CaltechAUTHORS
  A Caltech Library Service

(Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. II. The spatial extent of the radio-emitting regions

Miettinen, O. and Novak, M. and Smolčić, V. and Schinnerer, E. and Sargent, M. and Murphy, E. J. and Aravena, M. and Bondi, M. and Carilli, C. L. and Karim, A. and Salvato, M. and Zamorani, G. (2015) (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. II. The spatial extent of the radio-emitting regions. Astronomy and Astrophysics, 584 . Art. No. A32. ISSN 0004-6361. http://resolver.caltech.edu/CaltechAUTHORS:20160115-162134996

[img] PDF - Published Version
See Usage Policy.

3132Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20160115-162134996

Abstract

Radio emission at centimetre wavelengths from highly star-forming galaxies, like submillimetre galaxies (SMGs), is dominated by synchrotron radiation arising from supernova activity. Hence, radio continuum imaging has the potential to determine the spatial extent of star formation in these types of galaxies. Using deep, high-resolution (1σ = 2.3 μJy beam^(-1); 0".75 75) centimetre radio-continuum observations taken by the Karl G. Jansky Very Large Array (VLA)-COSMOS 3 GHz Large Project, we studied the radio-emitting sizes of a flux-limited sample of SMGs in the COSMOS field. The target SMGs were originally discovered in a 1.1 mm continuum survey carried out with the AzTEC bolometer, and followed up with higher resolution interferometric (sub)millimetre continuum observations. Of the 39 SMGs studied here, 3 GHz emission was detected towards 18 of them (~46 ± 11%) with signal-to-noise ratios in the range of S/N = 4.2–37.4. Towards four SMGs (AzTEC2, 5, 8, and 11), we detected two separate 3 GHz sources with projected separations of ~1''̣5–6''̣6, but they might be physically related in only one or two cases (AzTEC2 and 11). Using two-dimensional elliptical Gaussian fits, we derived a median deconvolved major axis FWHM size of 0''̣54±0''̣11 for our 18 SMGs detected at 3 GHz. For the 15 SMGs with known redshift we derived a median linear major axis FWHM of 4.2 ± 0.9 kpc. No clear correlation was found between the radio-emitting size and the 3 GHz or submm flux density, or the redshift of the SMG. However, there is a hint of larger radio sizes at z ~ 2.5–5 compared to lower redshifts. The sizes we derived are consistent with previous SMG sizes measured at 1.4 GHz and in mid-J CO emission, but significantly larger than those seen in the (sub)mm continuum emission (typically probing the rest-frame far-infrared with median FWHM sizes of only ~1.5–2.5 kpc). One possible scenario is that SMGs have i) an extended gas component with a low dust temperature, which can be traced by low- to mid-J CO line emission and radio continuum emission; and ii) a warmer, compact starburst region giving rise to the high-excitation line emission of CO, which could dominate the dust continuum size measurements. Because of the rapid cooling of cosmic-ray electrons in dense starburst galaxies (~10^4–10^5 yr), the more extended synchrotron radio-emitting size being a result of cosmic-ray diffusion seems unlikely. Instead, if SMGs are driven by galaxy mergers – a process where the galactic magnetic fields can be pulled out to larger spatial scales – the radio synchrotron emission might arise from more extended magnetised interstellar medium around the starburst region.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1051/0004-6361/201526589DOIArticle
http://www.aanda.org/articles/aa/abs/2015/12/aa26589-15/aa26589-15.htmlPublisherArticle
ORCID:
AuthorORCID
Schinnerer, E.0000-0002-3933-7677
Murphy, E. J.0000-0001-7089-7325
Additional Information:© ESO, 2015. Received 23 May 2015 / Accepted 22 September 2015. We thank the referee for constructive comments that helped to improve this paper. This research was funded by the European Union’s Seventh Framework programme under grant agreement 337595 (ERC Starting Grant, “CoSMass”). M.A. acknowledges partial support from FONDECYT through grant 1140099. A.K. acknowledges support by the Collaborative Research Council 956, sub-project A1, funded by the Deutsche Forschungsgemeinschaft (DFG). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00978.S and ADS/JAO.ALMA#2013.1.00118.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This research has made use of NASA’s Astrophysics Data System, and the NASA/IPAC Infrared Science Archive, which is operated by the JPL, California Institute of Technology, under contract with the NASA. We greatfully acknowledge the contributions of the entire COSMOS collaboration consisting of more than 100 scientists. More information on the COSMOS survey is available at http://www.astro.caltech.edu/~cosmos
Group:COSMOS, Infrared Processing and Analysis Center (IPAC)
Funders:
Funding AgencyGrant Number
European Research Council (ERC)CoSMass 337595
Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT)1140099
Deutsche Forschungsgemeinschaft (DFG)Collaborative Research Council 956
NASA/JPL/CaltechUNSPECIFIED
Subject Keywords:galaxies: evolution – galaxies: formation – galaxies: starburst – galaxies: star formation – radio continuum: galaxies – submillimeter: galaxies
Record Number:CaltechAUTHORS:20160115-162134996
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20160115-162134996
Official Citation:(Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies - II. The spatial extent of the radio-emitting regions O. Miettinen, M. Novak, V. Smolčić, E. Schinnerer, M. Sargent, E. J. Murphy, M. Aravena, M. Bondi, C. L. Carilli, A. Karim, M. SalvatoO. Miettinen, M. Novak, V. Smolčić, E. Schinnerer, M. Sargent, E. J. Murphy, M. Aravena, M. Bondi, C. L. Carilli, A. Karim, M. Salvato and G. Zamorani A&A, 584 (2015) A32 DOI: http://dx.doi.org/10.1051/0004-6361/201526589
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:63729
Collection:CaltechAUTHORS
Deposited By: George Porter
Deposited On:19 Jan 2016 18:59
Last Modified:17 Aug 2017 21:04

Repository Staff Only: item control page