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Abstract

MDS codes are erasure-correcting codes that can correatdkBnum number of erasures for a given number of
redundancy or parity symbols. If an MDS code lgsarities and no more thanerasures occur, then by transmitting
all the remaining data in the code, the original informatéam be recovered. However, it was shown that in order
to recover a single symbol erasure, only a fractiorl pf of the information needs to be transmitted. This fraction
is called therepair bandwidth (fraction) Explicit code constructions were given in previous wolilksve view each
symbol in the code as a vector or a column over some field, thercode forms a 2D array and such codes are
especially widely used in storage systems. In this paperadekess the following question: given the length of the
column!, number of parities, can we construct high-rate MDS array codes with optimahirepandwidth of1/r,
whose code length is as long as possible? In this paper, veeagide constructions such that the code length is
(r+1)log,1.

|. INTRODUCTION

MDS (maximum distance separable) codes are optimal emwecting codes in the sense that they have the
largest minimum distance for a given number of parity symmbtfleach symbol is a vector or a column, we call
such a code an MDS array code (eld. [2], [6].1[11].1[20].] [21h (distributed) storage systems, each column is
usually stored in a different disk, and MDS array codes adgelyiused to protect data against erasures due to their
error correction ability and low computational complexity this paper, we call each symbol a column or a node,
and the column length, or the vector size of a symbol, is d=hby/ /.

If an MDS code hag parities, then it can correct up toerasures of entire columns. In this paper, we not
only would like to recover the erasures, but also care alfmuefficiency in recovery: what is the fraction of the
remaining data transmitted in order to correct the era8W¥¢s call this fraction theepair bandwidth (fraction)For
example, ifr erasures happen, it is obvious that we have to transmit alleofemaining information, therefore, the
fraction is1. For a single erasure it was shown [ini [7] (which also formedahe repair problem) that this fraction
is actually lower bounded by/r. In the general case, it was shown in][15] that wieer » nodes are erased,
then the repair bandwidth is lower bounded &4r. Since the repair of information is much more crucial than
redundancy, and we study mainly high-rate codes, we willigoan the optimal repair of information or systematic
nodes. Moreover, since single erasure is the most commarasodn practice, we assume= 1. Thus, in this
paper a code is said to have an optimal repair if this bounk/efis achieved for the repair @y of its systematic
nodes. For example, in Figuté 1, we show an MDS code wislystematic nodes, = 2 parity nodes, and column
length! = 2. One can check that this code can correct any two erasurgfdhe it is an MDS code. In order to
repair any systematic node, only'r = 1/2 fraction of the remaining information is transmitted. Thhs code
has optimal repair.

In [12]-[14], [18], [19] codes achieving the repair bandthidower bound were studied where the number of
systematic nodes is less than the number of parity nodescgal® rate). For arbitrary code rate], [5] proved that the
lower bound is asymptotically achievable when the colunmyile ! goes to infinity. And[[3], [[4], [[10], [15], [[177]
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Figurel. (n=6,k=4,I=2) MDS code over finite fiellf,, and we us€g0,1,2,3} to represent its elements. The figshodes are systematic and
the last2 are parities. To repaiN1 transmit the first row from every remaining node. To reps transmit the second row. To repaw3

transmit the sum of both rows. And to repaif4 transmit the sum of the first row arititimes the second row from nodeéél, N2, N3, N5,
and the sum of the first row arfitimes the second row from nodéé6.

studied codes with more systematic nodes than parity nddgk ¢€ode rate) and finitg and achieved the lower
bound of the repair bandwidth. If we are interested indbde length, i.e., the number of systematic nodes given
I, low-rate codes have a linear code lenfth1 [L3], [14]; on the other hand, high-rate constructions atatively
short. For example, suppose that we have 2 parity nodes,ttigenumber of systematic nodes is ombg, ! in
all of the constructions, except fdrl[4] it Blog, /. In [16] it is shown that an upper bound for the code length is
k<1+ l(l}Z), and the bound is further tightened ko< 2(log, [) (log, [ 4+ 1) + 1 in [8]. But the tightness of the
above bounds is not known. It is obvious that there is a gawdwsst this upper bound and the constructed codes.
Besides bandwidth which corresponds to transmission iedwiuring repair, we are also interestedattess|t
is defined as the fraction of data read in the surviving nodesrdler to repair an erasure. Access is an important
metric because it affects the disk 1/O operations and hemeepeed and complexity in repair. Since a transmitted
symbol can be functions of many read symbols, we know tha¢sscis no less thah/r. For example, in Figure
[ the repair of nodeN1 reads and transmits only the first row, so the repair bandwadid access are boily2.
However, the repair of nod®/3 requires reading both rows, so the accesk. isloreover, we defineipdateas the
number of necessary writes if a symbol is rewritten in theecdchis metric is important when blocks of the stored
data is frequently updated. In Figure 1 symbahppears 3 times in the code and therefore its update is 3e whil
symbolw has update 4. For an MDS code witlparities, it is not difficult to see that the update should bdeass
thanr + 1 for each symbol. And we say that a code achieving this bourgpignal update.
The main contribution of this paper is as follows:

1) We construct high-rate codes withparity nodes andr + 1) log, I systematic nodes. In particular, with
parity nodes we get a code lengthlog, /, moreover, this code uses a finite field of size-2log, I.

2) We rigorously state some sufficient properties of lingatimal repair codes (similar results also seen’in [5],
[13], [14]), and thus enable explicit code construction aimdplify proofs of optimality.

3) We design optimal-update codes withparities and2log, ! systematic nodes. This construction exceeds
the upper bound ok < log, ! given by [16] for optimal-update and diagonal encoding me#. Diagonal
encoding matrices means that the encoding are done onlynvatich row in the array code. However our
construction allows mixing of different rows in encodings A result, we can see a fundamental difference
between these two types of codes.

4) We construct a family of codes that further reduces thesscompared to the proposed optimal-bandwidth
code. We use a technique that transforms a linear code to @wadent one through block-diagonal matrix.
This technique can be applied to an arbitrary optimal-badtihwcode and therefore can be a useful tool for
future codes as well.

Even though our construction witfr + 1) log, ! systematic nodes is additive improvement for code length
compared to[[4], where the code lengthri®g, I, we point out here a few advantages of our work. Through the
sufficient properties of optimal repair codes, we are thda abexplicitly write the code generating matrix in terms
of eigenspaces and eigenvalues, wherehs [4] constructies cecursively by Kronecker product of matrices and
multiplication of permutation matrices. Moreover, ourtaiue eigenspaces inspired new code constructions in
recent work [[9]. Also in[[4] the code requires a large enougitdifield. But in our construction the finite field
size is specified for the parity case, and therefore can be practical for distribstedage applications.

The rest of the paper is organized as follows: in Sedtibn llwileformally introduce the repair bandwidth and



the code length problem. In Sectibnl Il codes witparity nodes are constructed, and we show that the codehlengt
is (r +1)log, I. We will show an optimal-update code witHog, I systematic nodes and 2 parity nodes in Section
V] and discuss about reducing the access ratio in SeCfidrinally we conclude in Sectidn V1.

[l. PROBLEM SETTINGS
We define in this section the array code by specifying the @ingp repair, and reconstruction processes.

A. Encoding

An (n,k,1) MDS array code is arin — k)-erasure-correcting code such that each symbol is a coldrtength
I. The number of systematic symbolsiisand the number of parity symbols is= n — k. We call each symbol
a column or a node, ank the code length We assume that the code is systematic, hence thefinstdes of the
code are information or systematic nodes, and therlasides are parity or redundancy nodes.

Suppose the columns of the code & C,, ..., C,, each being a column vector I, for some finite fieldF.
We assume that the parity nodes are a linear function of fleenmation nodes. Namely, far= 1, ..., r, parity node
k+iis defined by the invertiblencoding matricesf sizel A;;, j = 1,...,k as follows

k
Crsi = ) Ay G
j=1

For example, in Figurgl1, the encoding matrices Agg = [ for all j =1, ..,4, and

AR [t 0 (410 (10
Az'l_(o t+1>'A2/2—(1 t+1)’A2’3_( 0 t)’A2'4_<0 1)'

Here the finite field iSF, generated by the irreducible polynomidl+ t + 1, and in the table, t + 1 are written
as2,3, respectively. In our constructions, we require tigt; = I for all j € [k]. Hence the first parity is the row
sum of the information array. Even though this assumptiamotsnecessarily true for an arbitrary linear MDS array
code, it can be shown that any linear code can be equivalgatigformed into one with such encoding matrices

[18].

B. Repair

Suppose a code has optimal repair for any systematic Rode [k], meaning only a fraction of /r data is
transmitted in order to repair a node erasure. When a systenaei is erased, we are going to use size x |
matricesS; j, j # i,j € [n], to repair the node: From a surviving noglewe are going to compute and transmit
S;,jC;j, which is only1/r of the information in this node.

It was shown in [[15] that we can further simplify our repairaségy of nodei and assume by equivalent
transformation of the encoding matrices that

Sij=S5; forall j#i,j € [n]. 1)

Notation: By abuse of notations, we writg;, S;A;; both to denote both the matrices of sizér x I and the
subspaces spanned by their rows.
In the following we show necessary and sufficient conditifarsoptimal repair.

Claim 1 [16] Optimal repair of a systematic nodés equivalent to the followingubspace property: There exist a
matrixS; of sizel /v x 1, such that for alf #i,j € [k],t € [r],

Si = SiAy, 2)

.
Y SiAy =T ©)
t=1



Here the equalities are defined on the row spans instead ah#tdces, and the sum of two subspacks3 is
definesasA+ B = {a+b:a € A b € B}. Obviously, in [3) the dimension of each subsp&gd;, ; is no more
thanl/r, and the sum of such subspaces has dimension no more tha@his means that these subspaces intersect
only on the zero vector. Therefore, the sum is actually actlisem of the subspaces, and matixhas full rank
1/r.

Sketch of proof:: Suppose the code has optimal repair bandwidth, then we me#trismit!/r elements
from each surviving column. Suppose we transf)if; from a systematic nodg¢ # i,j € [k], and S;Cy,; =
Yk, SiA;.C, from a parity node + ¢ € [k+1,k+r]. Our goal is to recovef; and cancel out al;,j #1i,j € [k].

In order to cancel ouC;, (@) must be satisfied. In order to sol¢g, all equations related t@; must have full
rank [, so [3) is satisfied. One the other hand,[if @) (3) are satisfime can transmi§;C; from each nodg,
j #1i,j € [n] and optimally repair the node [ |

Similar interference alignment technique was first introetliin [5] for the repair problem. Alsol,_[13] was the
first to formally prove similar conditions. However, the vedion from distinctS; ; to identical S; for different
values ofj was not known before.

Notice that if [2) is satisfied theS; is an invariant subspace oA, ; foranyt = 1,..,randj # i. If Ay;
is diagonalizable then it is uniquely defined by its eigeesgaand eigenvalues. Moreover each of the invariant
subspaces of4;; has a basis composed of eigenvectorsAyf. Therefore, we will first focus on finding the
proper encoding matrices, by defining their set of eigersmpathese eigenspaces will uniquely define the set of
invariant subspaces for each encoding matrix. Then we \itlose carefully the eigenvalue that corresponds to
each eigenspace, in order to ensure the MDS property of ttie. co

For a general repair strategy, the subspatesj € [k] are not necessarily identical, and the general subspace
property for optimal repair of a systematic nodis: There exist matriceS; j, j # i,j € [n], all with sizel/r x I,
such that for allj #i,j € [k], t € [r],

Sij =Sik+tAtj, (4)

r
Y SigriAsi =F, (5)
t=1
where the equality is defined on the row spans instead of thaces
We mention here that if we use the simple repair stratéigh¢lds for all nodes with the possible exception of
a single node. For instance sB& in the following example. However in the subsequent sestiare will shorten
the code by one node if such exception exists and assumecilesyt; = S; for all i € [k].

Examplel In Figurdll, the matrices; are
51 =1(1,0),52=1(0,1),53 = (1,1).

One can check that the subspace prop@yYy(@) is satisfied foi = 1,2, 3. For instance, in order to repair systematic
nodeN3, we need to transmit the sum of the elements from each nodehvghequivalent to multiply each column
by the matrixS; = (1,1). Note that(1,1) is an eigenvectorfoh;j, t = 1,2,j = 1,2,4, hence we havgs = S3A; ,
where the equality is between the subspaces. Furtherm@easy to check that

S3 @ S3A,3 = span(1,1) @ span(t +1,t) = F3.

NodeN4 is an exception, since the matriceg;’s are not equal. In facdy; = (1,t) forj = 1,2,3,5, andSy ¢ =
(1,t+1).

C. Reconstruction

If no more tharr of the nodes are erased, the MDS property requires that tive @formation can be decoded
from the remaining nodes. Usually this requirement can kisfial by choosing proper coefficients in the encoding
matrices over a large enough finite field. And in our constonst it is satisfied by proper eigenvalues of the
encoding matrices, as shown in the subsequent sections.



IIl. OPTIAML-BANDWIDTH CODE CONSTRUCTION

In this section, we will construct a code with arbitrary nuemlof parity nodes. Our code will have column
length! = ™, k = (r + 1)m systematic nodes, andparity nodes, for any positive integersm. We start with
the construction description and proof for optimal repairg then discuss the update and access complexity of the
code, and at last argue that the entire information is raoactible from anyr node erasures.

A. Construction

We define the code, or equivalently the encoding matriceterims of their eigenspaces. We defindiagonal-
izable matricesA, ..., A, of order! = r™, whose Jordan canonical form are diagonal matrices. Eathixma;
will have r distinct non zero eigenvalues that correspond tigenspaces, each of dimensibfr = r"~1. The
encoding matrix for parity nodk + s, and systematic nodeis defined as

Asi= A s er]i€ [k]. (6)
Remark:
1) Each symbol in the first parity is simply a linear combioatof the corresponding row, sineg ; = A}fl =1
for anyi.

2) Denote byV;y,V;1,...,V;,_1 the left eigenspaces of; that correspond to eigenvalugsy, A;q,...,A; 1,
then A, ; has eigenvalueﬁfrgl,/\f’;l, . .,/\;21.
By abuse of notationd/; , represents both the eigenspace and fhrex I matrix containing /r linearly independent
eigenvectors. Our construction will only focus on the mat;. Using the definition of the encoding matrices in
(©) the subspace property becomes

S; = SiAj, vj =+ i,j € [k] )
Si+SiA; + Sl-AlZ S Sl.Alrfl — @®)

Hence, when a systematic nodis erased; € [k], we are going to use the subspagen order to optimally repair
it. We term this subspace as thepairing subspacef nodei.

In the first step we will only define the eigenspaces of eactrimat; without specifying the eigenvalues. This
will be enough to show the optimal repair property of the cotleen we will show that over a large finite field,
there exist an assignment for the eigenvalues, that gueeanhe MDS property as well.

Let{e;:a=0,...,1—1} be some basis dF’, for example, one can think of them as the standard basisngect
The subscriptz is represented by itg-ary expansiong = (ay,ay,...,a,), whereq; is its i-th digit. Moreover,
define M, ; to be ther indices in[0,r™ — 1] that differ froma in at most theiri-th digit. For example, when
r = 3,m = 4, we havees = e(,), andMs3 = {(0,0,0,2) = 2,(0,0,1,2) = 5,(0,0,2,2) = 8}. Next we
define (r + 1)m subspaces for € [m],u € [0,7]:

P, = span(e;:a;=u), foru=0,..r—1,
P, = span( ) ey:acl0r—1]). 9)
IZ/EMQ,[

Note that foru # r, P;,, is spanned by the set of basis vectors wha#e digit index isu, and therefore its has
dimensionl/r. It easy to check that alsB;, is a subspace of dimensidyir. For example, when = 3,m = 2,
Pyo = span(e(g ), €(0,1), €(0,2)) = Span(eg, e1,€2),
P1,1 = span(eg, ey, 6’5), Pl,Z = span(e6, ey, 6’8), and
P1,3 = span(eo +e3+eg,1+es+ 67,60+ €5+ 68).

Using thesek = (r + 1)m subspaces, we define thematricesA; that correspond to the systematic nodes.



Node index 1 2 3 4 5 6
Basis for 1st ept+ex | eg+eq ep €o eo ()
eigenspace ofA; | e1 +e3 | ex+e3 e1 e e1 e
Basis for 2nd e e1 ep+er | eg+eq e e1
eigenspace of; e3 e3 e1+e3 | extes es3 es
Basis for repairingl  eg eo e e eg+er | egte
subspaces; e1 ey es3 e3 e1+es | ex+tes

Figure2. (n=8,k=6,l1=4) code. The first parity node is assumed to bedlv sum, and the second parity is computed using encoditigce®A;.
Each encoding matrix is defined by its two eigenspaces ofmbina2. In order to repair nodég each surviving node projects its information on
the repairing subspacg, namely it multiplies its columns by the matr$. E.g., nodeN5 has two distinct eigenspacspan (e, e1), span(ez, e3).
Furthermore, if this node is lost, each surviving node mtsjéts information on the subspasg = span(eg + ¢z, 1 + €3).

Pig | Pip| Pip P13 Py | Poy | Pop P> 3

€o es3 €6 eg + e3 + eq €o eq ) eg+ep+er
Basis for the subspace ¢; ey ez | e1+tes+er| e3 ey es | e3+estes
e es eg | ex+es+teg | e ey eg | egt+ey+eg

Figure3. Basis Sets of vectors used to construct a code with3 parities and column length= 3% = 9.

Construction1 Letu € [0,r],i € [m]. For eachum + i € [k|, define the matriA,,,,.; as follows: Its eigenspaces
areP;,,,u’" # u that correspond to distinct nonzero eigenvalues. FurthegnietP;, be the repairing subspace,
namelyS, i = Pi .

Example2 Deleting node N4 of the code in Figufibyields to a(5,3,2) code constructed using Constructifin
Moreover, the code in Figul@is an(8,6,4) code, constructed using ConstructifinOne can check the subspace
property holds. For instancg; = span{ey,e1} = span{eg + e1, €1} is an invariant subspace df. S0S; = 51 A;.

If the two eigenvalues oA; are distinct, it is easy to show th&t® S;A; = F*, Vi € [6].

Example3 Figurel3 illustrates the subspacés, for r = 3 parities and column length= 9. Figureldl is a code
constructed from these subspaces Wigystematic nodes. One can see that if a node is erased, otrawsimit only

a subspace of dimensi@nto repair, which corresponds to orily 3 repair bandwidth fraction. Recall that the three
encoding matrices for systematic nadeel, A;, AZZ, fori € [8].

The following theorem shows that the code indeed has optiepir bandwidthl /7.
Theorem 2 Constructioffl has optimal repair bandwidily r when repairing one systematic node.

Proof: For distinct integersim + i,u'm + i’ € [k] for u,u’ € [0, — 1] andi, i’ € [m] we will show that [7)
is satisfied, namely

Sum+iAu’m+i’ = Sum+i~

The 3 eigenspaces Pi1 |1 P11 | Piz| Pos| Pi1| Po1| P11 | Po1

Repairing subspaca Pio | Poo| P11 | Po1 | Pio | Poo | Pisz | Prs

Figure4. An (n =11,k =8, =9) code. The subspacds, are listed in Figur]3.



« Casei #i': Itis easy to verify that the eigenspacedy, ..., T, of A, satisfy

r

Pi,u = E(Pi,um T]) (10)
j=1

Notice that [(ID) is usuallyot correct for arbitrary subspacé, ..., T, that satisfyy"; T; = IF. By definition
Sum+i = Piy, then

Sum+iAu/m+i’ = Pi,uAu/m+i’

r
= (Z PN Tj)Au’m+i’
=1

|
T}

(Pz uNT; )Au/m+i’

—.
Il
-

I
-

(PuNTj)

Il
-
9
= —_

= Sum+i-
o Casei = i’, andu # u’: By the construction, the eigenspacesAf,; are {P;1, ..., Pi,}\{P; /}. Since
u 75 u’ then Pi,u S {Pi,lr-"r Pi,r}\{Pi,u’}i and
Sum+iAu’m+i’ = Pi,uAu/m+i’ = Pi,u = Sum+i~
e Casei = i/, andu = u’: In this case we will only prove the case where= 0. The rest of the cases are
proved similarly. Denote by,,,,.; = A,S = S,,,,,+i, then by [8) we need to show that
S+SA+.+SA=F.

Denote the distinct eigenvalues dfby Ay, A1, ..., A,_1. For a vectom = (ay, 4o, ...,a,) OF equivalently an
integera € [0,] — 1], denote bys;(u) = (ay,...,a;_1,u,a;,1,...,an) the vector that is the same asxcept
the i-th entry, which isu. Notice thatS = span(P; ) = span{e,, () : Va € [0,/ — 1]} and

eqaA°
r—1
= (Z Cay(u) ~ Car(1) =~ Cayir—1)) A’
= /\S Z e )\13 ) — )\f,_leﬂi(r_l)
r—1
= Aeg0) T 2 (A — Au)eq(u)-
u=1

Writing the equations for alé € [0,7 — 1] in a matrix, we get

ea,(O) €a.(0)
€a,(0)A 2 ea
az<o>A =M , ,



with

1 0 Ce 0
Ag /\g — /\% e /\g — A;—l
M= A Ao —M A=A
',1 1 ' -1 -1 . -1
Ay Ag AT e AT AT
After a sequence of elementary column operatidvishecomes the following Vandermonde matrix
1 1 Ce 1
Ao A e A
wo| 2o A
1 1 .
A ATt e

Since);’s are distinct, we knowI’ and henceéV! is non-singular. Thereforepan{e,, (), €, )4, - - -, eﬂi(O)A“l}
= span{e,,(0), €s,(1), - - - €a,(r—1) |- SINCES; containse, o for all r-ary vectora, we knows; + S;A; + - -+ +
S; AT =T

[

B. Update and access complexity
We discuss the update and access complexity of our codesdrstifisection. First we make some observations.

1) The code restricted to the systematic nodes/m|, u = r is equivalent to that of |3][[15]. Since the encoding
matricesAl.Q, are all diagonal, every information entry appears examtlge in each of the two parities, and
therefore it appears+ 1 times in the code (once in each of the parities and once inygtematic node).
Clearly this is the minimum possible, since the code is an MBSmentioned in the introduction, this is an
optimal-updatecode. In [16] it was proven that an optimal-update code wigtgdnal encoding matrices has
no more thann systematic nodes. But we will show an optimal-update cactitn in the next section with
2m systematic nodes but non-diagonal encoding matrices.

2) Shortening the code to contain only the systematic nodese [m], u € [0, — 1] will result a codeC that
is actually equivalent to the code inl [4]. We assume here{hat: € [0,/ — 1]} are standard basis. Namely,
each repairing subspadg, can be represented by dyir x I matrix, such that each row has exactly one
nonzero entry. Therefore when repairing a node, dyiy symbols from each surviving node are being read
and transmitted to the repair center, with no need of any coatipns within the surviving node (e.g. Figure
[2). Such a code is termed to hawptimal accesslt was shown in[[16] that a code with optimal access has at
most2m nodes, therefore this construction is optimal. Namely & isode with optimal access and maximum
possible number of systematic nodes.

3) We conclude that the code construction is a combinatioth@flongest optimal-access code and the longest
optimal-update code (with diagonal encoding matrices)chviprovides an interesting tradeoff among access,
update, and the code length. In other words, we can achiesggarinumber of nodes if we are willing to
sacrifice the optimal-access and/or optimal-update ptigseiThe shortening technique was also used_in [13]
[14] in order to get optimal-repair code with different codes.

Clearly, the optimal-access property is highly desirabl@icode. Therefore one might ask what is the longest
code (in terms ok), that has the maximum number of nodes that can be repaitbdoptimal access. In particular
let us consider codes with 2 parities. If we try to extend th&noal-access codé with 2m systematic nodes to
an optimal repair cod® with k systematic nodes, thén< 3m, as the following theorem suggests. Therefore, our



construction is longest in the sense of extendin@efore proving the theorem we will need the following lemma

Lemma3 [16, Lemma 8] The repairing subspace®f an optimal repaitk + 2, k, 1) code satisfy that for any subset
of indices] C [k]

l
dim(ﬂie]Si) < m
Theorem 4 Any extension of an optimal access code V2ith systematic nodes to an optimal repair code, will have
no more thadm systematic nodes, for= 2 parities.

Proof: Let C be an optimal-access code of len@in with 2 parities. LetD be an extended code @f. By
equivalently transforming the encoding matrices ($ee)[16E can always assume the encoding matrices of the
parities inD are

r .- I I I
( Ar o Aun Admpr o Ax >
Here the firs2m column blocks correspond to the encoding matrice€.dfirst consider the cod@, that is the
first 2m nodes. IfC has optimal access, then each repairing subspace is sphgrig¢@ standard basis vectors.
SinceC contain2m systematic nodes, on average each standard basis vecearapmm x % X % = m repairing
subspaces. For each= 0,...,] — 1 let | C [2m] be the subset of indices of the repairing subspaces thahicont
the vectore;. We claim that each standard basis vector appears exadiiypes, namely for eachthe size of] is
m. Assume to the contrary thaf| > m for somei. By Lemmal3
m

1< dim(ﬂie]Si) < % <1,
and we get a contradiction. Moreover, if there existsf size less tham:, then by a simple counting argument we
get that there exists afi of size greater tham, which can not happen. Hence, we conclude that for eatie
size of | is exactlym and,
Spﬁl’l(é’i) = NigyS;.

Now consider a systematic nodec [2m + 1,k| that was added to the code SinceD is an optimal repair
code, each repairing subspace of the node$ is an invariant subspace of;. Since the intersection of invariant
subspaces is again an invariant subspace we get that far-arty...,[ — 1

NiesSi = span(e;)

is an invariant subspace of;. Namely, each standard basis vector is an eigenvectot;ptind therefore; is
a diagonal matrix. We conclude that restricting the c@deo its lastk — 2m systematic nodes will yield to an
optimal update code. BY [16][Theore6h, there are onlyn nodes that are all optimal update, herce 2m < m.

[ ]

C. Reconstruction and finite field size
Next we will show that the code can be made to be MDS over a Iange field.
Theorem 5 The code can be made an MDS over a field large enough.

Proof: Assign arbitrarilyr distinct nonzero eigenvalues to each matfix Recall that the encoding matrices
are defined asi,; = Af‘l, therefore each one of them is invertible. We multiply eachoeling matrixA;; by a
specific variablex(;_),; to get a new code defined by the matrix

x1A1,1 s XAk
. . . (11)

x(rfl)k+lAr,1 e XAk
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Clearly the new code is MDS iff any x ¢ block submatrix in [(Il1) is invertible, for any € [r]. Define the
multivariate polynomialP in the variablesy,;, which is the product of the determinants of all the ¢ block
submatrices, for any =1, ...,r. Hence, the code can be made to be MDS if there is an assigrimth variables
that does not evaluat® to zero. Letx = (xi,...,x,;) be the vector of the variables. For a vector of integers
a = (ay,..., a,) we definex? =TT; xf". Furthermore, define the usual ordering on the texthgiccording to the
lexicographic order, i.e.x? > x? iff « > b according to the lexicographic order. The leading coefficief a
multivariate polynomial, is the coefficient of the maximalnzero term. For example, the leading coefficient of the
polynomial2x3x; + x3xy is 2.

Leta = {a; < ap < .. <a}andb = {b; < by, < ... < b} be two sets of indices of sizein [r] and [k]
respectively. Define?, ;, to be the determinant of the submatrix restricted to row kdacand column blocks. It
is easy to see that its leading coefficient is

t
H det(Aﬂ,',bl')/
i

which is non zero, since by construction, each of matricasviertible. Moreover ifP;, P, are the determinant of
different submatrices, then the leading coefficient ofrthedductP; - P,, is the product of their leading coefficients.
Since both of them are non zero, so is the prodids a product of such polynomialg, therefore also its leading
coefficient is non zero. Moreover, ea¢his an homogeneous polynomial, hence s®isNe conclude thaP has
a nonzero term” (its leading coefficient) of degree equaldeg(P). By the Combinatorial Nullstellensatz|[1] we
get that a field of size greater thamax;{a; : a = (ay, ...,a,) } will suffice. [

For the case of 2 parities, we can explicitly specify the dirfield size. The following construction defines
uniquely the encoding matrices, by defining their eigereslurhis assignment of the eigenvalues guarantees the
MDS property of the optimal repair code.

Construction2 Let {A;}c(u),j—01 be an arbitrarm distinct non zero elements of the fielt), g > 2m + 1.
Assign arbitrarily to each eigenspace of the mattjx, . ;, the eigenvalu@; or A; 1, as long as each, ,, correspond
to distinct eigenvalues in the two matrices it appears asgemspacey, ' € {0,1,2}.

For example, we can assign eigenvalues in the following way:

encoding matri>4 1st eigensapce 1st eigenvalue 2nd eignenspace 2nd eignvalu

Aj P, Ain Piq Aio
Apyi Pio Ain P> Aio
Aoy Pio Aio Piq Ain

Take the case ofir = 2 in Figure[2, we can use finite fiells and assign the eigenvalues to be
()\1,0/ . /)\6,0) - (1/ 2/ 1/ 2/ 4:/ 3)/
(M, Ae1) = (4,3,4,3,1,2).

Remark: If we have an extra systematic column with,, .1 = I (see columnN4 in Figure[1), we can use a
field of size2m + 2 and simply modify the above construction such thatiall # 1, for i € [3m],j = 0,1. For
example, whenn = 1, the coefficients in Figurgl 1 are assigned using the abowwidig, where the field size is
4.

Theorem 6 There is an optimal repa{Bm + 2,3m,2™) MDS code if the finite field size is at lea&t: + 1.

Proof: We will show that Constructioll] 2 satisfies the MDS properamely, any two erasures can be repaired.
This is equivalent to that (i) all the encoding matricég's are invertible, and (ii) ang x 2 block sub matrix

I I
Ax Ay
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is invertible, for any distinck, y € [k]. Since the eigenvalues are nonzero the first condition isfieat The second
condition is equivalent to thatly — A, is invertible. Letx = um +i,y = vm + j, with i,j € [u],u,v € {0,1,2}.
» Casei # j: Let the eigenspaces oA, i, Aynj b€ V1, V2 and Uy, Uy respectively, which correspond to
eigenvalues\y, A,, andpq, uy. Clearly

VieVy=U & U =F.

It is easy to check that
& (VinU)) =F.

Assume to the contrary that there exists a non zero vecsuch that
a(Aum+i - Avm+j) =0,
wherea = Z%,j:l ai;, anda;; € V; N U;. Then,

0=a(Aum+i— Aom+j) = (M —p1)ar + (M — pa)ara + (A2 — p1)ags + (A2 — pa)an .

Sincea is non zero, at least one of thg;’s is non zero. Hence}; = y; and we get a contradiction since the
eigenvalues ofd,;, ;, and A, ; are distinct.

o Casei = j andu # v: Sincei = j the matricesA,,,,,.; and A,,,.; share a common eigenspace from the set
of subspacegP; ,, u € {0,1,2}}. Denote byV,U andV, W the eigenspaces 0,1, Ayp+i- Denote by
A, u the eigenvalues that correspond to the eigenspadé iof the matricesA,,;, i, Avmi respectively. By
constructionA # yu, and therefore by constructidt is an eigenspace ot,,,; with an eigenvalue:;, andW
is an eigenspace ol,,,,.; with an eigenvalue\. Assume thatA,,,.; = aA,,.; for some non zero vector

a=b+c="b+d, (12)
whereb, b’ € V, c € U, andd € W. Then
Ab+pc = (b+c)Aynsi = aAynii = aApmyi = (U +d)Appyi = ub' + Ad,

using [I2) we conclude that = A which is a contradiction.
[ ]

One can observe that the proposed code construction hasetara(3m + 2,3m,2™), and a field size that scales
linearly with the number of systematic nodes. On the otherdhahe (m + 3,m + 1,2™) code in [15] requires
only a field of size3. Thus, the proposed code can protect more systematic nlogielas longer (actual) column
length. The actual size of each column is longer since it bastdre2™ symbols of alarger field. Nonetheless,
it may be possible to alter the structure of the encoding inegtra bit (for example, relaxing the requirement that
each of the encoding matrix is diagonalizable), and obtatorsstant field size. This remains as a future research
direction.

IV. LONG OPTIMAL-UPDATE CODE

In storage systems that use coding to combat failures, eady gymbol is a function of a subset of information
symbols. Therefore, when an information symbol updatesatse, also the parity symbols that are function of it,
need to be updated. Since update is one of the most frequerdtam in the system, one would like to minimize
the amount of symbols’ update incurred by one informatiomisgl update. In an MDS code each parity node is a
function of theentire information symbols, hence at least one parity symbol néztie updated in any information
symbol update. An optimal update MDS code attains this loagimd, namely each parity node updates exactly
one of its symbols for each information symbol update. Itasyeto see that in an optimal updditeear code, each
encoding matrix is a generalized permutation matrix, here is exactly one nonzero entry in each row and each
column.
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In [16] diagonal encoding matrices ,which are a special cdgeneralized permutation matrices, were considered.
They showed that an optimal bandwidth MDS code wtparities, and diagonal encoding matrices, has at most
log, [ systematic nodes. In this section we will show that one caprawe that by not restricting to diagonal
encoding matrices. More precisely, we will construct oniropt update code witl2 log, I systematic nodes.

Let I = 2™ for some integen:, and define for any = 1, ..., m the following four subspaces @ of dimension
1/2:

P; span(e; : a; = 0),

R; = span(e;:a;=1),

Q;, = span(ye;+xe,:a; =0,b; = 1,a; =b;,Vj #1),
Oi = span(—yea +xep:a; = 0, bi = 1,11]- = b],VJ 7& i),

wherex andy are non zero elements of the field that satisfy# y2. In the following we will also use letters
P, Q as superscripts for the encoding matrices.

Construction 3 Construct thdn = 2m + 2,k = 2m,1 = 2™) code ovelF by the following2m encoding matrices
Ali=1,..,mandT = P,Q.

« Define the matrixA? to have eigenspacé€y, O; that correspond to eigenvaluweg, —xy respectively.

« Define the matrixA;~ to have eigenspac€s R; that correspond to distinct non zero eigenvaligsrespectively.
Moreover, let the repairing subspace that correspond tmth‘e'xAiT beSiT =T,

E.g., whenm = 1, we get a(4,2,2) with 2 encoding matrices represented with respect to the staridesid

A=t e ) &
and repairing subspaces
¢ = Q1= (y,%),Sf = P = (1,0),
Whenm = 2, the encoding matrices are
A A x? I x?

A X
A?: ,A?- ! AT = 2 ’Agz Y 2

u u y? 2

The repairing subspaces are
y x y X 1 00 10 ]

y x |’ y x|’ 1 0 0] 10"

In both cases it is not difficult to check that the subspaceenty is satisfied, hence the code has optimal bandwidth.
And since the encoding matrices are permutation matribescode has optimal update.

Theorem 7 ConstructiofB has optimal bandwidth and optimal update.

Proof: It is easy to see that the encoding matrices are all permuatatatrices, so the code has optimal update.
We need to show the subspace property, namely,foe [m] andY, T € {P, Q}

i =jandY =T
sYATnsy = ) (0 i=jan
! S otherwise.
« Casei # j: One can check that for € {Q, P},
Y; = (Yz N P]) D (Yz N R]) anin = (Yl N Q]) © (Yl N O])
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Therefore the proof is the same as in Theofém 2.

e Casei =j, andY # T: In this caseY; is an eigenspace oﬁiT, and the result follows.

e Casei = j, T = Y: Assume thatyY = P, and we will show that the transformatiomf maps the subspace
Sf = P; to the subspac®;, and sinceP; N R; = {0} the result will follow. lete, € P; andb be the integer
that is identical taz except on the-th digit. Then

1
adf = oollyea+xe) = (~yea+xe)] AT
X —X
= 5y e+ ae) = L (—ye )
= xzebeRi.

WhenY = Q the result follows by the same reasoning.

[ ]
Similar to Theoreni5 it is clear that the code can be MDS overgel enough finite field. To summarize the
result of this section, we gave a construction that doulthedntumber of systematic nodes compared to the bound
in [16]. The reason for the violation of this bound is by nastrieting to diagonal encoding matrices.

V. LOWERING THEACCESSRATIO

Repairing a failed node is a computationally heavy taski thquires large amount of the system’s resources.
Therefore, optimizing the repair algorithm is of high imtzorce. One way to optimize is by reducing the amount of
symbols needed to be accessed and read during the repa@sprdtis parameter is quantified by texess ratio
of the system. In this section we will use explicit lineamsformations performed on the code in Construdiion 1 that
yields to an equivalent code with a lower access ratio duaingpair process. Furthermore, these transformations
maintain the other properties of the code, namely the MDSthadptimal repair properties.

Formally, given an(n, k,1) codeC, let B(i) denote the number of symbols (or entries) accessed in thasisgy
nodes during the repair of systematic nadd@he access ratids defined as

R— Y ()

k(n—1)I"

Note that(n — 1)! is the amount of surviving symbols in the system in the evednoree node erasure, hence
R is the average fraction of the number of symbols in the sydteing accessed during a repair process. The
((r+1)m—+r,(r+1)m,r™) code in Constructionl1 hgs + 1)m systematic nodes, where: of them are repaired
with optimal access, i.e., only/r symbols are accessed from each node during the repair grodess, repairing
these nodes costs accessimg- (n —1)!/r symbols. However, repairing any of the restsystematic nodes, one
has to accesall the surviving symbols in the system. Notice that, althoughrepair is optimal, in order to generate
the transmitted data one has to access the entire informatithe node. Repairing these nodes costs accessing
m - (n — 1)l symbols, and the access ratio of the code is

R7rm~(11—1)1/1’4-771-(11—1)1 2
N (r+1)m-(n—1)l o+l

This value of the access rati® = 2/(r + 1) is our benchmark. We will show that with an appropriate seec
of linear transformation, the value of access raliocan be reduced. But first we define how to apply linear
transformation on the code to receive an equivalent codeeM@r we will show that these linear transformations
preserve the “nice” properties of our code.

Let A = (Aj;)iepjex e the encoding matrix of atk +r,k,1) optimal repair MDS code, with repairing
subspacess;,i = 1,....k. We will apply a linear transformation on the code by multiply on the right the

(14)
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encoding matrixA by a block diagonal matri¥, to get the encoding matri& as follows,
G oo Gy Agg oo Agg By
C= : ; = AB = : . : .
Cr,l . Cr,k Ar,l Ce Ar,k Bk
Namely, fori € [r],j € [K]
Cij = AijBj, (15)

whereB; is an invertible matrix of sizé x I. After applying the linear transforatioB on the encoding matrix, the
repairing subspaces should be changed accordingly. Réeal; ; is the repairing subspace for surviving node
during the repair of nodé Define the new repairing subspaces as follows:

S;B;, j€lK,
S; =< 16
v {si, j€k+1,k+r]. (16)

Notice that compared to the original code, the repairingspabes are changed only for the systematic nodes.

Theorem 8 Consider the linear transformation defined(®@#)(18)applied on an optimal-bandwidth MDS code, then
the resulting code is an optimal-bandwidth MDS code, wiffaigng subspaces ;.

Proof: Since the code defined by the encoding mattixs optimal bandwidth, then by the subspace property
@ @) for any distincti, j € [k], andt € [r],
Si - SiAt,j'

Therefore,
Sij = SiBj = SiA;Bj = SixCij.

And (4) is satisfied. Moreover, the sum of subspaces satisfies

r
Y SiA, =TF,
t=1
therefore . .
Y SifiiCri= Y SiAyB;i =TF.
t=1 t=1
Therefore[(b) is satisfied, and the equivalent cGdeas optimal bandwidth. It is easy to check thadifis an MDS
code, then als@’, and the result follows. |
Now let us find a code such that the number of accesses will bee@sed. We say nodehas optimal access
during the repair of nodé¢, if only I/r symbols are to be accessed in ngdéuring the repair on nodé This
is equivalent to the followingptimal-access condition: S;; = S;B; can be written as a matrix with only/r
non-zero columns. So we need to look for propgs such that this condition is satisfied by as many péirg)
as possible. LeV; be the matrix of the left eigenspaces of the encoding matixn Constructiori L, and we call
it eigenspace matridVhenj = vm +y, for v € [0,7],y € [m], we have

P

¥,0

V. = Pyp1
I 1P

y,0+1

Py,r
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whereP, ,, are defined as if19). Here we view eakl), as!/r of vectors instead of a subspace. For example,
for the code in Figur€l2 if = 1 and consider standard badis, e1, ¢,,¢3} then

eyt e 1 010
Vi — et+e3| |0 1 0 1
L= e “loo0o 10
e3 0 0 01
Define the matrix of transformation as
Bj::\G‘l, (17)

which is the inverse of the eigenspace matrix.
Theorem 9 The access ratio of ther = (r + 1)m +r,k = (r + 1)m,l = r™) code using[d7) is
2 r—1
r+1 (n—-1)(r+1)

Proof: Suppose nodé = um + x is erased. From nodg= vm +y, j # i, by (I8) we need to send the
following subspace:

Si,j = Sl‘B]' = Sl-Vj‘l.

Here S; is defined asP,, as in Construction]1, andl; is defined in [(Tl7). We are going to show that in a lot of
casesS; can be rewritten as the product of a matik and the eigenspace matrix:

S; = MV, (18)

where M is of sizel/r x r and contains only/r non-zero columns. This will lead t6;; = MV]-V]fl = M and
therefore the code will have optimal access for the pgir

» Casex =y, u # v. Apparently,S; = P, is one of the eigenspaces ¥ and [I8) is satisfied.

o Casex # y, u # r. We have observed i _([L0) that the subspaces safligfy = 2;:1(PX,L, NT;), where
Ti,..., T, are all the eigenspaces ﬂf] Moreover, eactPy , N T; only contains linear combinations of >
vectors inT;. Hence [(IB) holds.

o Casex # y, u = r. We need to access all remaining elements.

Recall the code length is= (r + 1)m. Hence for each systematic nodas a survived node, it has optimal access
for r+ (m — 1)r = mr erased nodes (the first two cases), and accesses all elefoents- 1 erased nodes (the
last case). For each parity node as a survived node, it hamalpaccess form erased nodesj (€ [rm]), and
accesses all elements for erased nodes € [rm + 1, (r + 1)m]), because the repairing subspaces are $tifbr
parity nodes. Therefore, the access ratio is
k(rm%+(m—1)l)+r(rm%+ml) 2 r—1
k(n—1)1 o+l (n=1)(r+1)

Hence the proof is completed. |

We note here that this transformation lowers the access catnpared to the original code {14), but in the mean
time increases the average updates for each systematiergleAccording to different system requirements, one
can choose one code over another.

The transformation in this section provides a general ntetiootrade updates for access. Given any optimal-
bandwidth code, one can define such transformations andpoiateé the encoding matrices to lower the access
ratio.
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Change of Array Size with Code Rate
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Figure5. Change of array size with Code rafe= 10. For high code rate or < 9, the column length is shown in the solid line. For low
code rate or > 9, the column length is shown in the dashed line.

VI. CONCLUDING REMARKS

In this paper, we presented a family of codes with paramdters (r +1)m +r,k = (r +1)m,l = r™) and
they are the longest known high-rate MDS code with optimpaie The codes were constructed using eigenspaces
of the encoding matrices, such that they satisfy the sulespeaperty. This property gives more insights on the
structure of the codes, and simplifies the proof of optimphne

If we require that the code rate approaches.e., » being a constant angt goes to infinity, then the column
length! is exponentiain the code lengtlt. However, if we require the code rate to be roughly a condtantion,
i.e., m being a constant and goes to infinity, ther is polynomialin k. Therefore, depending on the application
and therefore the different codes rate, one can obtainrdiffeasymptotic characteristics of the code length.

Forn > 2k or k < r (low code rate), constructions in_[12], [14] give the coludemgth! = r. With some
modifications, this column length is feasible for &ll< r 4 1. In our construction (high code rate), the column

length is] = rHLl. Fix the value ofk, we can draw the graph of the column length with respect tontimaber

of parities. Even though we need integer valuesifat I, this graph still shows the trend of the code parameters.
For example, this relationship is shown in Figlie 5 for 10. These two regimes coincide when=k — 1 = 9.
Actually, we can see that these two constructions are ic&ntor r = k — 1. Note that our construction only
considers the repair of systematic nodes, so is only padattbenk >> r + 1. It is interesting to investigate the
actual shape of this curve, and to understand for fixed coadgthé how the column lengthh changes with the
number of parities:.

Besides, one possible application of the codes is hot/cald. &ince some of the nodes have lower access ratio
than others if erased and hot data is more commonly requestedan put the hot data in the low-access nodes,
and cold data in the others.

At last, it is still an open problem what is the longest optirepair code one can build given the column length
1. Also, the bound of the finite field size used for the codes matybe tight enough. Unlike the constructions in
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this paper, the field size may be reduced when we assume thanttoding matrices do not have eigenvalues or
eigenvectors (are not diagonalizable).
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