Chow, D. H. and Miles, R. H. and Söderström, J. R. and McGill, T. C. (1990) lnAs/Ga_(1-x) ln_xSb strained-layer superlattices grown by molecular-beam epitaxy. Journal of Vacuum Science and Technology B, 8 (4). pp. 710-714. ISSN 1071-1023. doi:10.1116/1.584985. https://resolver.caltech.edu/CaltechAUTHORS:CHOjvstb90
![]()
|
PDF
- Published Version
See Usage Policy. 608kB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:CHOjvstb90
Abstract
We report the successful growth of InAs/Ga_(1−x)In_xSb strained‐layer superlattices by molecular‐beam epitaxy. The superlattices are grown on thick, strain‐relaxed InAs or GaSb buffer layers on (100)‐oriented GaAs substrates. A short‐period, heavily strained superlattice at the GaAs interface is found to improve the structural quality of the buffer layer. Arsenic incorporation in nominally pure GaSb layers is found to depend strongly on substrate temperature and As‐background pressure. Best strained‐layer superlattice structural quality is achieved for samples grown at fairly low substrate temperatures (<400 °C). Photoluminescence measurements indicate that the energy gaps of the strained‐layer superlattices are smaller than those of InAs/GaSb superlattices with the same layer thicknesses, in agreement with the theoretical predictions of Smith and Mailhiot [J. Appl. Phys. 62, 2545 (1987)]. Far‐infrared photoluminescence is observed from a 37/25 Å, InAs/Ga_(0.75)In_(0.25)Sb superlattice, demonstrating that far‐infrared cutoff wavelengths are compatible with short superlattice periods in this material system.
Item Type: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||
Alternate Title: | InAs/Ga1–xInxSb strained-layer superlattices grown by molecular-beam epitaxy | ||||||||||||
Additional Information: | © 1990 American Vacuum Society. Received 31 January 1990; accepted 21 March 1990. The authors gratefully acknowledge discussions with D.L. Smith of Los Alamos National Laboratory and Christian Mailhoit of Xerox Corporation. Discussions with Ogden Marsh and Mary Young of Hughes Research Laboratories have enhanced our understanding of possible infrared applications of this superlattice. Useful advice and assistance was provided by A.T. Hunter, J.P. Backus, C. Haeussler, D.A. Collins, and L.R. Dawson. The support of the Defense Advanced Research Projects Agency under Grant Nos. N00014-89-J-3196 and N00014-89-C-0203 has made it possible for us to carry out this program. One of us (D.H.C.) was supported in part by Caltech's Program in Advanced Technologies, sponsored by Aerojet General, General Motors, and TRW. | ||||||||||||
Funders: |
| ||||||||||||
Subject Keywords: | MOLECULAR BEAM EPITAXY; SUPERLATTICES; ENERGY GAP; INDIUM ARSENIDES; GALLIUM ANTIMONIDES; INDIUM ANTIMONIDES; TEMPERATURE DEPENDENCE; PHOTOLUMINESCENCE; RHEED | ||||||||||||
Issue or Number: | 4 | ||||||||||||
Classification Code: | PACS: 68.65.-k, 81.15.Hi | ||||||||||||
DOI: | 10.1116/1.584985 | ||||||||||||
Record Number: | CaltechAUTHORS:CHOjvstb90 | ||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:CHOjvstb90 | ||||||||||||
Official Citation: | InAs/Ga1−xInxSb strained‐layer superlattices grown by molecular‐beam epitaxy D. H. Chow, R. H. Miles, J. R. Söderström, and T. C. McGill J. Vac. Sci. Technol. B 8, 710 (1990); http://dx.doi.org/10.1116/1.584985 | ||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||
ID Code: | 6370 | ||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||
Deposited By: | Archive Administrator | ||||||||||||
Deposited On: | 10 Dec 2006 | ||||||||||||
Last Modified: | 08 Nov 2021 20:33 |
Repository Staff Only: item control page