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Explicit MDS Codes for Optimal Repair
Bandwidth

Zhiying Wang, Itzhak Tamo, and Jehoshua Bruck

Abstract

MDS codes are erasure-correcting codes that can correct themaximum number of erasures for a given number of
redundancy or parity symbols. If an MDS code hasr parities and no more thanr erasures occur, then by transmitting
all the remaining data in the code, the original informationcan be recovered. However, it was shown that in order
to recover a single symbol erasure, only a fraction of1/r of the information needs to be transmitted. This fraction
is called therepair bandwidth (fraction). Explicit code constructions were given in previous works.If we view each
symbol in the code as a vector or a column over some field, then the code forms a 2D array and such codes are
especially widely used in storage systems. In this paper, weaddress the following question: given the length of the
column l, number of paritiesr, can we construct high-rate MDS array codes with optimal repair bandwidth of1/r,
whose code length is as long as possible? In this paper, we give code constructions such that the code length is
(r + 1) logr l.

I. I NTRODUCTION

MDS (maximum distance separable) codes are optimal error-correcting codes in the sense that they have the
largest minimum distance for a given number of parity symbols. If each symbol is a vector or a column, we call
such a code an MDS array code (e.g. [2], [6], [11], [20], [21]). In (distributed) storage systems, each column is
usually stored in a different disk, and MDS array codes are widely used to protect data against erasures due to their
error correction ability and low computational complexity. In this paper, we call each symbol a column or a node,
and the column length, or the vector size of a symbol, is denoted by l.

If an MDS code hasr parities, then it can correct up tor erasures of entire columns. In this paper, we not
only would like to recover the erasures, but also care about the efficiency in recovery: what is the fraction of the
remaining data transmitted in order to correct the erasures? We call this fraction therepair bandwidth (fraction). For
example, ifr erasures happen, it is obvious that we have to transmit all ofthe remaining information, therefore, the
fraction is1. For a single erasure it was shown in [7] (which also formulated the repair problem) that this fraction
is actually lower bounded by1/r. In the general case, it was shown in [15] that whene ≤ r nodes are erased,
then the repair bandwidth is lower bounded bye/r. Since the repair of information is much more crucial than
redundancy, and we study mainly high-rate codes, we will focus on the optimal repair of information or systematic
nodes. Moreover, since single erasure is the most common scenario in practice, we assumee = 1. Thus, in this
paper a code is said to have an optimal repair if this bound of1/r is achieved for the repair ofanyof its systematic
nodes. For example, in Figure 1, we show an MDS code with4 systematic nodes,r = 2 parity nodes, and column
length l = 2. One can check that this code can correct any two erasures, therefore it is an MDS code. In order to
repair any systematic node, only1/r = 1/2 fraction of the remaining information is transmitted. Thusthis code
has optimal repair.

In [12]–[14], [18], [19] codes achieving the repair bandwidth lower bound were studied where the number of
systematic nodes is less than the number of parity nodes (lowcode rate). For arbitrary code rate, [5] proved that the
lower bound is asymptotically achievable when the column length l goes to infinity. And [3], [4], [10], [15], [17]
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N1 N2 N3 N4 N5 N6
a b c d a + b + c + d 2a + w + 2b + 3c + d
w x y z w + x + y + z 3w + b + 3x + 2y + z

Figure 1. (n=6,k=4,l=2) MDS code over finite fieldF4, and we use{0, 1, 2, 3} to represent its elements. The first4 nodes are systematic and
the last2 are parities. To repairN1 transmit the first row from every remaining node. To repairN2 transmit the second row. To repairN3
transmit the sum of both rows. And to repairN4 transmit the sum of the first row and2 times the second row from nodesN1, N2, N3, N5,
and the sum of the first row and3 times the second row from nodeN6.

studied codes with more systematic nodes than parity nodes (high code rate) and finitel, and achieved the lower
bound of the repair bandwidth. If we are interested in thecode lengthk, i.e., the number of systematic nodes given
l, low-rate codes have a linear code lengthl + 1 [13], [14]; on the other hand, high-rate constructions are relatively
short. For example, suppose that we have 2 parity nodes, thenthe number of systematic nodes is onlylog2 l in
all of the constructions, except for [4] it is2 log2 l. In [16] it is shown that an upper bound for the code length is
k ≤ 1 + l( l

l/2), and the bound is further tightened tok ≤ 2(log2 l)(log2 l + 1) + 1 in [8]. But the tightness of the
above bounds is not known. It is obvious that there is a gap between this upper bound and the constructed codes.

Besides bandwidth which corresponds to transmission incurred during repair, we are also interested inaccess. It
is defined as the fraction of data read in the surviving nodes in order to repair an erasure. Access is an important
metric because it affects the disk I/O operations and hence the speed and complexity in repair. Since a transmitted
symbol can be functions of many read symbols, we know that access is no less than1/r. For example, in Figure
1 the repair of nodeN1 reads and transmits only the first row, so the repair bandwidth and access are both1/2.
However, the repair of nodeN3 requires reading both rows, so the access is1. Moreover, we defineupdateas the
number of necessary writes if a symbol is rewritten in the code. This metric is important when blocks of the stored
data is frequently updated. In Figure 1 symbola appears 3 times in the code and therefore its update is 3, while
symbolw has update 4. For an MDS code withr parities, it is not difficult to see that the update should be no less
than r + 1 for each symbol. And we say that a code achieving this bound isoptimal update.

The main contribution of this paper is as follows:

1) We construct high-rate codes withr parity nodes and(r + 1) logr l systematic nodes. In particular, with2
parity nodes we get a code length of3 log2 l, moreover, this code uses a finite field of size1 + 2 log2 l.

2) We rigorously state some sufficient properties of linear optimal repair codes (similar results also seen in [5],
[13], [14]), and thus enable explicit code construction andsimplify proofs of optimality.

3) We design optimal-update codes with2 parities and2 log2 l systematic nodes. This construction exceeds
the upper bound ofk ≤ log2 l given by [16] for optimal-update and diagonal encoding matrices. Diagonal
encoding matrices means that the encoding are done only within each row in the array code. However our
construction allows mixing of different rows in encoding. As a result, we can see a fundamental difference
between these two types of codes.

4) We construct a family of codes that further reduces the access compared to the proposed optimal-bandwidth
code. We use a technique that transforms a linear code to an equivalent one through block-diagonal matrix.
This technique can be applied to an arbitrary optimal-bandwidth code and therefore can be a useful tool for
future codes as well.

Even though our construction with(r + 1) logr l systematic nodes is additive improvement for code length
compared to [4], where the code length isr logr l, we point out here a few advantages of our work. Through the
sufficient properties of optimal repair codes, we are then able to explicitly write the code generating matrix in terms
of eigenspaces and eigenvalues, whereas [4] constructed codes recursively by Kronecker product of matrices and
multiplication of permutation matrices. Moreover, our technique eigenspaces inspired new code constructions in
recent work [9]. Also in [4] the code requires a large enough finite field. But in our construction the finite field
size is specified for the2 parity case, and therefore can be practical for distributedstorage applications.

The rest of the paper is organized as follows: in Section II wewill formally introduce the repair bandwidth and
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the code length problem. In Section III codes withr parity nodes are constructed, and we show that the code length
is (r + 1) logr l. We will show an optimal-update code with2 log2 l systematic nodes and 2 parity nodes in Section
IV, and discuss about reducing the access ratio in Section V.Finally we conclude in Section VI.

II. PROBLEM SETTINGS

We define in this section the array code by specifying the encoding, repair, and reconstruction processes.

A. Encoding

An (n, k, l) MDS array code is an(n − k)-erasure-correcting code such that each symbol is a column of length
l. The number of systematic symbols isk and the number of parity symbols isr = n − k. We call each symbol
a column or a node, andk the code length. We assume that the code is systematic, hence the firstk nodes of the
code are information or systematic nodes, and the lastr nodes are parity or redundancy nodes.

Suppose the columns of the code areC1, C2, . . . , Cn, each being a column vector inFl , for some finite fieldF.
We assume that the parity nodes are a linear function of the information nodes. Namely, fori = 1, ..., r, parity node
k + i is defined by the invertibleencoding matricesof size l Ai,j, j = 1, ..., k as follows

Ck+i =
k

∑
j=1

Ai,jCj.

For example, in Figure 1, the encoding matrices areA1,j = I for all j = 1, .., 4, and

A2,1 =

(

t 1
0 t + 1

)

, A2,2 =

(

t 0
1 t + 1

)

, A2,3 =

(

t + 1 0
0 t

)

, A2,4 =

(

1 0
0 1

)

.

Here the finite field isF4 generated by the irreducible polynomialt2 + t + 1, and in the tablet, t + 1 are written
as2, 3, respectively. In our constructions, we require thatA1,j = I for all j ∈ [k]. Hence the first parity is the row
sum of the information array. Even though this assumption isnot necessarily true for an arbitrary linear MDS array
code, it can be shown that any linear code can be equivalentlytransformed into one with such encoding matrices
[16].

B. Repair

Suppose a code has optimal repair for any systematic nodei, i ∈ [k], meaning only a fraction of1/r data is
transmitted in order to repair a node erasure. When a systematic nodei is erased, we are going to use sizel/r × l
matricesSi,j, j 6= i, j ∈ [n], to repair the node: From a surviving nodej, we are going to compute and transmit
Si,jCj, which is only1/r of the information in this node.

It was shown in [16] that we can further simplify our repair strategy of nodei and assume by equivalent
transformation of the encoding matrices that

Si,j = Si, for all j 6= i, j ∈ [n]. (1)

Notation: By abuse of notations, we writeSi, Si At,j both to denote both the matrices of sizel/r × l and the
subspaces spanned by their rows.

In the following we show necessary and sufficient conditionsfor optimal repair.

Claim 1 [16] Optimal repair of a systematic nodei is equivalent to the followingsubspace property: There exist a
matrix Si of sizel/r × l, such that for allj 6= i, j ∈ [k], t ∈ [r],

Si = Si At,j, (2)
r

∑
t=1

Si At,i = F
l (3)
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Here the equalities are defined on the row spans instead of thematrices, and the sum of two subspacesA, B is
defines asA + B = {a + b : a ∈ A, b ∈ B}. Obviously, in (3) the dimension of each subspaceSi At,i is no more
thanl/r, and the sum ofr such subspaces has dimension no more thanl. This means that these subspaces intersect
only on the zero vector. Therefore, the sum is actually a direct sum of the subspaces, and matrixSi has full rank
l/r.

Sketch of proof:: Suppose the code has optimal repair bandwidth, then we need to transmit l/r elements
from each surviving column. Suppose we transmitSiCj from a systematic nodej 6= i, j ∈ [k], and SiCk+t =

∑
k
z=1 Si At,zCz from a parity nodek+ t ∈ [k+ 1, k+ r]. Our goal is to recoverCi and cancel out allCj, j 6= i, j ∈ [k].

In order to cancel outCj, (2) must be satisfied. In order to solveCi, all equations related toCi must have full
rank l, so (3) is satisfied. One the other hand, if (2) (3) are satisfied, one can transmitSiCj from each nodej,
j 6= i, j ∈ [n] and optimally repair the nodei.

Similar interference alignment technique was first introduced in [5] for the repair problem. Also, [13] was the
first to formally prove similar conditions. However, the reduction from distinctSi,j to identical Si for different
values ofj was not known before.

Notice that if (2) is satisfied thenSi is an invariant subspace ofAt,j for any t = 1, ..., r and j 6= i. If At,j

is diagonalizable then it is uniquely defined by its eigenspaces and eigenvalues. Moreover each of the invariant
subspaces ofAt,j has a basis composed of eigenvectors ofAt,j. Therefore, we will first focus on finding the
proper encoding matrices, by defining their set of eigenspaces. These eigenspaces will uniquely define the set of
invariant subspaces for each encoding matrix. Then we will choose carefully the eigenvalue that corresponds to
each eigenspace, in order to ensure the MDS property of the code.

For a general repair strategy, the subspacesSi,j, j ∈ [k] are not necessarily identical, and the general subspace
property for optimal repair of a systematic nodei is: There exist matricesSi,j, j 6= i, j ∈ [n], all with size l/r × l,
such that for allj 6= i, j ∈ [k], t ∈ [r],

Si,j =Si,k+tAt,j, (4)
r

∑
t=1

Si,k+tAt,i =F
l , (5)

where the equality is defined on the row spans instead of the matrices.
We mention here that if we use the simple repair strategy,(1)holds for all nodesi with the possible exception of

a single node. For instance seeN4 in the following example. However in the subsequent sections, we will shorten
the code by one node if such exception exists and assume identical Si,j = Si for all i ∈ [k].

Example 1 In Figure1, the matricesSi are

S1 = (1, 0), S2 = (0, 1), S3 = (1, 1).

One can check that the subspace property(2), (3) is satisfied fori = 1, 2, 3. For instance, in order to repair systematic
nodeN3, we need to transmit the sum of the elements from each node, which is equivalent to multiply each column
by the matrixS3 = (1, 1). Note that(1, 1) is an eigenvector forAt,j, t = 1, 2, j = 1, 2, 4, hence we haveS3 = S3 At,j,
where the equality is between the subspaces. Furthermore, it is easy to check that

S3 ⊕ S3 A2,3 = span(1, 1)⊕ span(t + 1, t) = F
2
4.

NodeN4 is an exception, since the matricesS4,j’s are not equal. In factS4,j = (1, t) for j = 1, 2, 3, 5, andS4,6 =
(1, t + 1).

C. Reconstruction

If no more thanr of the nodes are erased, the MDS property requires that the entire information can be decoded
from the remaining nodes. Usually this requirement can be satisfied by choosing proper coefficients in the encoding
matrices over a large enough finite field. And in our constructions, it is satisfied by proper eigenvalues of the
encoding matrices, as shown in the subsequent sections.
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III. O PTIAML -BANDWIDTH CODE CONSTRUCTION

In this section, we will construct a code with arbitrary number of parity nodes. Our code will have column
length l = rm, k = (r + 1)m systematic nodes, andr parity nodes, for any positive integersr, m. We start with
the construction description and proof for optimal repair,and then discuss the update and access complexity of the
code, and at last argue that the entire information is reconstructible from anyr node erasures.

A. Construction

We define the code, or equivalently the encoding matrices, interms of their eigenspaces. We definek diagonal-
izable matricesA1, ..., Ak of order l = rm, whose Jordan canonical form are diagonal matrices. Each matrix Ai

will have r distinct non zero eigenvalues that correspond tor eigenspaces, each of dimensionl/r = rm−1. The
encoding matrix for parity nodek + s, and systematic nodei is defined as

As,i = As−1
i , s ∈ [r], i ∈ [k]. (6)

Remark:
1) Each symbol in the first parity is simply a linear combination of the corresponding row, sinceA1,i = A1−1

i = I
for any i.

2) Denote byVi,0, Vi,1, . . . , Vi,r−1 the left eigenspaces ofAi that correspond to eigenvaluesλi,0, λi,1, . . . , λi,r−1,
then As,i has eigenvaluesλs−1

i,0 , λs−1
i,1 , . . . , λs−1

i,r−1.

By abuse of notations,Vi,u represents both the eigenspace and thel/r× l matrix containingl/r linearly independent
eigenvectors. Our construction will only focus on the matrix Ai. Using the definition of the encoding matrices in
(6) thesubspace property becomes

Si = Si Aj, ∀j 6= i, j ∈ [k] (7)

Si + Si Ai + Si A
2
i + · · ·+ Si A

r−1
i = F

l (8)

Hence, when a systematic nodei is erased,i ∈ [k], we are going to use the subspaceSi in order to optimally repair
it. We term this subspace as therepairing subspaceof nodei.

In the first step we will only define the eigenspaces of each matrix Ai without specifying the eigenvalues. This
will be enough to show the optimal repair property of the code. Then we will show that over a large finite field,
there exist an assignment for the eigenvalues, that guarantees the MDS property as well.

Let {ea : a = 0, ..., l − 1} be some basis ofFl, for example, one can think of them as the standard basis vectors.
The subscripta is represented by itsr-ary expansion,a = (a1, a2, . . . , am), whereai is its i-th digit. Moreover,
define Ma,i to be ther indices in [0, rm − 1] that differ from a in at most theiri-th digit. For example, when
r = 3, m = 4, we havee5 = e(0,0,1,2), and M5,3 = {(0, 0, 0, 2) = 2, (0, 0, 1, 2) = 5, (0, 0, 2, 2) = 8}. Next we
define(r + 1)m subspaces fori ∈ [m], u ∈ [0, r]:

Pi,u = span(ea : ai = u), for u = 0, ..., r − 1,

Pi,r = span( ∑
a′∈Ma,i

ea′ : a ∈ [0, rm − 1]). (9)

Note that foru 6= r, Pi,u is spanned by the set of basis vectors whosei-th digit index isu, and therefore its has
dimensionl/r. It easy to check that alsoPi,r is a subspace of dimensionl/r. For example, whenr = 3, m = 2,

P1,0 = span(e(0,0), e(0,1), e(0,2)) = span(e0, e1, e2),

P1,1 = span(e3, e4, e5), P1,2 = span(e6, e7, e8), and

P1,3 = span(e0 + e3 + e6, e1 + e4 + e7, e2 + e5 + e8).

Using thesek = (r + 1)m subspaces, we define thek matricesAi that correspond to thek systematic nodes.
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Node indexi 1 2 3 4 5 6
Basis for 1st e0 + e2 e0 + e1 e0 e0 e0 e0

eigenspace ofAi e1 + e3 e2 + e3 e1 e2 e1 e2

Basis for 2nd e2 e1 e0 + e2 e0 + e1 e2 e1

eigenspace ofAi e3 e3 e1 + e3 e2 + e3 e3 e3

Basis for repairing e0 e0 e2 e1 e0 + e2 e0 + e1

subspaceSi e1 e2 e3 e3 e1 + e3 e2 + e3

Figure 2. (n=8,k=6,l=4) code. The first parity node is assumed to be the row sum, and the second parity is computed using encoding matricesAi.
Each encoding matrix is defined by its two eigenspaces of dimension2. In order to repair nodei, each surviving node projects its information on
the repairing subspaceSi, namely it multiplies its columns by the matrixSi. E.g., nodeN5 has two distinct eigenspacesspan(e0, e1), span(e2, e3).
Furthermore, if this node is lost, each surviving node projects its information on the subspaceS5 = span(e0 + e2, e1 + e3).

P1,0 P1,1 P1,2 P1,3 P2,0 P2,1 P2,2 P2,3

e0 e3 e6 e0 + e3 + e6 e0 e1 e2 e0 + e1 + e2

Basis for the subspace e1 e4 e7 e1 + e4 + e7 e3 e4 e5 e3 + e4 + e5

e2 e5 e8 e2 + e5 + e8 e6 e7 e8 e6 + e7 + e8

Figure 3. Basis Sets of vectors used to construct a code withr = 3 parities and column lengthl = 32 = 9.

Construction 1 Let u ∈ [0, r], i ∈ [m]. For eachum + i ∈ [k], define the matrixAum+i as follows: Its eigenspaces
are Pi,u′, u′ 6= u that correspond to distinct nonzero eigenvalues. Furthermore, LetPi,u be the repairing subspace,
namelySum+i = Pi,u.

Example 2 Deleting node N4 of the code in Figure1 yields to a(5, 3, 2) code constructed using Construction1.
Moreover, the code in Figure2 is an(8, 6, 4) code, constructed using Construction1. One can check the subspace
property holds. For instance,S1 = span{e0, e1} = span{e0 + e1, e1} is an invariant subspace ofA2. SoS1 = S1 A2.
If the two eigenvalues ofAi are distinct, it is easy to show thatSi ⊕ Si Ai = F

4, ∀i ∈ [6].

Example 3 Figure3 illustrates the subspacesPi,u for r = 3 parities and column lengthl = 9. Figure4 is a code
constructed from these subspaces with8 systematic nodes. One can see that if a node is erased, one cantransmit only
a subspace of dimension3 to repair, which corresponds to only1/3 repair bandwidth fraction. Recall that the three
encoding matrices for systematic nodei areI, Ai, A2

i , for i ∈ [8].

The following theorem shows that the code indeed has optimalrepair bandwidth1/r.

Theorem 2 Construction1 has optimal repair bandwidth1/r when repairing one systematic node.

Proof: For distinct integersum + i, u′m + i′ ∈ [k] for u, u′ ∈ [0, r − 1] and i, i′ ∈ [m] we will show that (7)
is satisfied, namely

Sum+iAu′m+i′ = Sum+i.

i 1 2 3 4 5 6 7 8
P1,3 P2,3 P1,0 P2,0 P1,0 P2,0 P1,0 P2,0

The 3 eigenspaces P1,1 P2,1 P1,3 P2,3 P1,1 P2,1 P1,1 P2,1

P1,2 P2,2 P1,2 P2,2 P1,3 P2,3 P1,2 P2,2

Repairing subspace P1,0 P2,0 P1,1 P2,1 P1,2 P2,2 P1,3 P2,3

Figure 4. An (n = 11, k = 8, l = 9) code. The subspacesPi,u are listed in Figure 3.
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• Casei 6= i′: It is easy to verify that ther eigenspacesT1, ..., Tr of Au′m+i′ satisfy

Pi,u =
r

∑
j=1

(Pi,u ∩ Tj). (10)

Notice that (10) is usuallynot correct for arbitrary subspacesT1, ..., Tr that satisfy∑i Ti = F
l . By definition

Sum+i = Pi,u, then

Sum+i Au′m+i′ = Pi,uAu′m+i′

= (
r

∑
j=1

Pi,u ∩ Tj)Au′m+i′

=
r

∑
j=1

(Pi,u ∩ Tj)Au′m+i′

=
r

∑
j=1

(Pi,u ∩ Tj)

= Pi,u

= Sum+i.

• Casei = i′, and u 6= u′: By the construction, the eigenspaces ofAu′m+i are {Pi,1, ..., Pi,r}\{Pi,u′}. Since
u 6= u′ then Pi,u ∈ {Pi,1, ..., Pi,r}\{Pi,u′}, and

Sum+iAu′m+i′ = Pi,uAu′m+i′ = Pi,u = Sum+i.

• Casei = i′, and u = u′: In this case we will only prove the case whereu = 0. The rest of the cases are
proved similarly. Denote byAum+i = A, S = Sum+i, then by (8) we need to show that

S + SA + .. + SAr−1 = F
l .

Denote the distinct eigenvalues ofA by λ0, λ1, . . . , λr−1. For a vectora = (a1, a2, . . . , am) or equivalently an
integera ∈ [0, l − 1], denote byai(u) = (a1, . . . , ai−1, u, ai+1, . . . , am) the vector that is the same asa except
the i-th entry, which isu. Notice thatS = span(Pi,0) = span{eai(0)

: ∀a ∈ [0, l − 1]} and

ea As

= (
r−1

∑
u=0

eai(u) − eai(1)
− · · · − eai(r−1))As

= λs
0

r−1

∑
u=0

eai(u) − λs
1eai(1)

− · · · − λs
r−1eai(r−1)

= λs
0eai(0)

+
r−1

∑
u=1

(λs
0 − λs

u)eai(u).

Writing the equations for alls ∈ [0, r − 1] in a matrix, we get
















eai(0)

eai(0)
A

eai(0)
A2

...
eai(0)

Ar−1

















= M











eai(0)

eai(1)

...
eai(r−1)











,
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with

M =















1 0 · · · 0
λ0 λ0 − λ1 · · · λ0 − λr−1

λ2
0 λ2

0 − λ2
1 · · · λ2

0 − λ2
r−1

...
...

...
λr−1

0 λr−1
0 − λr−1

1 · · · λr−1
0 − λr−1

r−1















.

After a sequence of elementary column operations,M becomes the following Vandermonde matrix

M′ =















1 1 · · · 1
λ0 λ1 · · · λr−1

λ2
0 λ2

1 · · · λ2
r−1

...
...

...
λr−1

0 λr−1
1 · · · λr−1

r−1















.

Sinceλi’s are distinct, we knowM′ and henceM is non-singular. Therefore,span{eai(0)
, eai(0)

A, . . . , eai(0)
Ar−1}

= span{eai(0)
, eai(1)

, . . . , eai(r−1)}. SinceSi containseai(0)
for all r-ary vectora, we knowSi + Si Ai + · · ·+

Si A
r−1
i = F

l.

B. Update and access complexity

We discuss the update and access complexity of our code in this subsection. First we make some observations.

1) The code restricted to the systematic nodesi ∈ [m], u = r is equivalent to that of [3], [15]. Since the encoding
matricesAQ

i , are all diagonal, every information entry appears exactlyonce in each of the two parities, and
therefore it appearsr + 1 times in the code (once in each of the parities and once in its systematic node).
Clearly this is the minimum possible, since the code is an MDS. As mentioned in the introduction, this is an
optimal-updatecode. In [16] it was proven that an optimal-update code with diagonal encoding matrices has
no more thanm systematic nodes. But we will show an optimal-update construction in the next section with
2m systematic nodes but non-diagonal encoding matrices.

2) Shortening the code to contain only therm systematic nodesi ∈ [m], u ∈ [0, r − 1] will result a codeC that
is actually equivalent to the code in [4]. We assume here that{ea, a ∈ [0, l − 1]} are standard basis. Namely,
each repairing subspacePi,u can be represented by anl/r × l matrix, such that each row has exactly one
nonzero entry. Therefore when repairing a node, onlyl/2 symbols from each surviving node are being read
and transmitted to the repair center, with no need of any computations within the surviving node (e.g. Figure
2). Such a code is termed to haveoptimal access. It was shown in [16] that a code with optimal access has at
most2m nodes, therefore this construction is optimal. Namely it isa code with optimal access and maximum
possible number of systematic nodes.

3) We conclude that the code construction is a combination ofthe longest optimal-access code and the longest
optimal-update code (with diagonal encoding matrices), which provides an interesting tradeoff among access,
update, and the code length. In other words, we can achieve a larger number of nodes if we are willing to
sacrifice the optimal-access and/or optimal-update properties. The shortening technique was also used in [13]
[14] in order to get optimal-repair code with different coderates.

Clearly, the optimal-access property is highly desirable in a code. Therefore one might ask what is the longest
code (in terms ofk), that has the maximum number of nodes that can be repaired with optimal access. In particular
let us consider codes with 2 parities. If we try to extend the optimal-access codeC with 2m systematic nodes to
an optimal repair codeD with k systematic nodes, thenk ≤ 3m, as the following theorem suggests. Therefore, our
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construction is longest in the sense of extendingC. Before proving the theorem we will need the following lemma.

Lemma 3 [16, Lemma 8] The repairing subspacesSi of an optimal repair(k + 2, k, l) code satisfy that for any subset
of indicesJ ⊆ [k]

dim(∩i∈JSi) ≤
l

2|J|
.

Theorem 4 Any extension of an optimal access code with2m systematic nodes to an optimal repair code, will have
no more than3m systematic nodes, forr = 2 parities.

Proof: Let C be an optimal-access code of length2m with 2 parities. LetD be an extended code ofC. By
equivalently transforming the encoding matrices (see [16]), we can always assume the encoding matrices of the
parities inD are

(

I · · · I I · · · I
A1 · · · A2m A2m+1 · · · Ak

)

.

Here the first2m column blocks correspond to the encoding matrices ofC. First consider the codeC, that is the
first 2m nodes. IfC has optimal access, then each repairing subspace is spannedby l/2 standard basis vectors.
SinceC contains2m systematic nodes, on average each standard basis vector appears in2m × l

2 ×
1
l = m repairing

subspaces. For eachi = 0, ..., l − 1 let J ⊆ [2m] be the subset of indices of the repairing subspaces that contain
the vectorei. We claim that each standard basis vector appears exactlym times, namely for eachi the size ofJ is
m. Assume to the contrary that|J| > m for somei. By Lemma 3

1 ≤ dim(∩i∈JSi) ≤
2m

2|J|
< 1,

and we get a contradiction. Moreover, if there existsJ of size less thanm, then by a simple counting argument we
get that there exists anJ′ of size greater thanm, which can not happen. Hence, we conclude that for eachi the
size of J is exactlym and,

span(ei) = ∩i∈JSi.

Now consider a systematic nodej ∈ [2m + 1, k] that was added to the codeC. SinceD is an optimal repair
code, each repairing subspace of the nodes inC is an invariant subspace ofAj. Since the intersection of invariant
subspaces is again an invariant subspace we get that for anyi = 0, ..., l − 1

∩i∈JSi = span(ei)

is an invariant subspace ofAj. Namely, each standard basis vector is an eigenvector ofAj, and thereforeAj is
a diagonal matrix. We conclude that restricting the codeD to its last k − 2m systematic nodes will yield to an
optimal update code. By [16][Theorem6], there are onlym nodes that are all optimal update, hencek − 2m ≤ m.

C. Reconstruction and finite field size

Next we will show that the code can be made to be MDS over a largefinite field.

Theorem 5 The code can be made an MDS over a field large enough.

Proof: Assign arbitrarilyr distinct nonzero eigenvalues to each matrixAi. Recall that the encoding matrices
are defined asAs,i = As−1

i , therefore each one of them is invertible. We multiply each encoding matrixAs,i by a
specific variablex(s−1)k+i, to get a new code defined by the matrix







x1 A1,1 · · · xk A1,k
...

. . .
...

x(r−1)k+1Ar,1 · · · xrkAr,k






. (11)
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Clearly the new code is MDS iff anyt × t block submatrix in (11) is invertible, for anyt ∈ [r]. Define the
multivariate polynomialP in the variablesxs,i, which is the product of the determinants of all thet × t block
submatrices, for anyt = 1, ..., r. Hence, the code can be made to be MDS if there is an assignmentto the variables
that does not evaluateP to zero. Letx = (x1, ..., xrk) be the vector of the variables. For a vector of integers
a = (a1, ..., ark) we definexa = ∏i x

ai
i . Furthermore, define the usual ordering on the termsxa according to the

lexicographic order, i.e.,xa ≥ xb iff a ≥ b according to the lexicographic order. The leading coefficient of a
multivariate polynomial, is the coefficient of the maximal nonzero term. For example, the leading coefficient of the
polynomial2x2

1x3 + x2
1x4 is 2.

Let a = {a1 < a2 < ... < at} and b = {b1 < b2 < ... < bt} be two sets of indices of sizet in [r] and [k]
respectively. DefinePa,b to be the determinant of the submatrix restricted to row blocks a and column blocksb. It
is easy to see that its leading coefficient is

t

∏
i

det(Aai,bi
),

which is non zero, since by construction, each of matrices isinvertible. Moreover ifP1, P2 are the determinant of
different submatrices, then the leading coefficient of their productP1 · P2, is the product of their leading coefficients.
Since both of them are non zero, so is the product.P is a product of such polynomialsPi, therefore also its leading
coefficient is non zero. Moreover, eachPi is an homogeneous polynomial, hence so isP. We conclude thatP has
a nonzero termxa (its leading coefficient) of degree equal todeg(P). By the Combinatorial Nullstellensatz [1] we
get that a field of size greater thanmaxi{ai : a = (a1, ..., ark)} will suffice.

For the case of 2 parities, we can explicitly specify the finite field size. The following construction defines
uniquely the encoding matrices, by defining their eigenvalues. This assignment of the eigenvalues guarantees the
MDS property of the optimal repair code.

Construction 2 Let {λi,j}i∈[m],j=0,1 be an arbitrary2m distinct non zero elements of the fieldFq, q ≥ 2m + 1.
Assign arbitrarily to each eigenspace of the matrixAum+i, the eigenvalueλi,0 or λi,1, as long as eachPi,u′ correspond
to distinct eigenvalues in the two matrices it appears as an eigenspace,u, u′ ∈ {0, 1, 2}.

For example, we can assign eigenvalues in the following way:

encoding matrix 1st eigensapce 1st eigenvalue 2nd eignenspace 2nd eignvalue
Ai Pi,2 λi,1 Pi,1 λi,0

Am+i Pi,0 λi,1 Pi,2 λi,0

A2m+i Pi,0 λi,0 Pi,1 λi,1

Take the case ofm = 2 in Figure 2, we can use finite fieldF5 and assign the eigenvalues to be

(λ1,0, . . . , λ6,0) = (1, 2, 1, 2, 4, 3),

(λ1,1, . . . , λ6,1) = (4, 3, 4, 3, 1, 2).

Remark: If we have an extra systematic column withA3m+1 = I (see columnN4 in Figure 1), we can use a
field of size2m + 2 and simply modify the above construction such that allλi,j 6= 1, for i ∈ [3m], j = 0, 1. For
example, whenm = 1, the coefficients in Figure 1 are assigned using the above algorithm, where the field size is
4.

Theorem 6 There is an optimal repair(3m + 2, 3m, 2m) MDS code if the finite field size is at least2m + 1.

Proof: We will show that Construction 2 satisfies the MDS property, namely, any two erasures can be repaired.
This is equivalent to that (i) all the encoding matricesAx’s are invertible, and (ii) any2 × 2 block sub matrix

[

I I
Ax Ay

]
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is invertible, for any distinctx, y ∈ [k]. Since the eigenvalues are nonzero the first condition is satisfied. The second
condition is equivalent to thatAx − Ay is invertible. Letx = um + i, y = vm + j, with i, j ∈ [u], u, v ∈ {0, 1, 2}.

• Casei 6= j: Let the eigenspaces ofAum+i, Avm+j be V1, V2 and U1, U2 respectively, which correspond to
eigenvaluesλ1, λ2, andµ1, µ2. Clearly

V1 ⊕ V2 = U1 ⊕ U2 = F
l .

It is easy to check that
⊕2

i,j=1(Vi ∩ Uj) = F
l .

Assume to the contrary that there exists a non zero vectora such that

a(Aum+i − Avm+j) = 0,

wherea = ∑
2
i,j=1 ai,j, and ai,j ∈ Vi ∩ Uj. Then,

0 = a(Aum+i − Avm+j) = (λ1 − µ1)a1,1 + (λ1 − µ2)a1,2 + (λ2 − µ1)a2,1 + (λ2 − µ2)a2,2.

Sincea is non zero, at least one of theai,j’s is non zero. Hence,λi = µj and we get a contradiction since the
eigenvalues ofAum+i, and Avm+j are distinct.

• Casei = j and u 6= v: Since i = j the matricesAum+i and Avm+i share a common eigenspace from the set
of subspaces{Pi,u, u ∈ {0, 1, 2}}. Denote byV, U and V, W the eigenspaces ofAum+i, Avm+i. Denote by
λ, µ the eigenvalues that correspond to the eigenspace ofV in the matricesAum+i, Avm+i respectively. By
construction,λ 6= µ, and therefore by constructionU is an eigenspace ofAum+i with an eigenvalueµ, andW
is an eigenspace ofAvm+i with an eigenvalueλ. Assume thataAum+i = aAvm+i for some non zero vector

a = b + c = b′ + d, (12)

whereb, b′ ∈ V, c ∈ U, andd ∈ W. Then

λb + µc = (b + c)Aum+i = aAum+i = aAvm+i = (b′ + d)Avm+i = µb′ + λd,

using (12) we conclude thatµ = λ which is a contradiction.

One can observe that the proposed code construction has parameters(3m+ 2, 3m, 2m), and a field size that scales
linearly with the number of systematic nodes. On the other hand, the (m + 3, m + 1, 2m) code in [15] requires
only a field of size3. Thus, the proposed code can protect more systematic nodes,but has longer (actual) column
length. The actual size of each column is longer since it has to store2m symbols of alarger field. Nonetheless,
it may be possible to alter the structure of the encoding matrices a bit (for example, relaxing the requirement that
each of the encoding matrix is diagonalizable), and obtain aconstant field size. This remains as a future research
direction.

IV. L ONG OPTIMAL -UPDATE CODE

In storage systems that use coding to combat failures, each parity symbol is a function of a subset of information
symbols. Therefore, when an information symbol updates itsvalue, also the parity symbols that are function of it,
need to be updated. Since update is one of the most frequent operation in the system, one would like to minimize
the amount of symbols’ update incurred by one information symbol update. In an MDS code each parity node is a
function of theentire information symbols, hence at least one parity symbol needsto be updated in any information
symbol update. An optimal update MDS code attains this lowerbound, namely each parity node updates exactly
one of its symbols for each information symbol update. It is easy to see that in an optimal updatelinear code, each
encoding matrix is a generalized permutation matrix, i.e. there is exactly one nonzero entry in each row and each
column.
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In [16] diagonal encoding matrices ,which are a special caseof generalized permutation matrices, were considered.
They showed that an optimal bandwidth MDS code with2 parities, and diagonal encoding matrices, has at most
log2 l systematic nodes. In this section we will show that one can improve that by not restricting to diagonal
encoding matrices. More precisely, we will construct on optimal update code with2 log2 l systematic nodes.

Let l = 2m for some integerm, and define for anyi = 1, ..., m the following four subspaces ofF
l of dimension

l/2:

Pi = span(ea : ai = 0),

Ri = span(ea : ai = 1),

Qi = span(yea + xeb : ai = 0, bi = 1, aj = bj, ∀j 6= i),

Oi = span(−yea + xeb : ai = 0, bi = 1, aj = bj, ∀j 6= i),

wherex and y are non zero elements of the field that satisfyx2 6= y2. In the following we will also use letters
P, Q as superscripts for the encoding matrices.

Construction 3 Construct the(n = 2m + 2, k = 2m, l = 2m) code overF by the following2m encoding matrices
AT

i , i = 1, ..., m andT = P, Q.
• Define the matrixAP

i to have eigenspacesQi, Oi that correspond to eigenvaluesxy,−xy respectively.
• Define the matrixAQ

i to have eigenspacesPi, Ri that correspond to distinct non zero eigenvaluesλ, µ respectively.

Moreover, let the repairing subspace that correspond to thematrix AT
i beST

i = Ti.

E.g., whenm = 1, we get a(4, 2, 2) with 2 encoding matrices represented with respect to the standardbasis

AQ
1 =

[

λ
µ

]

, AP
1

[

x2

y2

]

. (13)

and repairing subspaces
S

Q
1 = Q1 = (y, x), SP

1 = P1 = (1, 0).

Whenm = 2, the encoding matrices are

AQ
1 =









λ
λ

µ
µ









, AQ
2 =









λ
µ

λ
µ









, AP
1 =









x2

x2

y2

y2









, AP
2 =









x2

y2

x2

y2









.

The repairing subspaces are
[

y x
y x

]

,

[

y x
y x

]

,

[

1 0 0
1 0 0

]

,

[

1 0
1 0

]

.

In both cases it is not difficult to check that the subspace property is satisfied, hence the code has optimal bandwidth.
And since the encoding matrices are permutation matrices, the code has optimal update.

Theorem 7 Construction3 has optimal bandwidth and optimal update.

Proof: It is easy to see that the encoding matrices are all permutation matrices, so the code has optimal update.
We need to show the subspace property, namely fori, j ∈ [m] andY, T ∈ {P, Q}

SY
i AT

j ∩ SY
i =

{

{0} i = j andY = T

SY
i otherwise.

• Casei 6= j: One can check that forY ∈ {Q, P},

Yi = (Yi ∩ Pj)⊕ (Yi ∩ Rj) andYi = (Yi ∩ Qj)⊕ (Yi ∩ Oj).
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Therefore the proof is the same as in Theorem 2.
• Casei = j, andY 6= T: In this caseYi is an eigenspace ofAT

i , and the result follows.
• Casei = j, T = Y: Assume thatY = P, and we will show that the transformationAP

i maps the subspace
SP

i = Pi to the subspaceRi, and sincePi ∩ Ri = {0} the result will follow. let ea ∈ Pi and b be the integer
that is identical toa except on thei-th digit. Then

eaAP
i =

1

2y
[(yea + xeb)− (−yea + xeb)]A

P
i

=
xy

2y
(yea + xeb)−

−xy

2y
(−yea + xeb)

= x2eb ∈ Ri.

WhenY = Q the result follows by the same reasoning.

Similar to Theorem 5 it is clear that the code can be MDS over a large enough finite field. To summarize the
result of this section, we gave a construction that doubled the number of systematic nodes compared to the bound
in [16]. The reason for the violation of this bound is by not restricting to diagonal encoding matrices.

V. L OWERING THE ACCESSRATIO

Repairing a failed node is a computationally heavy task, that requires large amount of the system’s resources.
Therefore, optimizing the repair algorithm is of high importance. One way to optimize is by reducing the amount of
symbols needed to be accessed and read during the repair process. This parameter is quantified by theaccess ratio
of the system. In this section we will use explicit linear transformations performed on the code in Construction 1 that
yields to an equivalent code with a lower access ratio duringa repair process. Furthermore, these transformations
maintain the other properties of the code, namely the MDS andthe optimal repair properties.

Formally, given an(n, k, l) codeC, let β(i) denote the number of symbols (or entries) accessed in the surviving
nodes during the repair of systematic nodei. The access ratiois defined as

R =
∑

k
i=1 β(i)

k(n − 1)l
.

Note that(n − 1)l is the amount of surviving symbols in the system in the event of one node erasure, hence
R is the average fraction of the number of symbols in the systembeing accessed during a repair process. The
((r+ 1)m + r, (r+ 1)m, rm) code in Construction 1 has(r + 1)m systematic nodes, whererm of them are repaired
with optimal access, i.e., onlyl/r symbols are accessed from each node during the repair process. Thus, repairing
these nodes costs accessingrm · (n − 1)l/r symbols. However, repairing any of the restm systematic nodes, one
has to accessall the surviving symbols in the system. Notice that, although the repair is optimal, in order to generate
the transmitted data one has to access the entire information in the node. Repairing these nodes costs accessing
m · (n − 1)l symbols, and the access ratio of the code is

R =
rm · (n − 1)l/r + m · (n − 1)l

(r + 1)m · (n − 1)l
=

2

r + 1
. (14)

This value of the access ratioR = 2/(r + 1) is our benchmark. We will show that with an appropriate selection
of linear transformation, the value of access ratioR can be reduced. But first we define how to apply linear
transformation on the code to receive an equivalent code. Moreover we will show that these linear transformations
preserve the “nice” properties of our code.

Let A = (Ai,j)i∈[r],j∈[k] be the encoding matrix of an(k + r, k, l) optimal repair MDS code, with repairing
subspacesSi, i = 1, ..., k. We will apply a linear transformation on the code by multiplying on the right the
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encoding matrixA by a block diagonal matrixB, to get the encoding matrixC as follows,

C =







C2,1 · · · C2,k
...

. . .
...

Cr,1 · · · Cr,k






= AB =







A2,1 · · · A2,k
...

. . .
...

Ar,1 · · · Ar,k













B1

. . .
Bk






.

Namely, for i ∈ [r], j ∈ [k]
Ci,j = Ai,jBj, (15)

whereBj is an invertible matrix of sizel × l. After applying the linear transforationB on the encoding matrix, the
repairing subspaces should be changed accordingly. Recallthat Si,j is the repairing subspace for surviving nodej
during the repair of nodei. Define the new repairing subspaces as follows:

Si,j =

{

SiBj, j ∈ [k],

Si, j ∈ [k + 1, k + r].
(16)

Notice that compared to the original code, the repairing subspaces are changed only for the systematic nodes.

Theorem 8 Consider the linear transformation defined by(15)(16)applied on an optimal-bandwidth MDS code, then
the resulting code is an optimal-bandwidth MDS code, with repairing subspacesSi,j.

Proof: Since the code defined by the encoding matrixA is optimal bandwidth, then by the subspace property
(2)(3) for any distincti, j ∈ [k], and t ∈ [r],

Si = Si At,j.

Therefore,
Si,j = SiBj = Si At,jBj = Si,k+tCt,j.

And (4) is satisfied. Moreover, the sum of subspaces satisfies
r

∑
t=1

Si At,i = F
l ,

therefore
r

∑
t=1

Si,k+tCt,i =
r

∑
t=1

Si At,iBi = F
l .

Therefore (5) is satisfied, and the equivalent codeC has optimal bandwidth. It is easy to check that ifA is an MDS
code, then alsoC, and the result follows.

Now let us find a code such that the number of accesses will be decreased. We say nodej has optimal access
during the repair of nodei, if only l/r symbols are to be accessed in nodej during the repair on nodei. This
is equivalent to the followingoptimal-access condition: Si,j = SiBj can be written as a matrix with onlyl/r
non-zero columns. So we need to look for properBj’s such that this condition is satisfied by as many pairs(i, j)
as possible. LetVj be the matrix of the left eigenspaces of the encoding matrixAj in Construction 1, and we call
it eigenspace matrix. When j = vm + y, for v ∈ [0, r], y ∈ [m], we have

Vj =





















Py,0
...

Py,v−1

Py,v+1
...

Py,r





















,
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wherePy,u′ are defined as in (9). Here we view eachPy,u′ as l/r of vectors instead of a subspace. For example,
for the code in Figure 2 ifj = 1 and consider standard basis{e0, e1, e2, e3} then

V1 =









e0 + e2

e1 + e3

e2

e3









=









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









.

Define the matrix of transformation as
Bj = V−1

j , (17)

which is the inverse of the eigenspace matrix.

Theorem 9 The access ratio of the(n = (r + 1)m + r, k = (r + 1)m, l = rm) code using(17) is

2

r + 1
−

r − 1

(n − 1)(r + 1)
.

Proof: Suppose nodei = um + x is erased. From nodej = vm + y, j 6= i, by (16) we need to send the
following subspace:

Si,j = SiBj = SiV
−1
j .

Here Si is defined asPx,u as in Construction 1, andBj is defined in (17). We are going to show that in a lot of
casesSi can be rewritten as the product of a matrixM and the eigenspace matrixVj:

Si = MVj, (18)

whereM is of size l/r × r and contains onlyl/r non-zero columns. This will lead toSi,j = MVjV
−1
j = M and

therefore the code will have optimal access for the pairi, j.

• Casex = y, u 6= v. Apparently,Si = Px,u is one of the eigenspaces inVj and (18) is satisfied.
• Casex 6= y, u 6= r. We have observed in (10) that the subspaces satisfyPx,u = ∑

r
j=1(Px,u ∩ Tj), where

T1, . . . , Tr are all the eigenspaces ofAj. Moreover, eachPx,u ∩ Tj only contains linear combinations ofl/r2

vectors inTj. Hence (18) holds.
• Casex 6= y, u = r. We need to access all remaining elements.

Recall the code length isk = (r + 1)m. Hence for each systematic nodei as a survived node, it has optimal access
for r + (m − 1)r = mr erased nodes (the first two cases), and accesses all elementsfor m − 1 erased nodes (the
last case). For each parity node as a survived node, it has optimal access forrm erased nodes (j ∈ [rm]), and
accesses all elements form erased nodes (j ∈ [rm + 1, (r + 1)m]), because the repairing subspaces are stillSi for
parity nodes. Therefore, the access ratio is

k(rm l
r + (m − 1)l) + r(rm l

r + ml)

k(n − 1)l
=

2

r + 1
−

r − 1

(n − 1)(r + 1)
.

Hence the proof is completed.
We note here that this transformation lowers the access ratio compared to the original code (14), but in the mean

time increases the average updates for each systematic element. According to different system requirements, one
can choose one code over another.

The transformation in this section provides a general method to trade updates for access. Given any optimal-
bandwidth code, one can define such transformations and manipulate the encoding matrices to lower the access
ratio.
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Figure 5. Change of array size with Code rate.k = 10. For high code rate orr ≤ 9, the column length is shown in the solid line. For low
code rate orr ≥ 9, the column length is shown in the dashed line.

VI. CONCLUDING REMARKS

In this paper, we presented a family of codes with parameters(n = (r + 1)m + r, k = (r + 1)m, l = rm) and
they are the longest known high-rate MDS code with optimal repair. The codes were constructed using eigenspaces
of the encoding matrices, such that they satisfy the subspace property. This property gives more insights on the
structure of the codes, and simplifies the proof of optimal repair.

If we require that the code rate approaches1, i.e., r being a constant andm goes to infinity, then the column
length l is exponentialin the code lengthk. However, if we require the code rate to be roughly a constantfraction,
i.e., m being a constant andr goes to infinity, thenl is polynomialin k. Therefore, depending on the application
and therefore the different codes rate, one can obtain different asymptotic characteristics of the code length.

For n ≥ 2k or k ≤ r (low code rate), constructions in [12], [14] give the columnlength l = r. With some
modifications, this column length is feasible for allk ≤ r + 1. In our construction (high code rate), the column
length is l = r

k
r+1 . Fix the value ofk, we can draw the graph of the column length with respect to thenumber

of parities. Even though we need integer values fork, r, l, this graph still shows the trend of the code parameters.
For example, this relationship is shown in Figure 5 fork = 10. These two regimes coincide whenr = k − 1 = 9.
Actually, we can see that these two constructions are identical for r = k − 1. Note that our construction only
considers the repair of systematic nodes, so is only practical whenk >> r + 1. It is interesting to investigate the
actual shape of this curve, and to understand for fixed code length k how the column lengthl changes with the
number of paritiesr.

Besides, one possible application of the codes is hot/cold data. Since some of the nodes have lower access ratio
than others if erased and hot data is more commonly requested, we can put the hot data in the low-access nodes,
and cold data in the others.

At last, it is still an open problem what is the longest optimal-repair code one can build given the column length
l. Also, the bound of the finite field size used for the codes may not be tight enough. Unlike the constructions in
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this paper, the field size may be reduced when we assume that the encoding matrices do not have eigenvalues or
eigenvectors (are not diagonalizable).
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