A Caltech Library Service

One-dimensional topological edge states of bismuth bilayers

Drozdov, Ilya K. and Alexandradinata, A. and Jeon, Sangjun and Nadj-Perge, Stevan and Ji, Huiwen and Cava, R. J. and Bernevig, B. Andrei and Yazdani, Ali (2014) One-dimensional topological edge states of bismuth bilayers. Nature Physics, 10 (9). pp. 664-669. ISSN 1745-2473. doi:10.1038/nphys3048.

[img] PDF - Submitted Version
See Usage Policy.

[img] PDF - Supplemental Material
See Usage Policy.


Use this Persistent URL to link to this item:


The hallmark of a topologically insulating state of matter in two dimensions protected by time-reversal symmetry is the existence of chiral edge modes propagating along the perimeter of the sample. Among the first systems predicted to be a two-dimensional topological insulator are bilayers of bismuth. Here we report scanning tunnelling microscopy experiments on bulk Bi crystals that show that a subset of the predicted Bi-bilayers’ edge states are decoupled from the states of the substrate and provide direct spectroscopic evidence of their one-dimensional nature. Moreover, by visualizing the quantum interference of edge-mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties consistent with strong suppression of backscattering as predicted for the propagating topological edge states.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper ReadCube access
Drozdov, Ilya K.0000-0002-8185-1194
Nadj-Perge, Stevan0000-0002-2916-360X
Additional Information:© 2014 Macmillan Publishers Limited. Received 19 November 2013; accepted 1 July 2014; published online 10 August 2014; corrected online 13 August 2014. The work at Princeton and the Princeton Nanoscale Microscopy Laboratory was supported by the ARO MURI program W911NF-12-1-0461, DARPA-SPWAR Meso program N6601-11-1-4110, NSF-DMR1104612, NSF CAREER DMR-095242, ONR- N00014-11-1-0635, and NSF-MRSEC NSF-DMR0819860 programs. S.N-P. acknowledges support from the European Community through a Marie Curie fellowship (IOF 302937). The authors would like to thank F. Freimuth for providing the results of ab initio calculations and J. Seo and X. Dai for insightful discussions. These authors contributed equally to this work. Ilya K. Drozdov & A. Alexandradinata Contributions: I.K.D., S.J., S.N-P. and A.Y. designed and carried out the STM measurements and their analysis on samples synthesized by H.J. and R.J.C. A.A., I.K.D. and B.B. performed model calculations and related analysis. All authors contributed to the writing of the manuscript. The authors declare no competing financial interests.
Funding AgencyGrant Number
Army Research Office (ARO)W911NF-12-1-0461
Office of Naval Research (ONR)N6601-11-1-4110
Office of Naval Research (ONR)N00014-11-1-0635
Marie Curie FellowshipIOF 302937
Defense Advanced Research Projects Agency (DARPA)UNSPECIFIED
Subject Keywords:Electronic properties and materials; Topological insulators; Two-dimensional materials
Issue or Number:9
Record Number:CaltechAUTHORS:20160113-085622475
Persistent URL:
Official Citation:One-dimensional topological edge states of bismuth bilayers Ilya K. Drozdov, A. Alexandradinata, Sangjun Jeon, Stevan Nadj-Perge, Huiwen Ji, R. J. Cava, B. Andrei Bernevig & Ali Yazdani Nature Physics 10, 664–669 (2014) doi:10.1038/nphys3048
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:63621
Deposited By: Ruth Sustaita
Deposited On:13 Jan 2016 17:39
Last Modified:10 Nov 2021 23:19

Repository Staff Only: item control page