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The statistical mechanics of thermally excited vortex lines with columnar defects can be mapped onto the
physics of interacting quantum particles with quenched random disorder in one less dimension. The destruction
of the Bose glass phase in type-II superconductors, when the external magnetic field is tilted sufficiently far
from the column direction, is described by a poorly understood non-Hermitian quantum phase transition. We
present here exact results for this transition in �1+1� dimensions, obtained by mapping the problem in the hard
core limit onto one-dimensional fermions described by a non-Hermitian tight binding model. Both site ran-
domness and the relatively unexplored case of bond randomness are considered. Analysis near the mobility
edge and near the band center in the latter case is facilitated by a real space renormalization group procedure
used previously for Hermitian quantum problems with quenched randomness in one dimension.
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I. INTRODUCTION

The physical properties of vortices in random pinning po-
tentials have been the focus of investigation for many years.
In addition to presenting a challenging problem for
statistical-mechanics analysis,1,2 the understanding of vortex
pinning is crucial for the use of superconducting magnets, as
well as for other applications.

This paper focuses on a particular aspect of this problem:
Vortices trapped inside a slab of superconducting material
with columnar defects. Vortices can minimize their core en-
ergy by occupying such defects, particularly if the applied
magnetic field and the defects are parallel. If, instead, a field
at a certain angle to the defect direction is applied, the ener-
getics of vortices penetrating the superconductor will exhibit
a competition between the attractive columnar-defect poten-
tial, and the energy cost of the superconductor’s magnetiza-
tion being tilted relative to the applied field. At low tilts of
the applied field relative to an irregular array of parallel co-
lumnar defects, vortices remain localized along the defects:
They exhibit a transverse Meissner effect. At a critical value
of the tilt, however, vortices may undergo a delocalization
transition, and a breakdown of the transverse-Meissner ef-
fect. Figure 1 depicts a generic phase diagram of a vortex
system on a lattice of random columnar defects.

In general, the problem of vortex pinning in a supercon-
ductor with columnar defects can be recast via the transfer
matrix method in terms of the non-Hermitian quantum me-
chanics of bosons with a constant imaginary vector
potential.3,4 Imaginary time replaces the z direction chosen
along the defect, and the bosons describe the vortices at
each imaginary-time slice. A uniform imaginary vector po-
tential creates a bias in the strength of the tunneling to
one direction. For instance, a typical bosonic hopping term
becomes b1

†b2e−h+b2
†b1eh, where b†, b are the boson’s cre-

ation and annihilation operators, and ih is the imaginary
vector potential. When h�0, hopping from site 1 to site 2 is
suppressed, whereas hopping from 2 to 1 is enhanced. In a
spatially periodic system, this may induce a transverse cur-

rent of the bosons, which corresponds to wrapping of the
vortices around the superconductor’s periodic direction.
When this happens, the energy eigenvalue of the non-
Hermitian Hamiltonian has an imaginary part, Im E. The size
of the transverse flux is proportional to the derivative
d Im E /dh �see Sec. I A�.

In the case of a thin superconducting slab, the mapping
to non-Hermitian quantum mechanics leads to a one-
dimensional problem. In this case there has been recent
progress on the breakdown of the transverse Meissner effect
in the following specific problems: �1� Vortex hopping in a
regular array of columnar pins with on-site and nearest-
neighbor repulsion.5,6 �2� Transmission through a weak
link.5–7 �3� Vortex tunneling with Cauchy-distributed random

FIG. 1. Schematic phase diagram of a flux liquid with random

columnar pins at a fixed external magnetic field H� � parallel to the
pins as a function of temperature T and tilted external field H�. The
Bose glass phase exhibits localized vortices and a transverse Meiss-
ner effect. The transitions along the line H�

c �T� map onto the non-
Hermitian quantum phase transition problem discussed in this pa-
per. The inset shows the behavior of B� near H�

c , where the
transverse Meissner effect breaks down and the vortices begin to
tilt.
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on-site pinning potential �Lloyd model�.8–10 �4� Some
progress has been made in understanding vortex dynamics
with random on-site and random hopping energies in Refs.
11–13.

In this paper we first concentrate on a fifth case, namely,
random hopping in an otherwise uniform pinning array. The
approach we take here is the strong randomness real-space
renormalization group �RSRG�. This approach, pioneered by
Ma, Dasgupta, and Hu,14,15 and developed further by
Fisher,16,17 is very successful in treating one-dimensional
random spin chains as well as other models.18–20 The use of
this technique in the context of non-Hermitian transfer ma-
trices, however, appears to be different.

This problem is of interest for several reasons. First, al-
though much is known about non-Hermitian tight binding
models with site randomness in �1+1� dimensions,4,9–13 the
case of pure bond randomness �corresponding to irregularly
spaced columnar pins of equal strength in a slab� is relatively
unexplored. All states are localized for the Hermitian prob-
lem of vortices in a thin slab without an external tilt field
when only site randomness is present. The tilt field h must
then exceed a finite threshold before delocalized states ap-
pear in the center of the band.4 In contrast, there is always
one delocalized state exactly at the band center for the Her-
mitian problem with only random hopping, accompanied by
a diverging localization length of the localized states on ei-
ther side.21

As we show explicitly in Sec. VII, additional delocalized
states then appear immediately in the center of the band for
any nonzero tilt in the thermodynamic limit. As discussed
further below, for larger values of h both problems do have
similar mobility edges, separating localized states near the
band edges from delocalized states near the band center.

Perhaps more important, the analytically tractable free
fermion model discussed here sheds light on the poorly un-
derstood non-Hermitian quantum phase transition that de-
scribes the physics of vortices as one attempts to tilt them
away from the direction preferred by columnar defects. Sup-
pose for simplicity the longitudinal applied magnetic field
�i.e., H�, the field parallel to the columnar pins� produces a
vortex density which does not exceed the density of column
pinning sites. Then, as shown in Fig. 1, the low-temperature
Bose glass phase, with essentially all flux lines localized on
columnar defects, is expected to be stable for a small addi-
tional field H� perpendicular to the column direction. The
transverse applied field H� is proportional to the tilt field h
discussed in this paper. Below the zero tilt Bose glass tran-
sition temperature TBG, perpendicular fields less than a criti-
cal value H�

c leave vortices untilted and trapped on columnar
pins in the thermodynamic limit.3 The equivalent quantum
problem involves interacting quantum bosons in a disorder
potential and constant imaginary vector potential propor-
tional to H�.4 Provided the transition is not first order, the
breakdown of this transverse Meissner effect above H�

c can
be described by a critical exponent �, according to

B� � �H� − H�
c ��, �1�

where B� is the transverse flux due to the tilted vortices.
Heuristic random walk arguments based on the entropy of

vortices wandering in the presence of thermal fluctuations
lead to the estimates22

� =
3

2
�d = 3� ,

� =
1

2
�d = 2� �2�

in three and two dimensions, respectively. However, there
are reasons to doubt these predictions. First, as will become
clear, at least for the exactly soluble �1+1�-dimensional
model discussed in this paper, the non-Hermitian quantum
phase transition induced by tilt effectively occurs at a
finite wave vector, calling into question simple random walk
arguments based on physics at k=0. Second, although the
phase diagram shown in Fig. 1 is well established
experimentally,23–25 the one existing experimental measure
of the exponent � �Ref. 26� �based on current-voltage char-
acteristics, see below� is inconsistent with Eq. �2�. Indeed,
the experiments on bulk superconductors with columnar pins
in Ref. 26 find �=1/2, which disagrees with the prediction of
Eq. �2� in d=3. In fact, we show in this paper that, for the
special case of free fermions in �1+1� dimensions �corre-
sponding to Luttinger liquid parameter g=1 in Fig. 4� one
obtains

� = 1 �free fermions,1 + 1 dimensions� , �3�

which disagrees with the prediction of Eq. �2� in d=2.
In principle it might be possible to check predictions such

as those in Eqs. �2� and �3� by magnetic torque measure-
ments, which are sensitive to the differences in the direction

of B� and H� that are an essential part of the transverse Meiss-
ner effect.24 Alternatively, as discussed in Refs. 3 and 22, the
exponent � determines a density of kink excitations connect-
ing nearby columnar defects �see Fig. 2�, which in turn con-
trol the linear flux flow resistivity above H�

c . Current-voltage
curves are highly nonlinear below H�

c , and the linear resis-
tivity vanishes.3 To understand the linear resistivity above

FIG. 2. �a� Schematic of a single tilted vortex line in a sample of
thickness L and inclined at an average angle �, interacting with a
row of variable strength columnar pins �represented by solid dashed
and dotted vertical lines� used in our estimate of the flux flow re-
sistivity in the presence of a current J flowing into the plane of the
diagram. �b� Top view of this same situation, showing the path of
the tilted vortex projected down the z axis. np is the density of
columnar pins.
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H�
c , consider the geometry shown in Fig. 2�a�, where a cur-

rent flows perpendicular to the plane defined by the column
direction and the average field direction defined by a set of
tilted vortex lines. Imagine first a bulk sample, of dimensions
L�W�W, where L is the sample length along the columns.
Suppose this field is inclined at a small angle �=B� /B� away
from the column direction. Then a typical perpendicular dis-
tance �x traversed by a vortex across a sample is �x=�L. If
the density of columnar pins is np, this tilt leads to

N1 = �x/np
−1/2 =

B�

B�

np
1/2L �4�

kinks associated with a single vortex. In clean type-II super-
conductors, at temperatures high enough so that residual pin-
ning by point impurities can be neglected, these kinks will
slide along columns, due to the Lorentz force fL=	0J /c
caused by the current, where 	0 is the flux quantum and c the
speed of light. Upon multiplying by the total number of flux
lines W2B� /	0, we find a gas of kinks with density

nk = B�np
1/2/	0 �5�

per unit volume. As expected, nk is proportional to B�, which
leads using Eq. �1� to a flux flow resistivity


 = 
0B��2/	0 � �H� − H�
c ��, �6�

where 
0 is the normal state resistivity, � �the coherence
length� is the size of the normal vortex cores which contrib-
ute to the dissipation, and we have neglected coefficients of
order unity. A similar calculation can be carried out for a
two-dimensional slab with dimensions L�W�d, with d
�L, W and a single sheet of columnar pins along L with
spacing np

−1. We also require d�, where � is the London
penetration depth. We then find that the flux flow resistivity
for a current perpendicular to the slab �i.e., along the direc-
tion d� is identical in form to the three-dimensional result �6�.
We hope that the calculations in this paper, although only
valid in �1+1� dimensions at a special temperature deep
within the Bose glass phase �see Fig. 4�, will stimulate fur-
ther theory as well as experiments aimed at a more complete
determination the exponent �, in both two and three dimen-
sions.

A. Statement of the problem

When a magnetic field is applied to a planar supercon-
ductor with parallel columnar defects in the plane, a compe-
tition occurs between the tendency of the vortices to be
pinned by the columnar defects, and the portion of the in-
plane magnetic field which is normal to the columnar de-
fects. The resulting lock-in of vortex trajectories parallel to
the columns up to a critical tilt field is the transverse Meiss-
ner effect discussed above.

In this work we concentrate on a model of vortex hopping
in a random array of columnar defects �see Fig. 3�. As de-
scribed previously,3,4 this statistical mechanics problem is
mapped onto a quantum mechanical boson-hopping problem.
When the magnetic field that produces the vortices is tilted
relative to the columns, our model introduces non-

Hermiticity to the Hamiltonian. The Hamiltonian whose ex-
ponential gives the transfer matrix is

H = �
i
�− wi�bi

†bi+1e−hi + bi+1
† bie

hi�

+ ��i − ��bi
†bi +

U

2
ni�ni − 1�� . �7�

Each vortex is represented by a boson with creation and an-
nihilation operators b, b†. As discussed above, we restrict
our attention to hard-core vortices, and set the on-site repul-
sion to infinity �U→��.

The average number n of vortices per pinning site is
equivalent to the longitudinal magnetization induced by a
magnetic field H� parallel to the defects. The part of the
magnetic field H�, tilted relative to the columnar defects,
induces an imaginary vector potential hi on each bond. We
expect it to depend linearly on the distance between colum-
nar pins. Note, however, that using a similarity transforma-
tion one can redistribute the hi’s such that each bond carries
the same imaginary vector potential.11,12 In the following we
will therefore eventually apply a uniform tilt h for all bonds.
In Eq. �7�, � is the vortex chemical potential, which is con-
trolled by the external magnetic field and the depth of the
pinning potential. The hopping energies wi and pinning en-
ergies �i are random variables with some relatively well be-
haved distribution. As is shown schematically in Fig. 3, the
Hamiltonian �7� describes the statistical mechanics of vorti-
ces hopping between columnar defects with an external mag-
netic induction tilted relative to the columnar pins.

In general, our goal is to characterize the transverse
Meissner effect in the superconductor. For that purpose we
also need to define the transverse magnetic flux in terms of

FIG. 3. �Color online� The exponential of the Hamiltonian �7�
determines the transfer matrix describing the statistical mechanics
of vortices �black lines� fluctuating in a planar superconductor with
parallel columnar defects piercing it at random intervals �gray
stripes�. The distance between the defects aj, as well as their energy
depth �illustrated by their width� Vj, are random variables. The ir-
regular spacing leads to strong randomness in the vortex hopping
wj �e−�aj. The external magnetic induction and its direction relative
to the columnar pins determine the vortex chemical potential �
and the effective tilt hj �aj. In this paper we compare and contrast
the case of identical pins with random spacings, and the case of
random-pinning energies but uniform spacings.
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the bosons of Eq. �7�. Quite intuitively, the transverse flux is
equivalent to the boson current, and is found by differentiat-
ing the Hamiltonian with respect to the external transverse
field3,4

Ji = �− i�
�H
�hi

= �− i�wi�bi
†bi+1e−hi − bi+1

† bie
hi� . �8�

We will consider and contrast two cases: first, the case of
random-pinning energies with uniform spacings, and then the
case of identical pins but random spacings. We will show
that these two cases are quite different, and proceed to char-
acterize the case of random spacings in some detail.

As we show in Sec. II B, the Hamiltonian �7� with the
hard-core requirement �U→�� is equivalent to a fermion
model without interactions. In general these interactions are
quantified by the Luttinger parameter6

g �
�T

�C11C44

, �9�

where T is the temperature and C11 and C44 are the vortex
compressibility and tilt modulus, respectively. In this work
we concentrate on the line g=1, and ignore nearest neighbor
and higher range interactions between the hard-core vortices.
The general phase diagram for the interacting vortex lines
with tilt in �1+1� dimensions is shown in Fig. 4.3,22

B. Summary of results

In the first part of this paper �Secs. II and III� we review
and derive properties of the random-pinning Lloyd model.
We concentrate on the minimum tilt required to form delo-
calized eigenstates, i.e., the critical tilt as a function of par-
allel field to destroy the transverse Meissner effect, and the
resulting transverse flux as a function of both tilt and parallel
field. The derivation of these properties provides us with a
baseline for a comparison of the random-pinning model with
the random-hopping model.

In the second part of the paper we concentrate on random
hopping. In this model all pinning sites are assumed to be
identical, but with random distances between them �since

hopping depends exponentially on the intersite distance, the
hopping strengths wi will be strongly random�. For this pur-
pose we employ the real-space renormalization group
�RSRG� method. Using this method we obtain the density of
states for the vortex-hopping Hamiltonian. We derive this
method for the vortex-hopping problem in Sec. IV.

The random-hopping problem has two unique features
that are connected to each other: the localization length of
the vortex eigenfunctions diverges near the middle of the
band �E=0�, and there is also a singularity of the DOS at the
same place. We use the DOS to derive a relationship between
the effective vortex chemical potential � and the applied
parallel field B�. We then proceed to show that any nonzero
tilt will produce delocalized eigenstates, and derive the criti-
cal tilt hc�b� at which the transverse Meissner effect breaks
down. We also derive the localization length of vortex states
near the mobility edge.

By employing a simple spectral formula explored in Refs.
9, 11, and 12, together with the results of the real-space RG
and the general arguments in Appendix A, we derive the
following properties: the angle of approach of the delocal-
ized spectrum in the complex plane �d Im E /d Re E�, the
contribution to the transverse magnetization of a single de-
localized vortex state, and the total vortex current, or trans-
verse flux, near the breakdown of the transverse Meissner
effect.

We emphasize that the results derived here assume that
the system is in the universal low-energy limit. A numerical
investigation of this limit requires large system sizes that
allow the RSRG to reach low energies. This is confirmed in
Sec. VII where finite-size systems of vortices and columnar
pins with random pinning and random hopping are diagonal-
ized exactly.

II. EQUIVALENT MODELS

Hamiltonian �7� in the limit U→� is not as familiar to us
as some other equivalent models. In this section we map the
boson Hamiltonian �7� to a spin model with easy plane an-
isotropic interactions �XX�, and to a fermion-hopping model.
These mappings will be useful when applying the RSRG in
Sec. IV and exact diagonalization for finite systems in Sec.
VII.

A. Mapping to a spin model

By the simple transformation of the boson operators on
the nth lattice site

bn
† = �− 1�n · Ŝn

+ = �− 1�n · �Ŝn
x + iŜn

y� ,

bn = �− 1�n · Ŝn
− = �− 1�n · �Ŝn

x − iŜn
y� ,

bn
†bn = 1/2 + Ŝn

z , �10�

the Hamiltonian in Eq. �7� is transformed to an XX ferromag-
net in an external magnetic field

FIG. 4. The phase diagram for interacting vortices, with effec-
tive Luttinger parameter g proportional to temperature 	see Eq. �9�
,
tilt h, at a fixed parallel magnetic field H�. For real bosons, the
vortex liquid phase for g�3/2 and vanishing tilt h=0 corresponds
to a superfluid with off-diagonal long range order. Little is known
about the Bose glass depinning transition at finite h. In this paper
we investigate this transition at g=1.
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H = �
i
�− 2wi	�Ŝi

xŜi+1
x + Ŝi

yŜi+1
y �cosh�h�

+ i�Ŝi
xŜi+1

y − Ŝi
yŜi+1

x �sinh�h�
 + ��i − ���1

2
+ Ŝi

z� .

�11�

In the spin variables, a vortex pinned at site i corresponds to

Ŝi
z= +1/2; an empty site i is transformed to a site with Ŝi

z=
−1/2. The transformation in Eq. �11� is the special spin-1 /2
case of the Holstein-Primakoff transformation.27 In its higher
spin version it has factors of the form �1−bn

†bn which for
spin-1 /2 reduce to either zero or one.

At half filling �i.e., when �=�i=0� and zero tilt h the
ground state of Hamiltonian �11� is the random singlet phase.
In this phase singlets form in a random fashion between sites
connected by strong wi. Once a singlet forms, the nearest
neighbors of the two sites involved also interact, but with
suppressed strength. By pairing up strongly interacting sites
into singlets, we iteratively reduce the energy scale of the
Hamiltonian, until we exhaust all sites. At this point, singlets
connect many nearest neighbors, but occasionally singlets
connect very far away spins, leading to power-law decaying
correlations �for a review, see Ref. 16�. The idea behind the
random singlet phase and its formation are shown in Fig. 5.
A thorough discussion of this phase and its implications for
vortex pinning will be given in Secs. IV and V.

B. Mapping to fermion-hopping problem

By using a version of the Wigner-Jordan transformation,28

we can also map the hard-core boson Hamiltonian �7� with
U=�, to a fermionic random-hopping problem. This map-
ping is also quite straightforward; we start with

bn → �
j=−�

n−1

ei�cj
†cjcn, bn

† → �
j=−�

n−1

e−i�cj
†cjcn

†, �12�

where the string operator ensures the anticommutation rela-
tions of the cn’s. Now we can write the Hamiltonian of the
vortices as though they are fermions

H = �
i

	− wi�ci
†ci+1e−hi + ci+1

† cie
hi� + ��i − ��ci

†ci
 . �13�

Similarly, the local current operator becomes

Ji = �− i�
�H
�hi

= �− i�wi�bi
†bi+1e−hi − bi+1

† bie
hi�

= �− i�wi�ci
†ci+1e−hi − ci+1

† cie
hi� . �14�

In the absence of the tilt field, the ground state of the
Hamiltonian �13� is well understood.16 When the pins are
identical ��i=0�, the random hopping localizes all states ex-
cept at half filling, where there is always a delocalized state.
The localized states away from the mobility edge are related
to the random singlets in the XX spin chain of Eq. �11�.
Instead of a singlet, however, pairs of sites share a single
fermion.

In this model, half filling is obtained when �→0−. In this
limit, the last fermion inserted in the system is delocalized
between two sites with a distance that is of the order of the
system size, i.e., it is delocalized. All other fermionic states,
however, are localized.

In the presence of the tilt field h an entire band of delo-
calized states appears, and the lower mobility edge moves
down to fillings below one half, and to negative chemical
potentials �0. By using the mapping to free fermions 	Eq.
�13�
 and the known real space renormalization group
�RSRG� results for this model, we can obtain much insight
into the delocalized phase. In particular, we will derive a
universal relationship between the field h, the mobility edge
�h, and perhaps most importantly, the vortex density �i.e.,
parallel magnetic field� at the mobility edge 
h.

III. RANDOM-PINNING ENERGY AND UNIFORM
HOPPING—EXACT RESULTS
FROM THE LLOYD MODEL

In this section we will review exact results for the spec-
trum of the non-Hermitian Lloyd model,8–10 and proceed to
derive results in the presence of a transverse magnetic field
�Sec. III B�. These results present another reference point for
the behavior of the transverse magnetization near the break-
down of the transverse Meissner effect, and go beyond the
Lloyd model.

We consider the one-dimensional quantum Hamiltonian
�7� with infinite on-site repulsion �U→��:

H = �
i

	− w�bi
†bi+1e−h + bi+1

† bie
h� − ��i − ��bi

†bi
 , �15�

where bi
† and bi are creation and annihilation operators of

hard-core bosons, which represent the vortices. The hopping
matrix element w is now site independent. We could equally
well use the fermion representation in Eq. �13� in what fol-
lows. We set the lattice constant to 1, and consider a lattice
of length L sites. For small tilts, the imaginary gauge field h
is proportional to the angle of the applied magnetic field
relative to the columnar defects. The parallel applied field
translates into the chemical potential for the vortices via the
constraint

FIG. 5. �a� In a random XX spin chain, described by Eq. �11�
with h=0, strong bonds such as w2 localize a spin singlet. Quantum
fluctuations induce a coupling between the neighbors of the singlet.
This coupling has the same XX form, but a substantially reduced
scale weff=w1w3 /w2 which is much smaller than w1, w2, and w3. By
repeating the singlet formation process, the energy scale of the ef-
fective Hamiltonian is reduced. �b� The random singlet state. Sin-
glets form in a random fashion, mostly between nearest neighbors,
but they also connect very far away spins. Long distance singlets
give rise to average correlations that decay algebraically with
distance.
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�
−�

�

g���d� = n , �16�

where n is the average number of vortices per columnar de-
fect and g��� is the density of states associated with the
Hamiltonian of Eq. �15�. Assuming that the distribution of
pinning energies �i is symmetric, we can invoke particle-hole
symmetry, and rewrite Eq. �16� as

�
�

0

g���d� = �
−�

0

g���d� − �
−�

�

g���d� = 0.5 − n . �17�

In this section we will review the known qualitative fea-
ture of this noninteracting model of vortices with random
pinning strength �i. We will also focus on the analytic results
known for the Lloyd model,8–10 which is described by the
Hamiltonian �15� with a special distribution of the pinning
energies �i

P	�
 =
�

�

1

�2 + �2 . �18�

This model has played an important role in our understand-
ing of one-dimensional localization of electrons.

A. Structure of the spectrum and critical delocalization tilt

Much of the physics of interacting vortices in �1+1� di-
mensions can be inferred from the shape of the spectrum of
the Hamiltonian as a function of the applied transverse field
h. For zero tilt h, the entire spectrum of Hamiltonian �15� is
due to localized states, and is therefore real.4 The density of
states changes as a function of energy but experiences no
singularities. When the external magnetic field is tilted rela-
tive to the columnar defects, the spectrum of the localized
states does not change, but the wave functions associated
with them spread out in the direction of the tilt. The invari-
ance of the spectrum to the tilt, as long as the wave functions
are localized, can be easily understood, since for any eigen-
state of the Hamiltonian we can carry out a gauge transfor-
mation such that all the imaginary gauge field in a suffi-
ciently large system is on a bond between sites where the
eigenstate has no support.

Above some critical tilt h0�0, a subset of the eigenfunc-
tions delocalizes, and their energies become complex �see
Fig. 6�. As shown in Refs. 11 and 12, the parts of the spec-
trum that first become delocalized are at the maximum of the
DOS g���, which is generally in the center of the spectrum,
at �=0.

The transverse Meissner effect, however, persists until the
vortex-eigenstates at the “Fermi energy” � become delocal-
ized. This Fermi energy for the vortices is determined by the
parallel �longitudinal� magnetic field B� or, equivalently, by
the vortex density n per pin. The tilt at which the transverse
Meissner effect breaks down is thus a function of n, and it is
always bigger than the threshold tilt h0:

hc�n� � h0. �19�

The qualitative description above is exemplified by the
spectrum of the Lloyd model.8,9 The delocalized portion of

the spectrum of the Lloyd model is known to be8

En
± = − 2w cos�±kn + ih� � i� , �20�

where � controls the width of the site-randomness distribu-
tion in Eq. �18�. As the tilt increases such that h�h0, a
bubble of delocalized states appears in the center of the band
�see Fig. 6�. When h�hc�n�, this bubble engulfs the chemi-
cal potential.

From the spectrum of the Lloyd model �20�, one can eas-
ily derive h0 and hc. The lowest critical tilt h0 that produces
delocalized eigenfunctions is obtained when the imaginary
part of the energy becomes nonzero, Im En�0, for some
eigenstate En. As is obvious from Fig. 6�b�, this delocaliza-
tion tilt will be the critical tilt where the transverse Meissner
effect disappears at half filling �n=0.5�. h0 is given by

sinh�h0� =
�

2w
. �21�

The range of wave vectors kn that defines the delocalized
states are thus given by

FIG. 6. �Color online� �a� All eigenfunctions of the random-
pinning Hamiltonian are localized and independent of the tilt pro-
vided hh0. We suppose that the density of states �DOS� is peaked
around E=0 but is not singular. The effective chemical potential of
the vortices, �, is determined by the longitudinal magnetization n,
such that the density of occupied states below � equals n. �b� When
the tilt of the applied field becomes h�h0, a bubble of delocalized
states develops where the DOS is peaked. As long as the bubble
does not reach �, there is still no transverse magnetization. The
thick lines mark the support of the eigenenergies in the complex E
plane. �c� The transverse Meissner effect breaks down when h=hc,
and the delocalized bubble reaches �. The total vortex current is
shown in Appendix A to be proportional to the imaginary part of the
energy eigenvalue at the Fermi surface 	see Eq. �A4�
.
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sin�kn� �
�

2w sinh�h�
. �22�

To obtain the critical tilt as a function of longitudinal mag-
netic field, we observe that the number of delocalized single-
vortex states is

Ndel =
2L

�
arccos� �

2w sinh�h� �23�

�note that the argument of the arccos is never bigger than 1�.
Thus the critical longitudinal vortex density for a given tilt is

nc =
1

2
−

1

�
arccos� �

2w sinh�h� , �24�

which can be inverted to give the critical tilt for a given
magnetization

sinh�hc� =
�

2w cos	��0.5 − n�

. �25�

B. Transverse magnetic flux near critical tilt

Once vortices form delocalized states, the magnetization
in the superconductor is no longer parallel to the columnar
defects, and transverse flux appears. The total transverse
flux, or vortex current in the quantum-mechanical picture,
can also be found out easily for the Lloyd model.8

In Appendix A we derive a general rule for the total vor-
tex current for delocalized states 	Eq. �A4�
:

Jtotal = 2
1

L
�
kn

Re
�En

�h
=

1

�
�Im E� − Im E�m

� , �26�

where Im E� is the imaginary part of the energy eigenvalue
with real part � and �m�h� is the chemical potential above
which vortex states are delocalized �mobility edge�. L is the
total number of lattice sites. As discussed in Refs. 4 and 6,
this total “current” �similar to the derivative with respect to
vector potential which gives the current in a quantum sys-
tem� is proportional to the perpendicular component of the
magnetic flux. If we consider our system having longitudinal
vortex density n and tilt h�hc, then the number of delocal-
ized vortices �as opposed to vortex states� is n−nc where nc
is given in Eq. �24�. Therefore, the kn that are occupied by
delocalized vortices are given by

arcsin� �

2w sinh�h�
= kc  �kn�  arcsin� �

2w sinh�h� + ��n − nc� = kF.

�27�

Now, using Eq. �A4� �see Appendix A� we can directly write
the total current as

Jtotal =
1

�
�Im EkF

− Im Ekc
�

=
1

�
2w sinh�h��sin�arcsin

�

2w sinh�h�
+ ��n − nc��

− sin�arcsin
�

2w sinh�h��
=

1

�
2w sinh�h�� �

2w sinh�h�
�cos	��n − nc�
 − 1�

+�1 −
�2

�2 sinh�h�w�2 sin	��n − nc�
� . �28�

Near the delocalization transition we have

Jtotal = 2w sinh�h��1 − � �

2w sinh�h�
2

�n − nc� . �29�

Using the derivative of Eq. �24� we obtain

dnc

dh
=

1

2�

�

2w

cosh�h�
sinh2 h

1

�1 − � �

2w sinh�h�
2

.

Upon putting this back in Eq. �29� with h−hc��dn /dh�n
−nc�� we obtain a simple expression for the total current in
the Lloyd model near delocalization, namely,

Jtotal �
�

2� tanh�h�
�h − hc� . �30�

This linear onset of the vortex current is qualitatively similar
to numerical results for a box distribution of pinning ener-
gies, as presented in Sec. VII. When reintegrated as a for-
mula for the transverse magnetic flux of a vortex system,
�30� leads to the prediction �=1 for the exponent discussed
in the Introduction, Eq. �2�.

IV. REAL SPACE RG OF THE BOSON-HOPPING
PROBLEM

One purpose of this paper is to understand the properties
of vortices hopping in an array of identical pins with random
locations, and contrast these properties with those of the
random-pinning energy system with uniform hopping. The
random-hopping problem is described by the Hamiltonian in
Eq. �7� with U→�, �i=0, and wi random. In order to solve
this model we apply the real-space renormalization group
�RSRG� procedure.14–17 In this section we review the appli-
cation of the RSRG to the random-hopping boson Hamil-
tonian.

The RSRG allows us to diagonalize the random Hamil-
tonian iteratively by eliminating the high energy degrees of
freedom. The first step is finding the strongest bond in the
chain and diagonalizing it while ignoring the rest of the
Hamiltonian. Quantum fluctuations give rise to new interac-
tions that bridge over the bond we diagonalize. If we are
lucky, these renormalized interactions will be of the same
form as the original Hamiltonian. Let us carry this out for the
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boson-hopping Hamiltonian �7�. In effect, we diagonalize the
Hamiltonian �7� iteratively by putting vortices into a hierar-
chy of localized states shared by pairs of sites.

A. Diagonalization of the strongest bond

The Hamiltonian we are interested in is given in Eq. �7�,
with U→� and �i=0:

H = �
i

	− wi�bi
†bi+1e−h + bi+1

† bie
h� − �bi

†bi
 .

Suppose wi is the strongest hopping energy in the chain. We
first diagonalize a single nearest neighbor bond

Hi = − wi�bi
†bi+1e−h + bi+1

† bie
h� − ��bi

†bi + bi+1
† bi+1� .

�31�

Because the vortices are hard core in this limit the only oc-
cupied states available in the Hilbert space are

�i� = bi
†�0�, �i + 1� = bi+1

† �0� . �32�

Diagonalizing Eq. �31� in the subspace spanned by Eq. �32�
means diagonalizing the matrix

� − � − wie
−h

− wie
h − �

 . �33�

Note that the eigenvalues of this Hamiltonian cannot depend
on the tilt, in accordance with what we know on localized
states—they carry no transverse magnetic field.4 The eigen-
values and right eigenvectors of Eq. �33� are

E± = − � ± wi,

� ± � =
1
�2

�e−h/2�i� � eh/2�i + 1�� . �34�

Note that in this non-Hermitian quantum problem, the left
eigenvectors are not the Hermitian conjugates of the right
ones. In fact,

�± � =
1
�2

�eh/2�i� � e−h/2�i + 1�� .

As long as E−0 and E+�0 the ground state of Hi from
Eq. �31� will contain a single vortex split between sites i and
i+1. The eigenstate of bond i is therefore

�− � = �e−h/2bi
† + eh/2bi+1

† ��0� . �35�

This state is described in Fig. 7�a�.
The next step is to include the rest of the Hamiltonian,

and in particular neighboring bonds corresponding to Hi±1.
These terms will lead to quantum fluctuations above the
ground state of HI. Thus it is necessary to find the allowed
excited states of Eq. �7� which involve 2 and 0 vortices.
These states are simply

�1,1� = bi
†bi+1

† �0� ,

�0,0� = �0� , �36�

with energies E=−2� and E=0, respectively; they are de-
picted in Figs. 7�b� and 7�c�. Note that their kinetic energy is

Ek=0; their only energy comes from the chemical potential.

B. Second order perturbation theory and renormalized
hopping and tilt

Having diagonalized the bond Hi we now need to incor-
porate the rest of the Hamiltonian as a perturbation. To sec-
ond order in the hopping matrix elements, we need to con-
centrate only on the two neighboring bonds

V = − wi−1�bi−1
† bie

−h + bi
†bi−1eh�

− wi+1�bi+1
† bi+2e−h + bi+2

† bi+1eh� . �37�

The second order Hamiltonian is then

V�2� = −
�− �V�0,0��0,0�V� − � + �− �V�1,1��1,1�V� − �

wi

= −
wi−1

2

wi
−

wi+1
2

wi
−

wi−1wi+1

wi
�bi−1

† bi+2e−3h + bi+2
† bi−1e3h� ,

�38�

where, as in Eq. �36�, �0,0� is a state with both sites i and i
+1 empty, and �1,1� is a state with both sites full. Quantum
fluctuations thus give rise to a new coupling between sites
i−1 and i+2. This renormalization process is depicted in
Fig. 8, and is discussed below.

Equation �38� is quite remarkable. It tells us that after
localizing a vortex between sites i and i+1, we can forget
about these two sites. Except for a constant contribution, the
only change we need to make to the Hamiltonian is to add a
new hopping term that allows vortices to hop over the occu-
pied pair, from i−1 to i+2. In addition, we see that this
hopping is associated with the composite tilt of the three
bonds linking i−1 and i+2. In general, upon allowing for
different tilt fields on neighboring bonds, the effective
strength and effective tilt of the renormalized bond are, re-
spectively,

FIG. 7. �Color online� Eigenstates of the bond i. �a� The lowest
eigenstate of the Hamiltonian Hi from Eq. �31� is ��� 	Eq. �35�
.
Sites i and i+1 share a single vortex. In the imaginary time descrip-
tion, it is as though the vortex tunnels back and forth between the
two columnar pins. The energy of this state is −�−wi. �b� An ex-
cited state in which both pins are empty, with energy eigenvalue
zero. �c� An excited eigenstate of Hi with energy −2�; both pins are
occupied by vortices.
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wi−1,i+2
eff =

wi−1wi+1

�
,

hi−1,i+2
eff = hi−1 + hi + hi+1, �39�

where we introduced the notation �=max�wi� �also see Fig.
8�. Equations �39� are the RG rules for the RSRG as applied
to the vortex-hopping problem.

As it turns out, Eqs. �39� coincide with the RG flow equa-
tions for the fermion-hopping problem �or XX spin chain
problem� in the Hermitian case h=0. The only difference is
that the tilt hi replaces the length of bonds, as one might
expect in the case of localized states.4 In order to solve the
flow equations we can thus use techniques known from the
Hermitian case.

Two important points should be made here. �1� The flows
of the hi’s and wi’s are independent. �2� No new terms are
produced. In particular, we do not produce randomness in the
chemical potential. In the pure model it is the particle-hole
symmetry that prevented us from having new chemical-
potential terms. But Eq. �7� with nonzero tilt does not have
particle-hole symmetry or, more precisely, it is symmetric
under a particle-hole transformation accompanied by a
changing the tilt direction

b → b†, b† → b, h → − h . �40�

Terms such as

b†beh + bb†e−h

are allowed in the presence of the modified p-h symmetry
	Eq. �40�
, and they would create a bias towards vortices �or
holes�. Fortunately, as discussed above, they are not pro-
duced.

C. Flow equations for the distribution of hi and wi

In the previous section we derived the RG rules that gov-
ern the effective tilt and hopping matrix elements. By using
these RG rules we can gradually decrease the energy scale of
the Hamiltonian while determining the high energy parts of
the ground state. When the energy scale reaches zero, the
Hamiltonian that we started with is effectively diagonalized.
The RG rules on their own, however, do not tell us much
about the eigenvalue spectrum. To obtain useful information,
we need to convert the RG rules into differential flow equa-
tions for the distributions of bond strength and tilt. As
pointed out before, this has been essentially done already in
the corresponding Hermitian problem.

Equation �39� provides RG rules that are identical to the
case of the random XX Hamiltonian.16 In this case we renor-
malize the bond strength and the length of bonds. Equations
�39� suggest that for random vortex hopping in the non-
Hermitian problem, the length of a bond is replaced by the
bond’s tilt. This observation allows us to use essentially all
results derived for the XX model in Ref. 16 and apply them
in this problem. In this section we review these results as
they apply to the vortex-hopping problem.

We need the flow equation for the joint probability distri-
bution 
�w ,h� of the hopping strength and tilt on a bond with
respect to the gradually decreasing energy scale �. As in the
theory of random spin chains, we introduce a logarithmic
variable � to replace the bond’s strength, and a
renormalization-group flow parameter �:

�i = ln
�

wi
,

� = ln
�0

�
, �41�

where �0 is the initial energy scale �largest matrix element�
in the problem. The logarithmic energy scale � is the RG
flow parameter, and it increases as the energy scale is de-
creased. Note also that in every step of the RG we renormal-
ize away bonds with �→0. In the continuum limit, one can
verify that to generate the flow �→�+d� we renormalize
all bonds with 0��d�. The logic behind the definition of
� in Eq. �41� becomes clear upon considering the first RG
rule in terms of the new variables. Equation �39� takes the
form

�i−1,i+2
eff = �i−1 + �i+1. �42�

Upon transforming 
�w ,h� into the new variables, we ob-
tain the joint probability distribution P�� ,h�. The flow equa-
tion for P�� ,h� is given by16

dP��,h�
d�

=
�P��,h�

��
+� � d�1d�2dh0dh1dh2��� − �1 − �2�

���h − h0 − h1 − h2�P�0,h0�P��1,h1�P��2,h2� .

�43�

Equation �43� greatly simplifies if we take the Laplace trans-
form with respect to h. If y is the Laplace transform variable
conjugate to h, we obtain

FIG. 8. �Color online� Real-space RG decimation step, where
we allow for different tilt fields hj on neighboring bonds. In each
step of the renormalization we find the strongest bond wi=�. We
diagonalize it and minimize its energy by allowing a single vortex
to fluctuate between the two columnar pins i and i+1. A vortex in
site i−1 may then fluctuate into site i, raise the energy of sites i and
i+1, and make the vortex in site i+1 relax by fluctuating into site
i+2. Thus we can eliminate sites i and i+1, by including the effec-
tive hopping between sites i−1 and i+2. The effective transverse
field �tilt� between i−1 and i+2 becomes the sum of the tilts con-
necting these two sites.
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dP��,y�
d�

=
�P��,y�

��
+� � d�1d�2��� − �1 − �2�

�P�0,y�P��1,y�P��2,y� . �44�

The derivation of this equation is given in detail in Ref. 16.

D. Universal fixed point distributions of w and h, length
energy scaling, and density of states

Remarkably, Eq. �44� has a scaling solution which is an
attractor to essentially all boundary conditions.17 This solu-
tion is

P��,y� =
1

� + �0
exp�− �ycoth	�y�� + �0��
� , �45�

where �0 is a nonuniversal constant of integration. This so-
lution, once inverse-Laplace transformed, gives the joint
probability distribution of bond strengths and effective tilt.
Given some initial Hamiltonian and tilt, at sufficiently low
energy scales �i.e., in the limit of large system size for the
vortex problem� the distribution of effective couplings will
be given by Eq. �45�.

From this solution we find that the average logarithmic
coupling obeys

�̄ = � + �0, �46�

where the overbar denotes disorder averaging. Also, Eq. �46�
is obtained from the marginal distribution for the logarithmic
couplings, i.e., Eq. �45� with y→0. In addition we infer that
the Laplace parameter conjugate to the tilt scales as

ȳ � �� + �0�−2,

and therefore the tilt field scales as

heff � �� + �0�2. �47�

From the above scaling we can infer the average length of a
bond after the RG reached the logarithmic energy scale �.
This scaling is identical to the tilt-energy scaling, as men-
tioned above

l = l0�� + �0�2. �48�

The concomitant relation to the length-energy scaling is the
relation between the fraction of unoccupied pinning sites f
and the energy. This relation has to be

f =
f0

�� + �0�2 , �49�

where �0 and f0 are nonuniversal constants that depend on
the particular realization of the disorder.

A formula used by Shnerb and Nelson11,12 and Brouwer et
al.9 will provide us with a connection between the spectrum
of the Hermitian Hamiltonian �with zero tilt� and the spec-
trum of the tilted Hamiltonian, see Sec. VI B. In order to use
this formula to find information about delocalized vortex
states, however, we will need knowledge of the density of
states in the zero-tilt limit.

The density of states �DOS� can also be derived from Eq.
�49�. The number of states per length in the energy interval

�→�−d�, or �→�+d� �with �=�Ie
−�� is just the num-

ber of bonds that get decimated at that energy scale. This, in
turn, is given by

fP�� = 0,y = 0�d� .

Converting this into energy terms, using Eqs. �45� and �49�,
we obtain

g��� =
f0

ln3��I/��
1

�
, �50�

where the energy � is measured from the center of the band
and

�I = �0e�0. �51�

We expect Eq. �50� to be asymptotically exact for small �.
The density of states, Eq. �50�, exhibits the Dyson
singularity.29 Similar scaling as above was obtained using
alternative methods in Ref. 30.

In order to check Eqs. �46� and �49�, we carried out the
real-space RG procedure numerically on chains with 5
�106 sites for two types of distributions—the block distri-
bution and displaced power-law distribution. In Fig. 9 we
plot the average logarithmic coupling and the density of free
sites vs the logarithmic flow parameter � for the representa-
tives of the two distributions types �further described in the
figure caption�. From these plots we also infer the values of
the nonuniversal constants f0 and �0, which will be used
later to compare results for the vortex localization problem.

E. Applicability of the RSRG with nonzero tilt

The application of the RSRG breaks down as soon as we
reach energies at the mobility edge, because we can no
longer write a vortex wave function which is localized be-
tween two sites—this becomes impossible as soon as the
chemical potential reaches the mobility edge, and the states
become extended. We can nevertheless take advantage of the
real-space RG as long as we stop decimating when the en-
ergy scale reaches the mobility edge. In addition, the RSRG
gives a reliable expression for the density of states of the
Hamiltonian �7� with zero tilt.

V. CONNECTION WITH VORTEX PHYSICS

In the previous section we derived the RSRG for the
vortex-hopping imaginary time Hamiltonian. In this section
we will clarify the relation of the results obtained above to
the physics of vortex lines with columnar pins in planar su-
perconductors.

The vortex hopping Hamiltonian yields an energy spec-
trum, with filling factor determined by a chemical potential
�. The RSRG outlined above is used to determine the wave
function of vortices in a given chemical potential; in each
step of the RG, the strongest bond is diagonalized, and if the
bond energy of a vortex placed on the bond is lower than the
chemical potential

E− = − w̃ − �  0, �52�

then a vortex is localized on that bond. If the strongest bond
in the renormalized chain is too weak to obey Eq. �52�, then
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the RG is stopped and we have found the ground state of the
zero-tilt model.

For flux lines, however, we often want to know the lon-
gitudinal magnetic field, proportional to the vortex density n.
We need to find out how n and � are related. This is done
using Eq. �49�. The longitudinal vortex density vs the frac-
tion of unoccupied sites f is

n =
1

2
�1 − f� =

1

2
�1 −

f0

�� + �0�2 , �53�

i.e., the longitudinal vortex density is half the density of
filled pinning sites, since each vortex is localized on bonds,
and thus on two sites. The number of unoccupied sites f as a
function of energy scale is taken from Eq. �49�. Now, the
condition �52� gets translated to �assuming negative �; for
positive � we can carry out a particle-hole transformation�

� = ln
�0

���
. �54�

Upon inverting Eq. �53�, we thus obtain

� = − �0e�0 exp�−� f0

1 − 2n
 . �55�

Note that �0 is the initial energy scale, and f0 and �0 are
constants that are determined by the initial distribution of
hoppings, and which can be calculated as in Fig. 9. Equation
�55� is tested in Fig. 10 for two forms of disorder.

In the following, we will find the mobility edge, �m, of
the vortex-hopping model with tilt, using the RSRG. We will
then use the above relations to convert the results to the
physical variable n.

All results will depend on the initial conditions through
the nonuniversal quantities �I and f0. Nevertheless these re-
sults are valuable since our results will be able to describe
the entire phenomenology of the depinning transition in
terms of these two constants, which encode the relevant part
of the initial distribution. These constants can be evaluated
for a given distribution either by carrying out the RSRG
numerically, or by fitting curves to partial results obtained in
other methods, for instance, by comparing the density of
states �50� to a spectrum obtained numerically. In general,
when comparing our results to spectra obtained numerically,
it is easier to use formulas with � in them rather than the
physical n.

FIG. 9. Numerical real-space RG for an initial block distribution, i.e., initial hoppings uniformly distributed between d and 1+d, and for
an initial “displaced power-law” distribution, with initial hoppings given by w=0.01+wr and 0wr�1 distributed as P	wr
= �1−a� 1

wr
a . The

latter distribution of wr corresponds to a hopping strength which is exponentially suppressed with the distance between pins wr�e−x with x

distributed as P	x
�e−�1−a�x. Each graph represents averaging over 20 realizations. �a� The average logarithmic coupling �̄ vs the logarithmic
RG flow parameter �. The fitted slope in the two curves is 0.99. From the intercept we deduce �0. For the box distribution �0=0.31 �d
=0.1� and for the power-law distribution �0=0.71 �a=0.5�. These plots should be compared with the linear dependencies predicted by Eq.
�46�. �b� The inverse density of free sites 1 / f vs ��+�0�2, with �0 obtained from the graphs in �a�. As expected from Eq. �49�, the intercepts
of the curves with the y axis in the two plots are negligible compared to 1/ f: 2.6 �box distribution with d=0.1� and −0.29 �power-law
distribution with a=0.5�. From the slope of the two curves we find f0=0.37 �d=0.1� and f0=1.85 �a=0.5�.
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VI. APPLICATION OF THE RSRG RESULTS
TO NON-HERMITIAN DELOCALIZATION

In the above we derived many characteristics of the
vortex-hopping problem while assuming that all vortices are
localized. The most interesting aspects of the problem, how-
ever, arise in relation to the delocalization transition of vor-
tices with sufficient tilt.

The physical quantities of interest are essentially all re-
lated to the energy spectrum of the problem. Most particu-
larly, given a tilt—an angle relative to the columnar defects
with which we apply a magnetic field—how much magnetic
field can we apply such that all vortex lines remain localized
in configurations parallel to the columnar pins? This question
is answered by finding the mobility edge of the non-
Hermitian boson-hopping model. Once we know the effec-
tive chemical potential in which the vortex bosons become
depinned, the density of bosons at this chemical potential
determines the critical field for destruction of the transverse
Meissner effect.

Another interesting quantity is the transverse magnetic
field as a function of tilt above the mobility threshold for a
given longitudinal field. The transverse field is proportional
to the boson current 	see Eq. �8�
. For tilts slightly above the
mobility threshold hc �i.e., a chemical potential slightly
above the mobility edge�, the boson current is simply given
as 	Eq. �A4�
:

J =
1

�
�� − �c�tan � ,

where � is the angle of ascent of the spectrum in the complex
energy plane �see Fig. 13�. The angle � is a universal func-
tion of the external magnetic field, or the chemical potential.

In this section we will analytically derive these quantities
for the random-hopping model. First, we will find the mobil-
ity edge as a function of tilt, or, equivalently, the tilt thresh-
old as a function of external field. In order to obtain the
transverse magnetization, we will need to use a formula ap-
pearing in Refs. 9, 11, and 12, which connects the spectrum
of the Hermitian boson-hopping Hamiltonian with the spec-
trum of the non-Hermitian problem and the tilt. We will in-
troduce this formula, and use it to derive the quantities of
interest.

A. Mobility edge of the random-hopping Hamiltonian

By using the RSRG, we demonstrated in Sec. IV that
when the tilt is zero, vortices are localized between pairs of
pinning sites. We also showed that as we reduce the energy
scale of the Hamiltonian, and place vortices onto pairs of
pinning sites that are increasingly far apart, the effective tilt
heff per site also increases. For any given initial tilt, at some
energy scale there will no longer be a localized vortex solu-
tion. This energy is the mobility edge ��h�. Alternatively,
there will be a critical longitudinal vortex density, which we
denote n�h�, above which vortices are no longer restricted to
the pinning sites. In this section we find the relation between
the tilt and the critical longitudinal vortex density.

1. Single strong bond

We start our investigation by solving a simplified problem
that will give us the correct solution. We will then proceed to
justify it for the random-hopping Hamiltonian. Consider a
ring of columnar defects, where there is one strong bond, w0,
and all other bonds are w�w0 �Fig. 11�:

FIG. 10. Semilog plots of the vortex chemical potential � vs the
longitudinal vortex density n for a box disorder distribution with
d=0.1, and for a displaced power-law distribution with a=0.5, as in
Fig. 9. The solid lines are Eq. �55� with �0 and f0 given in the
caption of Fig. 9. Insets show the linear-linear plots.

FIG. 11. Simplified model with a single strong pin. We use this
model to determine the mobility edge for a given tilt. The model
consists of a uniform pinning lattice with hopping w, periodic
boundary conditions, and one pair of strongly interacting sites with
hopping w0. The strong bond localizes a vortex in it as long as the
tilt is sufficiently weak. The wave function is schematically plotted,
showing that its decay is asymmetric. Strong enough tilt will pre-
vent the wave function from decaying on its right side, signaling a
delocalization transition. This problem with non-hard-core vortices
was considered in Ref. 10.
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H = − �
i�0

w�bi
†bi+1e−h + bi+1

† bie
h� − w0�b0

†b1e−h + b1
†b0eh� .

�56�

The strong bond can localize a single vortex; we will deter-
mine at what tilt h this state delocalizes.

The eigenfunctions of Hamiltonian �56� can be solved ex-
actly. In particular, the localized wave function at the bottom
of the band reads, up to normalization,

��� = ��
n�0

e�L�n−1/2�bn
† + �

n�0
e−�R�n−1/2�bn

†�0� . �57�

The left and right decay coefficients �L and �R are given by

�Ra = ln
w0

w
− h ,

�La = ln
w0

w
+ h , �58�

where a is the lattice constant.
A localized solution of the form �57� can only exist as

long as both �R and �L are positive; otherwise we cannot
accommodate the periodic boundary conditions �as the sys-
tem is a ring�. Hence, the threshold tilt is given by the con-
dition that �R=0 or

hc = ln
w0

w
. �59�

2. Generalization for the random-hopping model

Let us now generalize this result to the case of random
hopping. At every stage of the RG we assume that the stron-
gest bond localizes a vortex, with energy E=�=�0e−�. If we
assume that all other bonds are the same, the problem re-
duces to the localizing bond problem above. However, we
need a generalized condition that takes into account the ran-
domness of the weak bonds. In this case the natural gener-
alization of condition �59� would be

heff
c = ln

w0

w
= ln

�

w
= � + �0, �60�

where the last equality is due to Eq. �46�. The reason for
writing heff is to remind ourselves that the tilt h we consider
in this section is the renormalized h. In the next section we
connect the results derived above with the bare parameters of
the vortex-pinning problem.

So far Eq. �60� is just a physically motivated guess. There
are, however, several more rigorous ways to derive it. The
most straightforward proof is obtained via perturbation
theory. Consider the Hamiltonian �31�, and assume that cou-
pling w0 is by far the strongest in the chain. From Eq. �34�
we know what the zeroth order solution for the wave func-
tion is

�− � =
1
�2

�e−h/2b0
† + eh/2b1

†��0� . �61�

From perturbation theory, we can easily see that the wave
function at site �m�, to lowest nonvanishing order in the wi’s,
reads �assume m�0�

�m�− � � ��
i=2

m �i�wie
hbi

†bi−1�i − 1�
w0

 �2�w1ehb2
†b1�− �

w0

=
eh/2

�2
�
i=1

m � ehwi

w0
m−1

. �62�

By requiring that the product at the end of Eq. �62� remains
finite as m→�, we obtain condition �60�. Another derivation
is supplied in Appendix B.

3. Critical tilt and field

As explained in Sec. IV above, the RSRG eliminates the
strongest hoppings in the Hamiltonian �7� and gradually
populates localized vortex states, until the energy scale of the
renormalized Hamiltonian reaches the chemical potential

� = max
i

�w̃i� = − � ,

where the tilde indicates that the maximum is evaluated over
the set of remaining �and renormalized� bond strengths. The
chemical potential � in this case is a tuning parameter that
controls the vortex filling factor of the lattice, and hence the
longitudinal vortex density. In terms of the RG variables �
=�0e−� and, therefore, we can define

�� = ln
�0

− �
. �63�

From the RG procedure, and in particular from Eq. �47�, we
know that

h̄eff � h0��� + �0�2/f0, �64�

where �0 and f0 were defined in Eqs. �46� and �49�, respec-
tively, and h0 is the unrenormalized tilt per lattice site.

In order to find a relationship between the mobility edge
of the vortex-hopping problem and the unrenormalized tilt h,
we substitute the relation heff

c =hc���+�0�2 / f0 into Eq. �60�
and obtain

hc =
f0

�� + �0
. �65�

The physical quantity in the vortex-pinning problem that the
parameters � and �� determine is the vortex density n. As a
function of ��, we showed in Sec. V that

n =
1

2
−

f0

2��� + �0�2

and, therefore, the connection between the critical tilt and the
longitudinal field is
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hc = �f0�1 − 2n� . �66�

This is the main result of this section. At a given field n, as
we increase the bare tilt, when the tilt reaches hc, vortices get
delocalized and transverse flux ensues. The critical tilt van-
ishes as n→0.5, i.e., as vortex states fill the lattice up to the
middle of the band. This is since the localization length of
the tilt-free vortex states diverges as the chemical potential
approaches zero. We demonstrate the validity of Eq. �66�
using the numerical real-space RG in Fig. 12. Note that the
RSRG approach is most accurate near the middle of the
band, where n�0.5, in the region where the density of states
diverges as in Eq. �50�, also see Sec. VII.

4. Vortex localization length

Another quantity of interest is the vortex localization
length. According to Ref. 4, this length �� is defined as the
decay distance of the ket describing the least localized vortex
in the tilt direction. From Eq. �58� and its generalization

according to Eq. �60� we see that �̃�= 1
�R

� 1
ln �/w−heff

, where
the tilde indicates that the length is a renormalized length,
and not bare length. It follows that

�̃� =
hc

�� + �0

1

hc − h
. �67�

To convert the renormalized length to physical length, we
need to divide by the fraction of empty pinning sites, given
by Eq. �49�. In terms of physical �bare� length scales, the
localization length is

�� =
1

hc − h
. �68�

B. Non-Hermitian spectral formula

A formula in Refs. 11 and 12 �see also Ref. 9� relates the
imaginary part of the eigenenergies of delocalized states with
the spectrum of the Hermitian-hopping problem, in the ab-
sence of a tilt. This connection, along with our detailed
knowledge of the random-singlet phase, allows us to probe
even the delocalized states, even though the RSRG does not
strictly apply for these states. This remarkable state of affairs
stems from the analytic properties for a next-neighbor hop-
ping problem.

The non-Hermitian spectral formula is discussed exten-
sively in Refs. 11 and 12, but we quote it here for complete-
ness:

�
i=1

N

�E − �i� = 2	cosh�hN� − 1
�
i=1

N

�− wi� , �69�

where E is an eigenvalue of the non-Hermitian vortex-
hopping problem with tilt h per site. There are a total of N
sites arranged in a ring. The �i’s are the eigenvalues of the
zero-tilt Hermitian problem. This is a complex equation, and
we will use it primarily to find a relation between the imagi-
nary part of E and the excess tilt h−hc. In principle, we can
use the above formula to find all eigenvalues of the non-
Hermitian problem, since we know the spectrum of the zero-
tilt problem from the RSRG. This strategy can be imple-
mented numerically.

A particularly useful form of the non-Hermitian spectral
formula follows. Let us assume that N and Nh are large, and
take the logarithm of Eq. �69�. We obtain

�
i=1

N

ln�E − �i� = N�h� + �
i=1

N

ln�wi� + i�N . �70�

In Appendix B we show how the RSRG result �60� can be
deduced from the discrete non-Hermitian spectral formula.
There it is also shown that we can, in fact, apply the RSRG
directly to formula �70�. The advantage of doing so is that in
advanced stages of the RSRG the distribution of wi is known
from the fixed point solution �45�.

An important formulation of Eq. �70� is obtained by tak-
ing its real part

�
i=1

N
1

2
ln	�Re E − �i�2 + �Im E�2
 = N�h� + �

i=1

N

ln�wi� .

�71�

Equation �71� specifies a curve in the complex E plane on
which the eigenvalues of the vortex-hopping problem lie. In
the absence of the imaginary part of this equation it is im-
possible to determine the location of individual eigenvalues.
But if we are interested in the shape of the curve, �71� is all
that is necessary. In the following we will make use of the
above formulas in the context of the random-hopping prob-

FIG. 12. Critical tilt hc vs longitudinal vortex density n for the
box distribution �top� and power-law distribution �bottom� from
Fig. 9. The dots are the result of the numerical implementation of
the RG, where the critical tilt is the sum of � divided by the full
�bare� length of the chain. The solid line is a plot of Eq. �66�.
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lem to obtain analytical expressions that describe the depin-
ning transition and the spectrum of the delocalized states.

C. Angle of approach at the mobility edge

An interesting quantity which enters the critical properties
of the depinning transition is the angle of approach of the
delocalized branch of the spectrum relative to the real axis,
as shown in Fig 13. This quantity is related to the current of
delocalized “bosons” �i.e., the number of tilted vortices�, as
is discussed in the next section.

The calculation of the angle of approach is somewhat
subtle, and we refer to Fig. 13�b� to aid the discussion. The
figure shows the line on which the spectrum lies when the tilt
is h+dh in bold. The dashed bold lines indicate the line of
spectrum for the lower tilt h. The angle of approach is given
by the ratio of the segments: tan �=AB /AC.

We first determine the vertical distance between points A
and B in the figure. For this purpose we differentiate the real
part of the non-Hermitian spectral formula �71� with respect
to Im E while keeping Re E constant. To avoid confusion we
use a representation in terms of differences, taking the dif-
ference between the expression with Im E=c and Im E=c
+de. Upon passing to a continuum representation and intro-
ducing a density of states g���, we obtain

�
−�0

�0

d�g���
c · de

�Re E − �i�2 + c2 = dh . �72�

In the limit of dh→0, the integrand on the left is nothing but
g���de���Re E−��, and we obtain �where we drop the Re sign�
�g�E�de=dh and hence find that AB in Fig. 13�b� is

de = dh

�E�ln3 �I

�E�
�f0

, �73�

where g�E� is taken from Eq. �50�. In Eq. �73� E designates
the energy of the mobility edge, so we substitute

E = �m�h� .

The second part of the calculation focuses on AC. This is
the distance the mobility edge travels as the tilt changes from
h to h+dh. But from Eq. �65� we can find this quantity
directly:

dh

d�m
=

f0

������ + �0�2 =
f0

��m�ln2 �I

���

. �74�

The angle of approach is now readily found:

tan � =
de

d�m
=

dh

d�m

de

dh
=

� + �0

�
=

1

�
ln

�I

��m�
. �75�

Again it is a universal form, which depends on the initial
distribution only through a single parameter �I. Note that as
the tilt h approaches zero, and the mobility edge approaches
the “middle of the band” �i.e., �m→0�, the angle � ap-
proaches � /2.

D. Vortex current near the mobility edge

The imaginary vortex current near the onset is in general
given by Eq. �A4� in Appendix A

Jtotal = 2
1

L
�
kn

Re
�En

�h
=

1

�
�Im E� − Im E�m

� , �76�

where L is the number of sites in the lattice. In particular, we
can apply this formula to the random-hopping problem. In
Eq. �75� the angle of approach near the delocalization tran-
sition was found �also see Fig. 13�:

d Im E

d�
= tan � =

1

�
ln

�I

��m�
,

where we define � as

� = Re E ,

and �m is the chemical potential at the mobility edge. Now,
near the onset of transverse flux penetration we can write

Jtotal =
1

�
�Im E� − Im E�m

� �
1

�
�� − �m� tan �

=
1

�2 ln
�I

��m�
�� − �m� . �77�

This result can also be expressed in terms of the difference
between the longitudinal vortex density and its critical value.
The number of extra vortices per length is just n−nc. There-
fore the transverse vortex density, i.e., the imaginary “boson”
current, is also

FIG. 13. �a� Typical spectrum of the random vortex-hopping
Hamiltonian with nonzero tilt. The energy eigenvalues lie on the
bold lines. Localized states lie on the real axis, while delocalized
states have an imaginary component. �0 is the strongest bond in the
bare Hamiltonian, and is of the order of �I, which is the parameter
used to define �, the logarithmic energy scale. � is the angle of
approach of the complex branch of the spectrum, and is a critical
property of the depinning transition. �b� To calculate � we concen-
trate on the wedge at the mobility edge. The bold line is the spec-
trum at tilt h+dh and the dashed is the complex spectrum at tilt h.
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Jtotal �
1

L
Im

��

�k
�n − nc� � �n − nc�

tan �

�g��m�
. �78�

Close to nc, we may assume that the real parts of the energy
of eigenstates near the mobility edge do not change as they
undergo the delocalization transition. Therefore we can use
Eq. �50� for the DOS. Upon combining Eq. �50� with Eqs.
�55�, �65�, and �66� we can write result �78� in terms of the
longitudinal vortex density only:

Jtotal � �n − nc�
�If0

�2

1

�1 − 2n�2e−�f0/�1−2n� �79�

or in terms of the tilt only:

Jtotal � �h − hc�
�If0

2

�2

1

h3e−f0/h. �80�

Equations �79� and �80� are the main results of this section.
One can actually use the above reasoning to obtain not

only the total current, but the current of individual states near
the mobility edge. Consider the state En which can be asso-
ciated with a wave vector kn. As we change k=kn to kn+ 2�

L ,
we move from the eigenvalue En to En+1. Thus

Re�dE� = �n+1 − �n �
2

Lg���
, �81�

where we make use of Eq. �50�, and again set �=Re�E�. The
factor 2 in the numerator of Eq. �A3� is due to the real
spectrum splitting into two branches, and we choose a con-
vention in which both branches of the spectrum contribute to
the DOS. Now we can also substitute dk= 2�

L , and we obtain
for the current of this state

Jn =
1

L
Re

�En

�h
=

1

L
Im

�E

�k
�

2

Lg���
1

2�
tan � =

tan �

L�g���
,

�82�

where we used tan �= d Im E
d� . The result �82� can be written in

terms of the longitudinal vortex density n instead of in terms
of �:

Jn �
f0�I

L�2

1

�1 − 2n�2e−�f0/�1−2n�. �83�

Equation �82� can also be expressed in terms of the tilt h,
using Eq. �66�:

Jn �
f0

3�I

L�2

1

h4e−f0/h. �84�

VII. EXACT DIAGONALIZATION
OF FINITE SYSTEMS

In this section we analyze the free-fermion Hamiltonian
�13� by exact numerical diagonalization of finite-size sys-
tems with up to N=4000 lattice sites. While this study is
mostly focused on the case of random hopping, we also
present some results for on-site disorder. We employ periodic
boundary conditions in order to model qualitatively a realis-

tic superconducting slab where vortices can enter and exit at
the edges. Note that for open boundary conditions �i.e., zero
hopping matrix elements at the edges�, the magnetic field tilt
could be gauged away and would not induce any transverse
vortex density. Since all quantities are random, we average
over a finite number of disorder realizations NR=20¯100.
Unless indicated otherwise, the random-hopping matrix ele-
ments wi are drawn from a flat distribution in 	c ,c+0.5
,
where the lower cutoff c=0.2 is used to prevent singular
couplings close to zero, which would lead to almost decou-
pled subsystems. For diagonal disorder, we use on-site ener-
gies �i which are evenly distributed in 	−0.5,0.5
.

We first study the case of vanishing tilt h=0, in order to
illustrate the qualitatively different physics of bond and on-
site disorder. For bond disorder, we have calculated the den-
sity of states from the real part of the single-particle spec-
trum, averaging over NR=50 realizations of the disorder. The
results are shown in Fig. 14, where it is evident that the DOS
diverges at the center of the band, as predicted by the RSRG.
We obtain a good fit to the theoretical result in Eq. �50�.

A similar behavior is obtained for the localization length
�, which we define as

� = �
i,j=1

L

��i�2�� j�2dc�i, j� , �85�

where

dc�i, j� =
L

�
sin���i − j�

L
 �86�

is the chord distance on the ring and �i is the wave function
at site i of the single-particle state under consideration. Re-
sults are shown in Fig. 15. For random hopping we find that
the localization length diverges in the middle of the band
according to

FIG. 14. �Color online� Density of states of the random-hopping
problem with zero tilt for 2000 lattice sites, averaged over 50 dis-
order realizations. The hopping parameters wi are equally distrib-
uted in 	0.2, 0.7
. At low energies, good agreement is obtained with
the analytic RSRG result Eq. �50�.
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� = l �
1

f0
ln2 �I

���
�87�

as predicted by the RSRG 	Eq. �48�
. In particular, there is
always a vortex state at zero energy which is delocalized
across the whole system. On the other hand, for on-site dis-
order � clearly stays finite, as shown in the right graph of
Fig. 15. As a result, for bond disorder an arbitrarily small but
finite tilt h leads to extended states at the center of the band,
in contrast to the case of on-site disorder where this only
happens above a critical tilt h�hc.

4 �Note that the localiza-
tion length discussed here is the distance between the two
pinning sites that share a vortex, as opposed to �� of Sec.
VI A, which describes the wondering of the vortex away
from the pinning sites due to the tilt.�

We now present results for finite tilt h�0. In this case the
Hamiltonian is non-Hermitian, with complex eigenvalues
and left/right eigenstates which are no longer equal. In Fig.
16 we show numerical results for the spectrum of the
random-hopping problem. For small tilt almost all states are
localized and the corresponding eigenenergies real. As the
tilt increases, the two mobility edges ±�c move towards the

band edges and define a growing region of extended states.
In Fig. 17, the dependence of �c on the tilt is shown. The
rapid vanishing of �c at small h is consistent with Eq. �55�
using Eq. �66� �two fits are shown�, although a quantitative
comparison is difficult due to the finite system size.

At finite tilt, the most interesting physical quantity for the
vortex problem is the transverse flux, corresponding to the

FIG. 15. �Color online� Top: localization length of the random-
hopping problem with zero tilt for different system sizes L, aver-
aged over 50 disorder realizations. As in Fig. 14, the hopping matrix
elements wi are equally distributed in 	0.2, 0.7
. The low-energy
behavior agrees very well with the result �� 1

f0
ln2��I / ���� predicted

by the RSRG. Bottom: localization length for on-site disorder with
site energies �i equally distributed in 	−0.5,0.5
, averaged over 10
realizations. ���� clearly stays finite as �→0.

FIG. 16. �Color online� Spectrum of single-particle states for
different values of the tilt, with hopping disorder as in Fig. 14, L
=2000 lattice sites and averaging over 100 disorder realizations, on
a linear scale �top� and in a lin-log plot �bottom�.

FIG. 17. �Color online� Mobility edge vs tilt for different values
of the tilt, with hopping disorder as in Fig. 14, L=2000 lattice sites,
and averaging over 100 disorder realizations.
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imaginary current J. Following Eq. �14�, we obtain the cur-
rent as the derivative of the ground-state energy Eg with
respect to tilt

J = �− i�
1

L

dE

dh
. �88�

The resulting current for hopping disorder, as a function of
particle �vortex� density n and tilt h, is shown in Fig. 18.
Clearly, for weak tilt and few vortices, the current vanishes
since the mobility edge is close to the center of the band and
all the occupied states are localized. This is a manifestation
of the transverse Meissner effect: In the presence of disorder
due to columnar pins, a weak transverse magnetic field does
not induce a transverse magnetic flux, because the flux lines
are pinned by the defects.3 With increasing filling and tilt, a
well-defined transition to finite current occurs when the mo-
bility edge �c coincides with the vortex chemical potential
�. This is shown in more detail in Fig. 19, where the current
is given as a function of the tilt for quarter filling n=0.25.
Apart from finite-size rounding of the transition, the onset of
the current is linear in h, consistent with the theoretical pre-
diction in Eq. �80�.

VIII. SUMMARY

In this paper we studied the physics of interacting vortices
in a two-dimensional type-II superconductor with parallel
random columnar defects in the plane. Our analysis is based
on mapping the system onto a �1+1�-dimensional ensemble
of hard-core bosons with on-site or hopping disorder. The
equivalence of hard-core bosons and fermions in one spatial
dimension allowed us to focus on an effectively noninteract-
ing, but disordered, many-fermion system for the special
case of Luttinger liquid parameter g=1. As a qualitative

benchmark, we considered the exactly solvable Lloyd model
with on-site disorder where we obtained analytic predictions
for the critical tilt and the transverse magnetic flux above the
critical tilt. We then studied extensively the case of general
random hopping, using the real-space renormalization group
�RSRG� technique, which we generalized to the case of finite
tilt. The RSRG allowed us to completely describe the local-
ized phase and to extract physical quantities such as the den-
sity of states or the mobility edge as a function of tilt. With
the help of a non-Hermitian spectral formula we were able to
extend the RSRG results to the delocalized states, and to
calculate the onset of transverse magnetic flux close to the
breakdown of the transverse Meissner effect, which is the
most relevant experimental observable. Finally, we have

FIG. 18. �Color online� Imagi-
nary current for random hopping
distributed as in Fig. 14, as a func-
tion of tilt h and vortex density n.
Results are given for L=1000
sites, with a disorder average per-
formed over 20 realizations.

FIG. 19. �Color online� Onset of imaginary current �i.e., trans-
verse magnetic flux� as a function of tilt, for random hopping as in
Fig. 14 and vortex density n=0.25. Data are averaged over 20 re-
alizations of disorder. Apart from finite-size rounding the onset is
linear, as predicted by Eq. �80�.
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compared our analytic predictions to numerics on finite sys-
tems which we diagonalized exactly. We found good agree-
ment with the RSRG results, although the numerics indicates
that the universal regime is only accessible for very large
system sizes.

Our results seem to indicate that scaling pictures formerly
held regarding the case of uniform pins at a random separa-
tion are not valid near critical tilting, particularly, we find
B�� �H�−H�

c �� in 1+1 dimensions, but with �=1 rather
than the expected �=1/2 �see Secs. I and VI D�. We hope
that our results will encourage further experimental and the-
oretical research on vortex pinning, both to verify our pre-
dictions, and to explore how strong randomness physics may
appear in situations not touched upon here.
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APPENDIX A: A GENERAL FORMULA
FOR THE TRANSVERSE VORTEX DENSITY

NEAR THE MOBILITY EDGE

If we increase the magnetic field above the critical field,
some vortices are delocalized, and a transverse vortex den-
sity appears. The transverse vortex density �imaginary cur-
rent� for a single vortex state is given by

Jn =
1

L
Re

�En

�h
. �A1�

Following Refs. 11 and 12, we write the eigenvalues of the
random-hopping problem as

�n�h� = E�h + ikn� . �A2�

The function E�h+ ik� is analytic and therefore obeys the
Cauchy-Riemann equations. In particular,

Re
�E

�h
= Im

�E

�k
. �A3�

From Eq. �A3� we can get a general result for the total cur-
rent

Jtotal = 2
1

L
�
kn

Re
�En

�h
→ 2�

kmin

kmax dk

2�
Im

��

�k

=
1

�
�Im Ekmax

− Im Ekmin
� =

1

�
�Im E� − Im E�m

� .

�A4�

From Eq. �A4� we can immediately conclude, for instance,
that closed bubbles of tilted states do not contribute to the

total current. The factor of 2 accounts for the two branches of
the spectrum.

APPENDIX B: THE RSRG AND CRITICAL TILT
FROM THE DISCRETE NON-HERMITIAN

SPECTRAL FORMULA

The discrete non-Hermitian formula allows an alternative
formulation of the real-space RG, and thus gives further sup-
port to the results obtained in Sec. VI. We will use the real
part of the non-Hermitian spectral formula �70�:

�
i=1

N
1

2
ln	�Re E − �i�2 + �Im E�2
 = N�h� + �

i=1

N

ln�wi� .

�B1�

Because of particle-hole symmetry, we can also write

�
i=1

N/2
1

2
�ln	�Re E − �i�2 + �Im E�2
 + ln	�Re E + �i�2 + �Im E�2
�

= N�h� + �
i=1

N

ln�wi� . �B2�

The real-space RG is obtained as follows. Assuming
strong disorder, as we did in Sec. IV, we know that the ei-
genvalues ±�1 are associated with the strongest bond of the
chain n1:

�1 � wn1
. �B3�

Let us choose an energy �E � ��1, and assume that it belongs
to a localized state. We can now write

�
i=2

N/2

ln�E2 − �i
2� = N�h� + �

i=1

N

ln�wi� − ln �i
2. �B4�

However, we can rearrange terms on the right-hand side as
follows:

ln wn1−1 + ln wn1
+ ln wn1+1 − ln �i

2

� ln�wn1−1wn1+1

wn1

 = ln wn1−1,n1+2
eff , �B5�

where wn1−1,n1+2
eff is just the effective hopping according to the

real-space RG as found in Eq. �39�. We now have the renor-
malized chain with the two sites n1, n1+1 removed, and we
can write the spectral formula as

�
i=2

N/2

ln�E2 − �i
2� = N�h� + �

i=1

N−2

ln�w̃i� − ln �i
2, �B6�

where the w̃i are the hoppings of the renormalized chain.
This process can now be repeated—starting with the next
eigenvalue �2 of the largest renormalized bond max�w̃i�
= w̃n2

, the bond n2 can be renormalized in the same way as
written above. Thus we recover the real-space RG—we can
eliminate the high energy states and write the spectral for-
mula in terms of the new couplings and the reduced length.
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Note that the tilt part remains constant in the process. This
invariance corresponds to the second condition in Eq. �39�,
which can be written as

�
i

hi = �
ĩ

h̃ĩ. �B7�

We can repeat this process until we reach energy eigenvalues
of the same order as E.

We can also rederive the critical tilt result �60�. We as-
sume that when close to the critical tilt, or to the mobility
edge, the eigenvalue E, which we assume is �m �E � �m+1,
is as far from �m, �m+1 as it can be 	such that the LHS of Eq.
�B6� is maximized
, and therefore

1

N
�
i�m

ln��E� − �i� � 1, �B8�

where i�m indicates summing over i’s in the vicinity of m
and m+1. Equation �B8� is justified by the above assumption
and our understanding that in the random singlet phase,
when renormalizing a bond with energy E, there is negligible
probability to find another bond of similar strength next to it.
With Eq. �B8�, we can now write the spectral formula assum-
ing we can carry out the RG procedure above until we arrive
at the energy scale �E�. Also, since we ignore eigenvalues of

the order of �E�, all remaining eigenvalues are much smaller
than �E�. Therefore we can write

�
i=1

Ñ/2

ln�E2� � N�h� + �
i=1

Ñ

ln�w̃i� , �B9�

where Ñ is the length of the chain renormalized to energy
scale �E�. This, in turn, can be written as

�
i=1

Ñ

ln
�E�
w̃i

= Ñ��E + �0� � Nhc, �B10�

where we used Eq. �46� to express the average of the loga-
rithmic couplings in terms of �E. We have now made the
replacement �h � →hc the critical tilt. Before, we assumed that
the tilt is as close to critical as possible, and therefore the
left-hand side of Eq. �B10� is the maximum possible value
for N �h�, without letting E have an imaginary part. To get
�h � hc we only need to allow E to come arbitrarily close to
�m. Thus we conclude

hc =
Ñ��E + �0�

N
=

f0

�� + �0
, �B11�

where we used Eq. �49� for the effective density of the renor-
malized chain. This concludes an independent demonstration
of Eq. �60�.
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