6.5, 2.3 Hz, 1H), 8.15 (dd, J = 8.3, 1.6 Hz, 1H), 7.59 – 7.47 (m, 2H), 7.45 (dd, J = 8.2, 4.2 Hz, 1H), 5.52 (d, J = 5.0 Hz, 1H), 4.58 (dd, J = 7.9, 2.2 Hz, 1H), 4.28 (dd, J = 5.0, 2.3 Hz, 1H), 4.24 (dd, J = 7.9, 1.7 Hz, 1H), 3.93 (dd, J = 8.5, 3.7 Hz, 1H), 3.83 (dd, J = 7.2, 4.4 Hz, 1H), 3.65 – 3.50 (m, 5H), 3.49 – 3.39 (m, 2H), 1.98 – 1.78 (m, 2H), 1.62 – 1.45 (m, 7H), 1.43 (s, 3H), 1.37 – 1.28 (m, 10H); ¹³C NMR (101 MHz, CDCl₃) δ 171.83, 148.71, 139.06, 136.28, 134.17, 128.14, 127.38, 121.94, 121.73, 116.65, 109.29, 108.62, 96.50, 83.64, 71.61, 71.32, 70.77, 69.42, 66.83, 58.85, 33.19, 29.65, 29.42, 26.22, 26.11, 26.05, 25.17, 25.06, 24.56; HRMS (EI) m/z: 558.2943 (M⁺); calc. for C₃₀H₄₂N₂O₈: 558.2941.

(S)-Methyl 4-methoxy-5-oxo-5-(quinolin-8-ylamino)pentanoate (3aa)

The compound **3aa** was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5.4:1. **3aa** was obtained as a colorless oil (27.0 mg,

45% using **2ya** as alkylating reagent; 12.2 mg, 20% using **2yb** as alkylating reagent). ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.85 (dd, J = 4.0, 1.4 Hz, 1H), 8.79 (dd, J = 5.1, 3.5 Hz, 1H), 8.16 (dd, J = 8.2, 1.5 Hz, 1H), 7.60 – 7.49 (m, 2H), 7.46 (dd, J = 8.1, 4.1 Hz, 1H), 3.92 (dd, J = 6.6, 4.8 Hz, 1H), 3.67 (s, 3H), 3.58 (s, 3H), 2.62 – 2.44 (m, 2H), 2.36 – 2.14 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 173.58, 170.73, 148.73, 138.99, 136.30, 133.94, 128.11, 127.32, 122.14, 121.76, 116.72, 82.14, 58.87, 51.76, 29.72, 28.00; HRMS (EI) m/z: 302.1266 (M⁺); calc. for C₁₆H₁₈N₂O₄: 302.1267.

(S)-Benzyl 4-methoxy-5-oxo-5-(quinolin-8-ylamino)pentanoate (3ab)

The compound **3ab** was prepared according to the **GP** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4:1. **3ab** was obtained as a colorless oil (21.4 mg, 28% using **2aaa** as alkylating reagent; 11.5 mg, 15% using **2aab** as alkylating reagent). 1 H NMR (400 MHz, CDCl₃) δ 10.81 (s, 1H), 8.84 (dd, J = 4.2, 1.5 Hz, 1H), 8.80 (dd, J = 5.3, 3.6 Hz, 1H), 8.16 (dd, J = 8.2, 1.3 Hz, 1H), 7.61 – 7.48 (m, 2H), 7.45 (dd, J = 8.2, 4.2 Hz, 1H), 7.41 – 7.25 (m, 5H), 5.25 – 4.97 (m, 2H), 3.93 (dd, J = 6.8, 4.8 Hz, 1H), 3.55 (s, 3H), 2.71 – 2.44 (m, 2H), 2.33 (dt, J = 12.0, 7.5 Hz, 1H), 2.23 (dt, J = 14.3, 6.8 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 172.96, 170.72, 148.74, 139.00, 136.31, 136.06, 133.95, 128.64, 128.33, 128.29, 128.12, 127.34, 122.16, 121.77, 116.74, 82.14, 66.43, 58.86, 29.97, 27.94; HRMS (EI) m/z: 378.1584 (M⁺); calc. for C₂₂H₂₂N₂O₄: 378.1580.

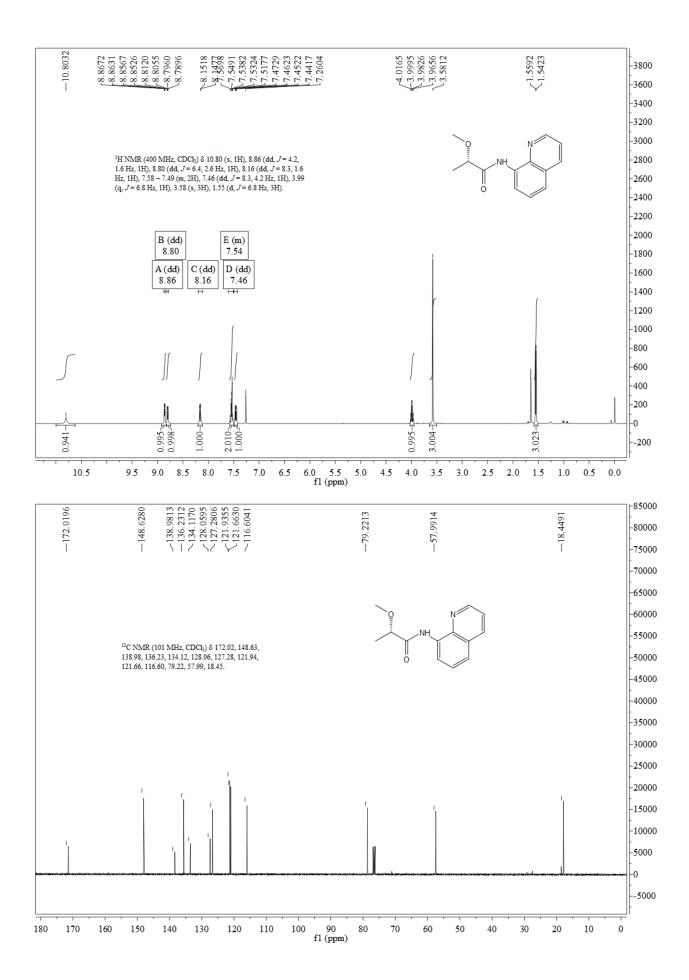
Removal of 8-AQ Auxiliary

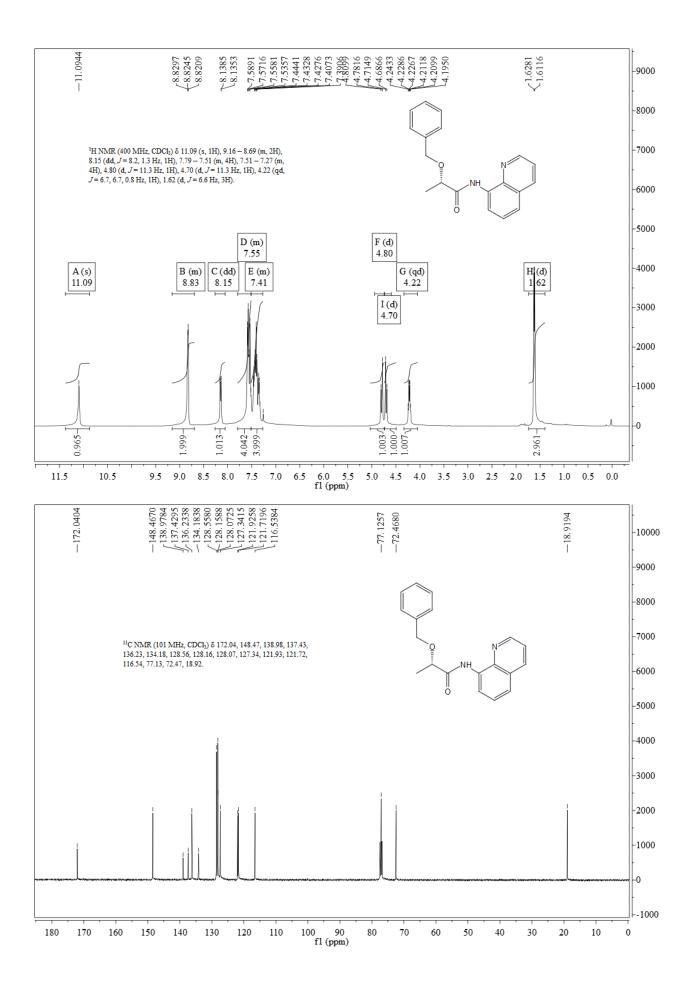
tert-Butyl (S)-(2-methoxyheptanoyl)(quinolin-8-yl)carbamate (5a)

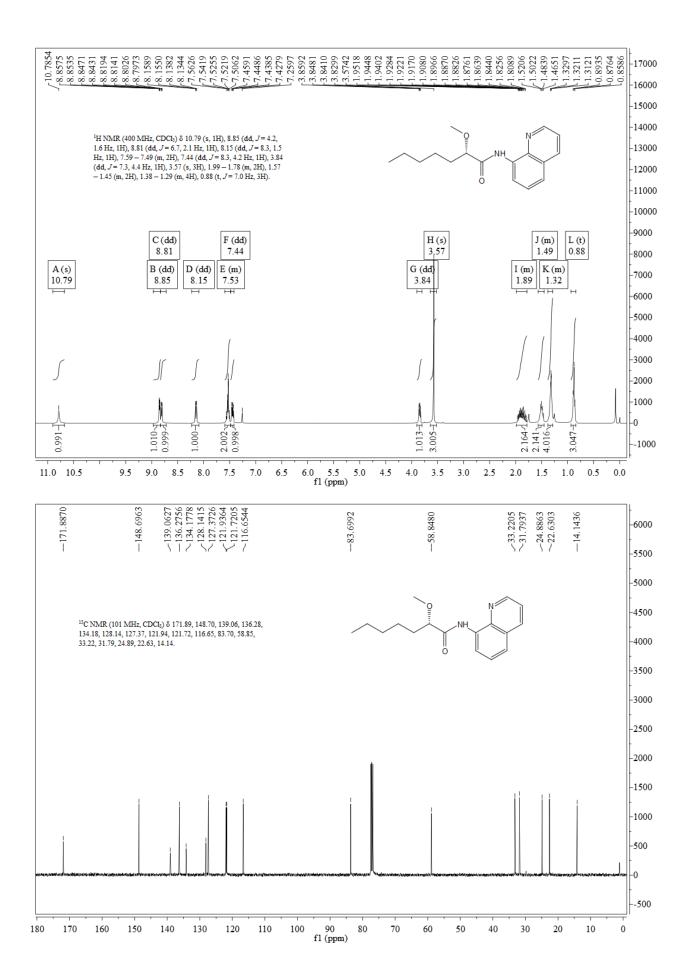
To a solution of **3a** (114.6 mg, 0.4 mmol) in dry MeCN (4 mL) were added di-*tert*-butyl dicarbonate (Boc₂O, 261.9 mg, 1.2 mmol) and *N*,*N*-dimethylpyridin-4-amine (DMAP, 97.7 mg, 0.8 mmol). The mixture was stirred at room temperature for 4 hours. Then the reaction was diluted with dichloromethane (15 mL), washed by water (15 mL), brine (20 mL), and dried over anhydrous MgSO₄. Evaporation of organic solvent and purification by column chromatography in petroleum ether: ethyl acetate = 2:1 gave the product **5a** as a yellow solid (101.1 mg, 65%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.86 (dd, *J* = 4.1, 1.6 Hz, 1H), 8.16 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.81 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.50 (dd, *J* = 7.3, 1.4 Hz, 1H), 7.40 (dd, *J* = 8.3, 4.2 Hz, 1H), 5.05 (dd, *J* = 8.0, 3.3 Hz, 1H), 3.45 (s, 3H), 2.02 (dq, *J* = 10.1, 3.3, 2.9 Hz, 1H), 1.87 – 1.77 (m, 1H), 1.62 – 1.51 (m, 2H), 1.40 – 1.32 (m, 4H), 1.23 (s, 9H), 0.91 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.35, 152.79, 150.29, 144.16, 136.68, 135.91, 128.88, 128.07, 126.04, 121.50, 82.77, 81.52, 77.35, 77.03, 76.71, 57.96, 33.15, 31.73, 27.59, 25.33, 22.56, 14.09.

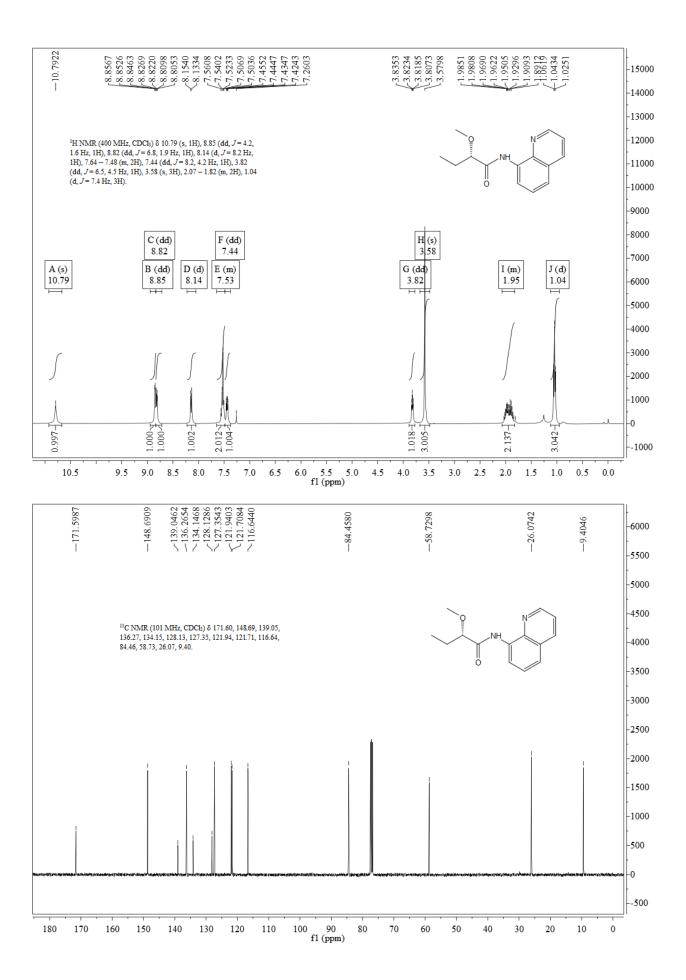
(S)-2-Methoxyheptanoic acid (4a)

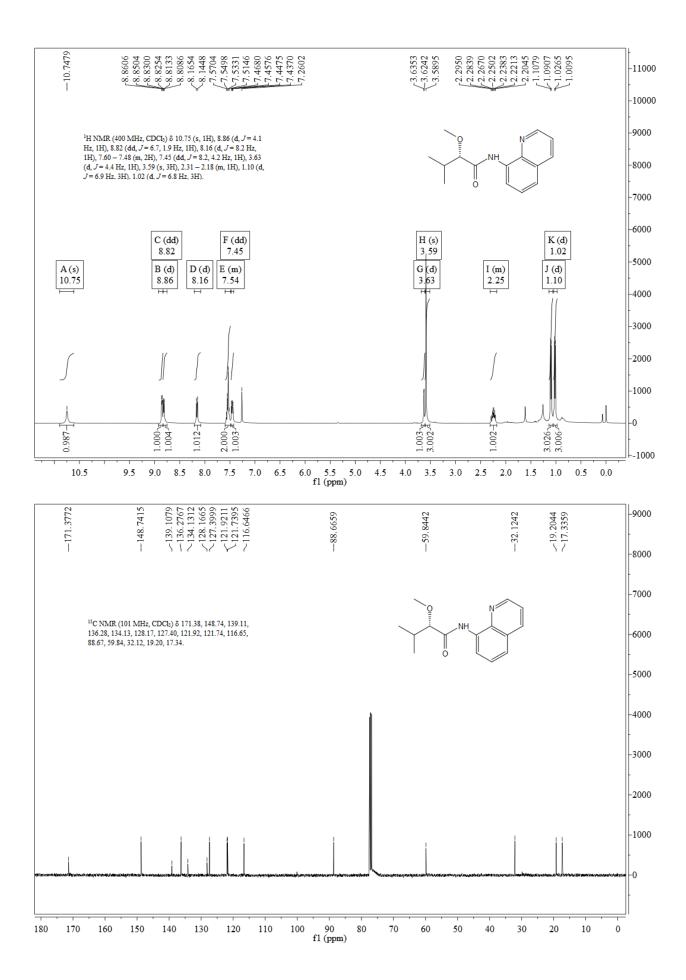
To a solution of **5a** (38.7 mg, 0.1 mmol) in THF/H₂O (3:1, 0.5 mL) were added LiOH (4.8 mg, 0.2 mmol) and H₂O₂ (30%, 50 μ L, 0.5 mmol). The mixture was stirred at room temperature for 4 hours. Then the reaction was acidified by HCl (0.5 M, 12 mL), diluted with ethyl acetate (15 mL), washed by water (15 mL), brine (20 mL), and dried over anhydrous MgSO₄. Evaporation of organic solvent and purification by column chromatography in petroleum ether: ethyl acetate = 1:1 gave the product **4a** as a light yellow oil (15.4 mg, 96%) with **4b** (24.0 mg, 98%) isolated. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.80 (dd, J = 6.7, 5.1 Hz, 1H), 3.44 (s, 3H), 1.89 – 1.68 (m, 2H), 1.42 (p, J = 7.4 Hz,


2H), 1.35 - 1.27 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 176.47, 80.23, 77.33, 77.02, 76.70, 58.29, 32.20, 31.46, 24.49, 22.43, 13.96.


tert-Butyl quinolin-8-ylcarbamate (4b)


¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.79 (dd, J = 4.1, 1.5 Hz, 1H), 8.42 (d, J = 7.4 Hz, 1H), 8.13 (dd, J = 8.2, 1.4 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.46 – 7.35 (m, 2H), 1.58 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 153.05, 148.09, 138.41, 136.37, 135.35, 128.21, 127.49, 121.63, 120.28, 114.59, 80.54, 28.55; HRMS (EI) m/z: 244.1210 (M⁺); calc. for C₁₄H₁₆N₂O₂: 244.1212.


References


1. Barrett, A. G. M.; Braddock, D. C.; Christian, P. W. N.; Pilipauskas, D.; White, A. J. P.; Williams, D. J. *Journal of Organic Chemistry*, **1998**, *63*, 5818 – 5823.

