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The transfer of hydride, proton, or H atom between substrate and cofactor in enzymes has been
extensively studied for many systems, both experimentally and computationally. A simple equation
for the reaction rate, an analog of an equation obtained earlier for electron transfer rates, is obtained,
but now containing an approximate analytic expression for the bond rupture-bond forming feature
of these H transfers. A “symmetrization,” of the potential energy surfaces is again introduced �R. A.
Marcus, J. Chem. Phys. 43, 679 �1965�; J. Phys. Chem. 72, 891 �1968��, together with Gaussian
fluctuations of the remaining coordinates of the enzyme and solution needed for reaching the
transition state. Combining the two expressions for the changes in the difference of the two bond
lengths of the substrate-cofactor subsystem and in the fluctuation coordinates of the protein leading
to the transition state, an expression is obtained for the free energy barrier. To this end a
two-dimensional reaction space �m ,n� is used that contains the relative coordinates of the H in the
reactants, the heavy atoms to which it is bonded, and the protein/solution reorganization coordinate,
all leading to the transition state. The resulting expression may serve to characterize in terms of
specific parameters �two “reorganization” terms, thermodynamics, and work terms�, experimental
and computational data for different enzymes, and different cofactor-substrate systems. A related
characterization was used for electron transfers. To isolate these factors from nuclear tunneling,
when the H-tunneling effect is large, use of deuterium and tritium transfers is of course helpful,
although tunneling has frequently and understandably dominated the discussions. A functional form
is suggested for the dependence of the deuterium kinetic isotope effect �KIE� on �G° and a different
form for the 13C KIE. Pressure effects on deuterium and 13C KIEs are also discussed. Although
formulated for a one-step transfer of a light particle in an enzyme, the results would also apply to
single-step transfers of other atoms and groups in enzymes and in solution.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2372496�

I. INTRODUCTION

Enzymatic catalysis of hydride, proton, and H atom
transfer has been the subject of many developments, past and
recent, experimental and theoretical �e.g., articles in Philos.
Trans. R. Soc. London, Ser. B. 361 �2006� and Chem. Rev.
106 �2006��. In the theoretical studies there are extensive
computations, based frequently on known enzyme structures,
e.g., for recent reviews.1,2 The time scale for enzymatic H
transfers is usually of the order of milliseconds, whereas cur-
rent numerical computations utilize classical mechanical tra-
jectories of the atoms lasting about 10 ns. So commonly
some other form of theory, typically transition state theory, is
used to calculate the reaction rate. The discussion in this
article is intended to apply both to reactions in enzymes and
to reactions in solution when, in the latter case, one converts
the usual second-order rate constant to a first-order one for
the “collision complex.” While couched in terms of a single
step H transfer, the formalism is intended to apply also to the
single-step transfer of other atoms and groups, and can be
extended to multiple steps.

Among the factors contributing to the reaction rate in a

bound substrate-cofactor enzyme complex are �1� the work
required for the reactants in the bound complex to approach
each other closely enough to optimize the H-transfer rate, �2�
an additional energy barrier accompanying the bond rupture
and bond formation in the substrate-cofactor complex, and
�3� fluctuations in the structure of the enzyme and in solution
�in electron transfers called “reorganization”� so as to reach
the transition state �TS� for the reaction. The electronic po-
larization at each point in the enzyme influences the energy
barrier and is �or should be� treated as a “fast” variable, e.g.,
as in Ref. 3 for electron transfer. In addition, there is fre-
quently �4� a nuclear tunneling of the light atom, H•, H−, or
H+, so enhancing a H/D kinetic isotope effect �KIE� on the
rate of the transfer. This KIE typically varies between 3 and
100, depending on the system, and is superimposed on a
much larger variation in the ratio, enzymatic rate/rate in so-
lution, that may vary from �106 to 1017.

The question we address in the present paper is whether
an equation can be designed for these ion and atom transfer
reactions that is an analog of a widely used expression given
in Ref. 4 and references cited therein for the rates of electron
transfer reactions. In the latter field, terms such as “outer
reorganization energy” �o, inner reorganization energy �i,
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standard free energy of reaction �G°, work terms wr and wp,
and electronic coupling matrix element V are standard termi-
nologies. These properties are deduced from the experimen-
tal data, or from calculations, or from both. We explore
whether some analogous framework can be formulated for
H•, H+, and H− transfers. One result is given in Eqs. �10�,
�18�, and �22�. Postulated functional forms for the free en-
ergy dependence of deuterium and 13C kinetic isotope effects
are given in Eqs. �36�–�39�.

Two of the principal approaches used in numerical com-
putations of rates of the enzymatic transfer of a H•, H+, or H−

between substrate and cofactor have the following quite dif-
ferent origins, with subsequent refinements.

�1� In a reaction between a donor DH and an acceptor A,
DH+A→D+HA, where H can be a H•, H+, or H−, the
difference of bond lengths of the dissociating �DH�
bond and the newly forming �HA� bond is used as a
reaction coordinate, e.g., by Gao et al.1 The free energy
of formation of the transition state from the reactants is
calculated and, with it, the reaction rate. A nuclear tun-
neling effect on the rate is added.

�2� Instead, the vertical energy difference �E of the two
lowest diabatic empirical valence bond �EVB� struc-
tures �e.g., DH, A and D, HA� is used as a reaction
coordinate, e.g., by Aqvist and Warshel5 and Billeter
et al.6 The free energy of an ensemble of configurations
for each of the EVB structures is calculated as a func-
tion of �E. When �E=0 the system is taken to be in
the transition state. For each �E this ensemble lies on
an N−1 dimensional hypersurface in an N-dimensional
coordinate space. �Because of momentum conservation,
and an application of an approximate Franck-Condon
principle to H transfers, the same result is obtained in
phase space.� �E was used earlier as a reaction coordi-
nate for electron transfer �ET� reactions by Marcus7 and
by King and Warshel.8 Frequently the V defined below
is included in determining the energy of the TS in the
�E-based ET calculation, but the difference in the po-
sition of TS is usually small.5

If V denotes the matrix element coupling the two lowest
EVB diabatic electronic states, the energy of the TS is re-
duced in magnitude by the “resonance energy” V of the two
structures, as in Fig. 1. When this EVB approach was used9

to treat experiments in enzymes, the value of V was adjusted
so that the free energy barrier �G* for the corresponding
reaction rate in solution agreed with the experimental value.
This result for V was then used to calculate the �G† for the
rate of the enzyme catalyzed reaction. Tunneling corrections
were again introduced.

In the EVB approach a reorganization of the system oc-
curs. There are fluctuations in the positions of all the atoms
in the protein so as to reach the transition state, a state in
which the two lowest EVB states have the same energy. On
the other hand, in the bond length difference approach, there
are again fluctuations in the enzyme structure to reach the
TS, but a functional form for any such reorganization is not
explicitly singled out. Yet another approach, based on the
centroid approximation,10,11 has also been used.12

We explore the possibility of unifying the two principal
approaches, with the goal of obtaining an equation for the H
transfer rate constant that contains concepts used in both, and
permits the use of an ab initio potential energy surface rather
than an EVB-type of approximation, if it is available. On the
other hand, EVB yielded very useful pioneering results. A
merit of the EVB approach is that in the numerical calcula-
tions it showed a simple quadratic behavior for the free en-
ergy barrier �G† due to the fluctuations of the protein lead-
ing to the TS �Gaussian fluctuations�. While some simple
quadratic behavior of the protein might be occurring in the
bond length difference formalism, it was not explicitly iden-
tified there. At present, it is not known how much of the
quadratic behavior is due to the two-state EVB model, which
has two distinct charge distributions.

In exploring a “synthesis” of the two approaches, we
first review some relevant aspects of ET theory. Earlier ap-
proximate models of H transfers in solution or in enzymes
include those of Albery,13 Borgis and Hynes,14 Antoniou and
Schwartz,15 Kiefer and Hynes16,17 and Kuznetsov and
Ulstrup,18 in addition to the works already cited.

The present approach is intended to be complementary
to the many extensive and important computations on H and
other transfer reactions in these systems. The article is orga-
nized as follows: an overview of electron transfer theory is
given in Sec. II, and an equation for H+, H−, and H• transfers
is obtained in Sec. III, key equations being Eqs. �10�, �18�,
and �22�. The assumptions are discussed there. The absence
of charge transfer spectra is discussed in Sec. IV, raising the
question of possible observation at high pressures. A second
�E reaction coordinate, commonly used in the EVB-based
solutions, is also discussed there. Nuclear tunneling is treated
in Sec. V, where approximate functional forms are suggested
for the dependence of the deuterium and 13C kinetic isotope
effects on the driving force ��Eqs. �36�–�39��. Concluding
remarks are given in Sec. VI.

II. REVIEW OF ELECTRON TRANSFER THEORY

We recall an equation and concepts used in ET theory,
and then modify them so as to treat H•, H+, or H− transfers,

FIG. 1. Plot of free energy vs reaction coordinate for the reactants and for
the products. The heavy solid lines indicate the curves for the diabatic states,
the adiabatic curves being indicated by the dotted curves. �GR

° , �+�GR
° and

V mentioned in the text are indicated.
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transfers that also contain simultaneous bond breaking and
bond forming. The equation for a “unimolecular” rate con-
stant ket of an electron transfer reaction occurring in a reac-
tion complex between two molecular species is given by
Marcus19 and Marcus and Sutin4 and references cited therein:

ket = Ae−�G*/kT, �1�

where

�G* = wr + �� + �G ° �R��2/4� �2�

and

�G ° �R� = �G ° + wp�R� − wr�R� . �3�

The preexponential factor A depends on the electronic
coupling V of the two reactants. When the reactants are
weakly coupled electronically in the transition state the reac-
tion is nonadiabatic and A is proportional to �V�2. When the
electronic coupling V is instead strong in the TS region
�adiabatic reaction� A is of the order of a vibration frequency.
wr�R� is the work done �electrostatic work, for example� to
bring the two reactants from their equilibrium positions in
the complex to a separation distance R that facilitates the
electron transfer, and wp�R� is the corresponding quantity for
the products, � is the “reorganization energy,” �G° the stan-
dard free energy of the reaction in the bound complex, and
�G° �R� is defined by Eq. �3�. The wr�R� and wp�R� denote
the part of the free energy barrier that is not overcome by a
favorable �G° �R�.

The � and �G° �R� are indicated in Fig. 1 for electron
transfers in terms of the customary free energy parabolas for
reactants and products, symmetrized as in Ref. 19. An ap-
proximate vibrational and dielectric continuum-based equa-
tion for � illustrates features of the reorganization, taken
from Ref. 7,

� = ��e�2� 1

Dop
−

1

Ds
�� 1

2a1
+

1

2a2
−

1

R
� +

1

2	
i

ki��qi�2,

�4�

where �e is the charge transferred. In a weak-overlap reac-
tion usually one electron per successive electron transfer step
is preferred energetically over a single-step multiple electron
transfer, i.e., usually �e=e, the electronic charge. Dop and Ds

are the optical and static dielectric constants of the medium
surrounding the pair of reactants. In the particular form for �
given in Eq. �4� the reactants are treated as spheres of radii
a1 and a2 separated by a center-to-center distance R; ki is the
symmetrized “force constant” of the ith normal mode vibra-
tion of the reactants, symmetrized as in Ref. 19, and �qi is
difference in equilibrium positions of the ith normal mode in
the products and in the reactants. The �1/Dop−1/Ds� in Eq.
�4� arises because of the difficulty of the slow polarization
dielectric response of the solvent to satisfy at the same time
the two very different spatial charge distributions in the TS,
that of the reactants and that of the products.20

In a refinement of these equations, �1/Dop−1/Ds� is re-
placed by an expression that contains the dielectric disper-
sion of the medium, introducing thereby a dynamical behav-
ior of the surrounding solvent into more than just one fast

�Dop� and one slow �Ds� dielectric response, e.g., in Ref. 21.
Other geometries have also been treated, such as an ellipsoid
instead of a pair of spheres. Molecular based statistical me-
chanical expressions have also been used instead of a con-
tinuum expression, e.g., in Refs. 7 and 22. Quantum expres-
sions for the high frequency normal mode vibrations of the
reactants have also been introduced, e.g, by Kestner et al.23

The latter can be particularly important in the “inverted re-
gion” �the region where ��−�GR

° �. Molecular-based nu-
merical computations of the reorganization energy � and of
�G° have been made, e.g., by Warshel et al.,24 Kuharski
et al.,25 and King and Warshel.8

The solid curves in Fig. 1 illustrate a key feature of the
transition state for weak-overlap electron transfer reactions:
A consequence of the Franck-Condon principle is that in the
TS there is no change of atomic positions and momenta dur-
ing the ET. Hence, energy is conserved during the electron
transfer in the TS, namely, the latter occurs at coordinates
defining the intersection of reactants’ and products’ potential
energy surfaces in many-dimensional coordinate space. The
latter was then expressed in terms of free energy plots, such
as in Fig. 1, using statistical mechanics, as Refs. 7 and 19.
The electronic polarization of the environment is again a
“fast variable,” leading, in a continuum description, to the
presence of the Dop in Eq. �4� instead of the unity that would
occur in the absence of a correlative shielding effect of the
fast �electronic� polarization. The latter thus has a dramatic
effect on the reaction rate.

III. H TRANSFERS

In considering the H+, H−, or H• transfer reactions we
first neglect nuclear tunneling, and later consider tunneling in
Sec. V. For a nonadiabatic electron transfer the quantum me-
chanical “splitting” 2V of the two lowest adiabatic potential
energy surfaces at the TS for the reacting species and their
surroundings is very small, and so the “intersection” of the
solid lines in Fig. 1 is really an avoided crossing with a small
splitting 2V. However, for the H transfer systems, this 2V in
Fig. 1 is frequently large, perhaps �1 eV instead of
�0.02 eV, because chemical bonds are breaking and form-
ing. So we can no longer invoke an energy equality to define
the TS in Fig 1.

The DHA reacting pair is defined as consisting of the
atoms directly or closely involved in the covalent bond
breaking-bond forming reaction, frequently some 50 or so
atoms. The totality of their coordinates is denoted by qDHA.
The remaining system, i.e., the rest of the substrate-cofactor
complex, enzyme, and the surrounding solution, will be ab-
breviated as “protein.” It is denoted throughout by “prot” and
its coordinates by qprot. The division is similar to that used in
QM/MM computations, quantum mechanics for part of DHA
and molecular mechanics for the rest of the system.

To treat these adiabatic H transfers using ab initio or
other high level quantum calculations for the DHA reacting
pair, the vertical energy difference of the two lowest adia-
batic electronic states of the system �E in the many-
dimensional coordinate space can still be a useful coordinate.
The nuclear coordinates of the system are sampled, including
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those of the DHA reacting pair. At each value of �E there is
a thermal ensemble of configurations in the many-
dimensional coordinate space and as in electron transfers it
yields the free energy. This free energy is a function of �E
for each of the two lowest adiabatic states. The free energy
of the lowest adiabatic state reaches a maximum at the TS,
and the vertical energy difference �E of the two lowest adia-
batic states typically reaches a minimum there, instead of
having the nearly zero value that it has in weak-overlap elec-
tron transfers and that it would have in any weak-overlap H
transfer. We denote the �E of the two lowest adiabatic states
by �Etotal. In a different �E coordinate only the protein co-
ordinates are sampled, the coordinates of the DHA reacting
pair being treated separately. We denote this �E by �Eprot.

In EVB computations the free energy of the reacting pair
was a quadratic function of �Etotal

5 and also a quadratic
function of �Eprot.

26 Analogous results in these and other
problems are understood analytically in terms of a cumulant
expansion, e.g., Refs. 12, 22, and 24. Initially, we use �Eprot

as a coordinate and later in Sec. IV extend the analysis to
�Etotal.

The potential energy term U in the Schrödinger equation
for the electronic state of the reacting pair can be written as

U = 	
i−j

eiej

rij
+ 	

i

ei�i, �5�

where the ei denote the charges of the electrons and the nu-
clei in the reactants, and �i is the potential acting on each ei

due to all charges and dipoles in the enzyme outside the
reacting pair; �i contains any interaction with the electronic
polarization of the region outside the reacting pair.

Upon solving the Schrödinger equation for the reacting
pair for the U in Eq. �5�, the energy of the entire system E
can be written as

E = EDHA�qDHA� + Eprot�qprot,qDHA� , �6�

where EDHA�qDHA� is the part of E that is the electronic en-
ergy of the 50 or so principal atoms in the substrate-cofactor
complex. It varies along the reaction coordinate and is par-
ticularly sensitive to the difference in DH and HA distances.
Eprot�qprot ,qDHA� is the sum of the interaction energy of the
reacting pair �DH,A� with the protein and the interaction of
the protein with itself.

The free energy G associated with �Eprot for any given
qDHA can be written as

G�qDHA,�Eprot� = EDHA�qDHA� − kT ln 
 e−�E−EDHA�/kTd�

� EDHA�qDHA� + Gprot�qDHA,�Eprot� , �7�

where d� is the volume element in the many-dimensional
coordinate space for qprot.

Prior to bond breaking-bond forming, there may be work
wr needed to bring the reacting pair in the bound complex to
some separation distance R to facilitate the subsequent trans-
fer of the H. This wr is the part of the free energy barrier not
reduced by a favorable �EDHA

° nor by a favorable �Gprot
° .

A bond energy-bond order �BEBO� method was intro-
duced by Johnston27 for atom or group transfer reactions. In

this method, sum of the DH and HA bond orders for the H is
assumed to be a constant, unity, during the motion along the
reaction coordinate. In the modified and symmetrized BEBO
approximation given in Ref. 28, we write EDHA�qDHA� as
EDHA�n ,R�, where there is now an averaging over all qDHA

for the given n and R. We have,28 relative to the value of
EDHA�n ,R� at n=0,

EDHA�n,R� = −
�i

4 ln 2
�n ln n + �1 − n�ln�1 − n��

+ n�EDHA
° �R� , �8�

where n is the bond order of the newly forming H-A chemi-
cal bond and �EDHA

° �R� is the electronic energy of reaction
of the bound substrate-cofactor complex at the given R. One
sees in Eq. �8� that at n=1, EDA=�EDHA

° �R�. In the symme-
trization leading to Eq. �8� a term asymmetric in the two
bond energies, a term that vanishes at n=0, 1 /2 and 1, was
presumed to be small and was neglected.28

One can explore fitting Eq. �8� to the computations of
EDHA�n ,R�. Upon finding the local maximum in Eq. �8�,
namely, the n that satisfies

��i/4 ln 2�ln�n/�1 − n�� = �EDHA
° �R� , �9�

one obtains an expression for this contribution EDHA�n ,R� to
the energy barrier for reaction. In the absence of any corre-
lation between n and a protein/solvent reorganization coordi-
nate m, the resulting energy barrier �EDHA

* �R� is given by28

�EDHA
* �R� =

�i

4
+

�EDHA
° �R�

2
+

�EDHA
° �R�
2y

ln cosh y ,

�10�

where �i /4 in Eq. �10� is the mean of the properties of the
two bonds, given in Eq. �8c� of Ref. 28, and y is given by

y = �2�EDHA
° �R�ln 2�/�i. �11�

The �i /4 in Eq. �10� can be obtained by extrapolating or
interpolating this contribution to the energy barrier
�EDHA

* �R�, experimentally or computationally, to its value at
�EDHA

° �R�=0.
We consider next the protein reorganization. The free

energy well for the reactants is harmonic in the vicinity of
latter’s minimum and similarly for products’ well. When H
approaches midway between the heavy atoms �n→1/2�, the
analog of the two very different charge distributions present
in “weak overlap” electron transfers disappears. Accordingly
there can be some deviation from the harmonic behavior, as
in the dashed line in Fig. 1. In Fig. 1 a “rounding off” arose
from a coupling term V. However, now in addition the
rounding off is augmented by the merging of the two charge
distributions, a merging that modifies the protein reorganiza-
tion term when n is in the vicinity of 1 /2.

For simplicity we nevertheless use the quadratic form to
approximate the Gprot�m� in Eq. �7� and use as its reaction
coordinate the m in ET theory. The physical significance of
m is described later. We then have
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�Gprot�m� = m2�o �m � mc� �12�

and for the reverse reaction, starting from the products p,

�Gprot
p �m� = �1 − m�2�o �m � mc� , �13�

where �o is the reorganization energy of the protein and mc is
the m which satisfies the intersection condition

�Gprot�m� = �Gprot
p �m� + �Gprot

° . �14�

Thereby, mc satisfies

�1 − 2m��o = − �Gprot
° . �15�

For symmetry, we replaced m in Refs. 7, 19, and 20 by −m,
so that m in the “normal” region now lies in the interval
�0, 1� instead of �−1,0�. From Eqs. �13� and �14� we have,
for the lowest adiabatic state when m�mc, instead of Eq.
�13�,

�Gprot�m� = �1 − m�2�o + �Gprot
° �m � mc� . �16�

The physical significance of m is that it describes the
state of the protein at that m. For example, if Porient

r �r�
denotes the orientation polarization for reactants’/protein
system in an equilibrium state at any r and Porient

p �r� denotes
that for the products in and equilibrium state, then Porient

�m� �r�,
the orientation polarization in the protein at r for any state m,
is given by

Porient
�m� �r� = �1 − m�Porient

r �r� + mPorient
p �r� . �17�

When the value of m is that for the TS, Porient
�m� �r� is the ori-

entation polarization for the TS. When �G° �prot� is zero,
Porient

�m� �r� in the TS is seen to be the arithmetic mean of its
initial and final equilibrium values. In the TS, Porient

�m� �r� is a
fluctuation from these values.

From Eqs. �15� and �16� one obtains an expression for
the protein reorganization contribution to the free energy bar-
rier to the reaction at the given R:

�Gprot
* = ��o + �Gprot

° �2/4�o, �18�

where

�Gprot
° = �G ° �R� − �EDHA

° �R� �19�

and �G° �R� is given by Eq. �3�.
In an analysis of computational results it is also useful to

have an expression for an energy difference coordinate
�Eprot that describes the protein reorganization. On using the
continuation of Eq. �16� to m�mc we have

�Eprot�m� = �1 − 2m��o + �Gprot
° �m � mc� �20a�

and analogously

�Eprot�m� = − �1 − 2m��o − �Gprot
° �m � mc� . �20b�

These equations relating �Eprot�m� to m neglect the rounding
off mentioned earlier that occurs when n is in the vicinity of
1 /2.

In the approximation leading to Eq. �18�, the assumption
of no rounding off, leads to this being no �n ,m� cross term.
The free energy barrier then contains the sum of an
n-dependent term, m-dependent term, and wr. In the absence
of nuclear tunneling, we then have

krate = Ae−�G*/kT, �21�

where

�G* = wr + �EDHA
* �R� + �Gprot

* �22�

and the last two terms are given by Eqs. �10� and �18�. We
include in the wr�wp� any reorientation or conformational
change of the two reactants �products� and any change of
zero-point energy of the H vibrations �stretching and two
bending vibrations� to reach the TS from the reactants �prod-
ucts�, in the bound complex.

Certain limiting forms of Eq. �22� are immediately ob-
tained.

�a� When both �Gprot
° =0 and �EDHA

° �R�=0 the solutions
of the equations for n and m are n=1/2 and m=1/2.
Then

�GR
* = wr + �/4, �23�

where �=�i+�o, an expression familiar from electron
transfer theory, e.g., as in Ref. 19.

�b� When �EDHA
° �R�→−� then the �EDHA

* �R� term van-
ishes but the �Gprot

* would show an inverted effect if
��Gprot

° /�o��1. However, this effect neglects the
rounding off mentioned earlier. Further, the spacing of
the protonic quantum states of the products is small
compared with that of the electronic states of the prod-
ucts and there can be expected to be a smaller inverted
effect when reaction into the excited protonic states of
the product HA is included.

�c� When �EDHA
° �R� is small, Eq. �10� can be expanded to

the terms quadratic in the �G° and �EDHA
° �R�, yielding

�G* = wr +
�o + �i

4
+

�G°

2
+ ��Gprot

° 2

4�o
�

+
��EDHA

° �R��2 ln 2

2�i

+ ¯ ��EDHA
° /�i is small� . �24�

The approximations leading to Eqs. �10�, �18�, and �22�
are several fold: �i� Gaussian fluctuations for the protein,
including its interaction with the substrate and cofactor; �ii� a
symmetrized and simplified “BEBO” functional form for the
DHA potential energy as a function of a bond order coordi-
nate n of the newly forming bond; and �iii� neglect of the
�n ,m� cross term in the vicinity of n=1/2. Approximation
�iii� occurred when the effect of collapse of the distinct
charge distributions into one when n=1/2 was neglected. It
will be recalled that it was the two distinct charge distribu-
tions that led to the Dop term in Eq. �4�. This effect of the
merging of the two charge distributions in the vicinity of n
=1/2 does not appear to have been explored in existing high
level quantum chemistry H+, H− transfer calculations, The
change of charge distribution along the coordinate n in the
vicinity of n=1/2 was noted, in a different language, in Ref.
1. A test of approximation �iii� is discussed in Sec. V.

The physical idea of the BEBO approximation is seen in
a symmetric exchange reaction, such as CH3+CH4→CH4

+CH3: The activation energy is roughly 10% of the CH bond
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dissociation energy. That is, the total bond order is roughly
preserved at unity during the reaction. A definition of n has
been given in terms of the deviation r−re from an equilib-
rium bond length re, as in Ref. 29 and as described in Ref.
30,

r − re = − � ln n + const, �25�

where � is a constant. However, when applied to computa-
tions for these reactions, this equation can lead to a serious
error in the vicinity of n=0 or n=1: When n is near unity for
one bond it is near zero for the other, for which strictly
speaking only distances of r=� apply. This problem leads to
minor error in �EDHA�n ,R� in Eq. �8�, since even though
ln n→−� when n→0, n ln n→0. Instead of relating r−re to
n, one can avoid the r=� singularity by expanding about
n=1/2, the most common region for the TS:

r − r1/2 = � ln 2n �26�

so that r=r1/2 when n=1/2, and fit this equation and Eq. �8�
to computational results for EDHA versus r−r1/2. In the fit-
ting, we recall here that since a symmetrized expression is
used, the average of the energy constants Eii of the two
bonds Eii appears in Eq. �8� of Ref. 28. Unless careful pre-
cautions are taken, such as using Eq. �25�, erroneous values
for bond order results can be obtained and invalidate the
comparison of computations with Eq. �8�. We also note that
the presence of work terms must be allowed for in separating
computationally the two contributions wr and EDHA in an
energy profile versus bond length differences.

A key approximation is the separation of the free energy
barrier into the sum of three contributions in Eq. �22�. For
further insight it would be useful to have a comparison of the
KIE experimental data for reactions in solution �in which the
second-order rate constants has been converted to a first or-
der by a collision complex formalism� and the KIE for first-
order rate constant �kcat in the usual enzyme terminology� for
the reaction in the enzyme complex. The KIE affects �EDHA

° ,
and perhaps wr, depending on the origin of the latter. The
KIE is expected to be similar for reactions in enzyme and the
corresponding reaction in solution if the main difference is in
�Gprot

* �R�. A similarity of the KIE results would provide evi-
dence for separation of �Gprot

* �R� from the other two contri-
butions, since �Gprot

* �R� is very different for the two systems.
Nuclear tunneling, not included in Eqs. �10�, �18�, and

�22�, is discussed in Sec. V.

IV. CHARGE TRANSFER SPECTRUM AND �Etotal

In principle, a charge transfer �CT� spectrum is possible,
as seen from Fig. 1. However, if the D-A distance has to
become significantly smaller in order to facilitate a charge
transfer, then the intensity of this CT absorption spectrum
will be small, and indeed such a spectrum does not appear to
have been observed. A vertical transition to the upper curve
in Fig. 1 with its sharply repulsive nature, may spread out the
intensity, while a nonvertical transition may have small in-
tensity because of a poor overlap of the H wave function.

The isotopic results on pressure effects discussed in Ref.
31 suggest that pressure tends to convert � to 	 paths in the

Fig. 2 given later. It would increase the intensity of any CT
spectrum. High pressures have been used for studying other
properties of biological systems, as in Ref. 32 and it would
be interesting to see if such techniques could lead to the
observation of charge transfer spectra in enzymes, or if the
intensity is still too small.

The protein/solvent contribution to a CT spectrum �ver-
tical for these heavier mass coordinates� is obtained by set-
ting m=0 in Eq. �20a�.

h
prot = �o + �Gprot
° . �27�

More generally, we consider a reaction coordinate com-
monly used in EVB computations �Etotal. In this case, the
DHA and protein contributions to the free energy have the
same functional form, approximately quadratic, and then
they can be transformed such that a simple single reaction
coordinate leads to the TS with a quadratic dependence of
the free energy on that �E coordinate.

For example, if one energy “surface” of the reactants has
the form 1

2 �kaq2+kbQ2� and products’ surface is displaced
from it but with the same force constants, 1

2 �ka�q−a�2

+kb�Q−b�2+��, then the energy difference �Etotal
* is kaqa

+kbQb+const. A new coordinate perpendicular to this plane
in �q ,Q� space can be chosen, leading from the bottom of
reactants’ potential energy well to the plane where �Etotal

=0 �the TS� and then to the well of the products. Along this
path, the energy for a system lying on the plane in �q ,Q�
coordinate space for any given �E can be shown to be a
quadratic function of �E. Similar remarks apply when
kaqa

2 /2 and ka�q−a�2 /2 describe free energy curves for the
protein reorganization instead of one-dimensional potential
energy curves.

However, when the two lowest adiabatic states are used
instead of EVB states, the Gprot and EDHA have different
functional forms, a quadratic form for Gprot and a ln cosh
form for EDHA, given by Eqs. �12� and �8�, respectively. For
this reason, we employ a �Etotal that depends on the two
coordinates m and n, rather than only one. We consider,
thereby, the energy difference of the two lowest adiabatic

FIG. 2. Schematic potential energy surface for the reaction AH+B→A
+HB, using mass-weighted coordinates. X denotes the saddle point and the
	 and � paths are indicated. Polar coordinates �R ,�� are introduced, here
and in Fig. 4, to define points and paths �cf. Ref. 31�.
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electronic states, using Eq. �8�. We assume that the sum of
the potential energies for the two lowest adiabatic states is a
constant or at most a linear function of n. �The motivation is
the behavior of a simple two-state adiabatic approximation,
in which the sum of the roots has a very simple form�. The
model would be inadequate when more than two adiabatic
states are involved. Thus, from Eq. �8�, the EDHA of the upper
adiabatic state contains a term +��i /4 ln 2��2 ln n+ �1−n�
ln�1−n��. A consequence is that the vertical energy differ-
ence of the DHA pair at any n, �EDHA�n ,R�, is

�EDHA�n,R� = � �i

2 ln 2
��n ln n + �1 − n�ln�1 − n��

+ n�EDHA�R� − �1 − n��EDHA
p �R� , �28�

where �EDHA�R� and �EDHA
p �R� denote the vertical excita-

tion energies of the reactants �n=0� and of the products
�n=1� at R, respectively. There is also the vertical change in
w, which for the present we write as �w. The energy coor-
dinate �Etotal�n ,m ,R� is then given by

�Etotal�n,m,R� = �Eprot�m� + �EDHA�n,R� + �w , �29�

with �Eprot�m� given by Eq. �20� and �EDHA�n ,R� given by
Eq. �28�. For �w, one might assume it to be a linear function
of m, �w�m ,R�=m�wp+ �1−m��wr, where �wr is the verti-
cal change in wr for the reactants at R and �wp is that for the
products at R.

V. NUCLEAR TUNNELING

The role of nuclear tunneling has been discussed in nu-
merous articles, for example, in Philos. Trans. R. Soc. Lon-
don, Ser. B. 361 �2006� and Chem. Rev. 106 �2006�. The
main focus of the present article until now has been on the
nontunneling aspects of the reaction to see if some relatively
simple expression can serve as a basis for characterizing the
reactions and comparing with the experimental data and with
computations. Such an analysis is facilitated if the tunneling
factor is minimized by using D instead of H, although the
isotope effect plays an important role in understanding the
reaction step. We treat the tunneling in this section, with the
main aim of obtaining approximate simple expressions. For
detailed numerical comparison with the experimental data
current elaborate computational results can be of course in-
valuable.

For a series of related reactants nuclear tunneling is a
maximum when �G° =0, as in examples in Refs. 33 and 34
and suggested in Ref. 35, i.e., it is a maximum in the sym-
metric case, for then the tunneling reaction coordinate
through the TS is the H coordinate. In Fig. 2 the H coordi-
nate would be along a polar coordinate � or a chord. For this
symmetric case, a relatively simple and accurate equation for
the tunneling probability P�E� is given by Babamov and
Marcus.36 The H tunneling will be clearly larger for Fig. 2
than for Fig. 3, since in the latter case the reaction coordinate
at the TS has little or no contribution from H. Suitable analy-
sis of tunneling computations from H transfers in enzymes or
in solution can yield a functional form for the tunneling
probability as a function of �n− �1/2��.

Several tunneling cases have been described in Ref. 31,
leading to figures such as Figs. 2 and 3, depending on the
position of the transition state along the reaction coordinate.
In these figures, the many-dimensional potential energy sur-
face of the system is projected onto a two-dimensional sub-
space spanned by the two distances DH and HA. Figure 2
represents a reaction for which �EDHA

° �R��0, the TS region
occurring on a dotted line passing through X. In Fig. 3 the
reaction is so downhill ��EDHA

° �R��0� that the TS region,
again denoted by a dotted line passing through X, occurs in
the entrance channel. The shaded regions in Figs. 4 and 5
denote the classically allowed regions for the systems in
Figs. 2 and 3, respectively, for some given initial and final
H-quantum states and total energy E.

In a H transfer between two heavy atoms there is a con-
tinuum of reaction paths for proceeding from the well in the
potential energy surface for the reactants �DH, A� to the well
for the products �D, HA�, paths such as 	 and � in Fig. 2.
This figure is adapted from one that appeared earlier.37 The

FIG. 3. Diagram illustrating the scenario where the saddle-point X is reac-
tants’ well, the case of a very downhill reaction ��GR

° �0� �cf. Ref. 31�.

FIG. 4. Diagram showing the space swept out by a classical mechanical
trajectory in reactants’ well and by one in products’ well and showing tun-
neling on a � path from point X� on the boundary of reactants’ distorted
rectangle to point Y� on the boundary of products’ distorted rectangle, in-
cluding the nearest points X�=X and Y�=Y at the corners of the distorted
rectangles �cf. Ref. 31�.
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coordinates in the diagram are the usual mass-weighted co-
ordinates in reaction rate theory, as in Ref. 38. The low mass
of the H is reflected in the rather acute nature of the angle in
Figs. 2–5. The paths there going from the well of the reac-
tants, DH+A, to the well of the products, D+HA, range
from those passing near the saddle-point X �paths 	� to those
occurring at longer DA distances �paths ��. The � paths typi-
cally involve tunneling of the H, and there is a gradation
between 	- and �-type paths, while 	 is a classically allowed
path. A detailed discussion is given in Ref. 31.

For the given H-quantum state and the given energy E
the wave function decays exponentially outside the distorted
rectangles in Figs. 4 and 5. In wave mechanical terms the
boundary of the distorted rectangle forms the “caustic.” The
system tunnels in Fig. 4 from any point X or X� on the side
of the distorted rectangle nearest products’ well to a corre-
sponding point on Y or Y� on the nearest side of the distorted
rectangle in products’ well. The tunneling analysis can be
made coordinate independent by choosing the path from X�
to Y� variationally, instead of along an arc or along a chord.
Various features of this tunneling are described in articles
such as by Marcus and Coltrin39 and Fernandez-Ramos and
Truhlar40 for the small curvature approximation, and by
Ovchinnikova,41 Babamov and Marcus,36 and Fernandez-
Ramos and Truhlar42,43 for the large curvature approxima-
tion, and in the many articles cited therein. In recent years
there have been many elaborations of the original concepts.

The rate constant can be written approximately as

krate � �kT/h� 
 P�E�e−E/kTd�E/kT�/Q , �30�

where Q is the partition function for the R motion �the heavy
atom motion� and P�E� is the probability of reaction at en-
ergy E, as in Ref. 36. Classically, Q=kT /h
, where 
 is the
vibration frequency for the heavy atom motion in a well. For
the symmetric case, �EDHA

° �R�=0, and P�E� for a 0→0 tran-
sition of the H state in a triatomic system is given by Ba-
bamov and Marcus.36

Poo�E� = sin2�
o
s − 
o

a� , �31�

where the 
’s denote certain phase integrals. Higher transi-
tions of the H-quantum state n→n are easily included in
P�E�. In that article only a two-coordinate system was
treated and tested by comparison with accurate quantum me-
chanical results. The result can be extended approximately to
more complex systems by writing

Poo�E� = exp�− �G*/kT�sin2�
o
s − 
o

a� . �32�

E is measured from the lowest H-quantum state in the well.
When a semiclassical approximation is introduced in the

tunneling regime the sin2�
0
s −
0

a� expression can be simpli-
fied but is now only applicable to the tunneling regime. We
thus have from Ref. 36,


o
s − 
o

a = 

−�

�


H�R�e−K�R�dt , �33�

where 
H�R� is the vibration frequency for the H motion in
either well at any R, and K�R� is the tunneling phase integral,

�1

�2�p��R��d� /�, at any R from a point X� to Y� in Fig. 4. It
is written as �=�1 to �=�2, � being the polar angle variable
in that figure. When K�R� decreases exponentially with
increasing R the integral, Eq. �31�, is immediately integrated
analytically, as in Ref. 36: K�R� is expanded about R=Ro, the
turning point for the classical R motion, K�R��K�Ro�
+ �R−Ro�K��Ro�, where the prime denotes the dK�R� /dR at

R=Ro. The equation of motion �Ṙ2 /2+U�R�=E is inte-
grated in the vicinity of Ro, now defining t=0 to occur at
R=Ro and so yielding R−Ro= �−U� /��t2. Upon writing

H�R��
H�Ro� and writing the latter as 
H, we have


o
s − 
o

a = 
He−K�Ro�

−�

�

e−K��−U�/��t2dt �34�

and upon evaluation of this integral we obtain

Poo�E� = −
2��
H

2

U�K�
e−2K�Ro�e−�G*/kT. �35�

Usually the preexponential factor in Eq. �35� is neglected,
e.g., as in a related type of expression in Ref. 39, resulting
there in a small displacement of their log P�E� versus E plot
from accurate quantum mechanical calculations over five de-
cades. Equation �35� applies to the nuclear tunneling regime,
whereas Eq. �32� applies whether or not there is nuclear tun-
neling.

If we use � to denote the ratio of tunneling to no-
tunneling rate constants �=krate

tunn/krate
no tunn, then one expects

�=1 when the TS is solely in the reactant channel or when it
is solely in products’ channel, and to be a maximum at
�G° =0. A possible interpolative expression for experimen-
tal and computational tests is

� = ��max�4n�1−n�, �36�

so that when n=1/2, we have the symmetric case and �
=�max. On the other hand �=1 when n=0 or 1, n being the
value in the TS. An approximate version of Eq. �36� is

� � ��max�1−��EDHA
° /�i�

2
. �37�

FIG. 5. Diagram similar to Fig. 4 but for the very downhill reaction in
Fig. 3.
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Equations �32�–�35� apply to the symmetric case
��EDHA

° �R�=0� and so give the value where the tunneling is
a maximum and where the kinetic isotope effect kH/kD is
also a maximum. Not only is the H tunneling a maximum
when n=1/2, but also the participation of the H motion in
the reaction coordinate is greatest when n=1/2. Thus, a first
approximation to test is

kH/kD � �kH/kD�max
4n�1−n�. �38�

Thereby, we have kH/kD�1 when the TS is solely in reac-
tants’ �n=0� or in products’ �n=1� channel in n space, as
expected. The n is again the value given earlier that maxi-
mizes the barrier in Eq. �8�.

On increasing the asymmetry one obtains Fig. 3, an ex-
treme case of an asymmetrical system. The deuterium KIE
has decreased and the 12C/ 13C KIE, in contrast, increases: In
an asymmetrical system R becomes a more dominant con-
tributor to the reaction coordinate and so the 13C KIE in-
creases while the deuterium KIE decreases, a result com-
pared in Ref. 31 with the experimental data. Whereas the
H/D KIE is expected to be a maximum at n=1/2 and a
minimum at n=0 and at n=1, the 12C/ 13C is expected to be
a minimum at n=1/2.

This minimum of k12/k13 at n=1/2 arises for both non-
tunneling and tunneling reasons. At n=1/2 the reaction co-
ordinate is largely the H motion and so the difference be-
tween the 12C and 13C contributions to the reduced mass for
this motion is least, both classically and in any C nuclear
tunneling component. When n�1/2, the reaction coordinate
now contains some component from the C and thus there are
both classical and tunneling contributions by the C, and so a
larger C-KIE.

A possible functional form for the 13C KIE is given by

k12/k13 = �k12/k13�max
�1 − 2n�2f , �39�

where n is the n in the TS and f =1 or n�1−n� depending on
whether the 13C KIE is a minimum only at n=1/2 or at n
=0, 1 /2 and 1.

VI. CONCLUDING REMARKS

A simple phenomenological expression has been ob-
tained for the rate of H+, H−, and H• transfers for the non-
tunneling case in terms of several properties that can be used
to characterize the reacting system, just as analogous prop-
erties have been used to characterize electron transfer sys-
tems. Such an analysis would be based both on experimental
and computational results. The result is extended to include
tunneling for the case of �EDHA

° �R�=0. This tunneling result
can be extended to finite �EDHA

° �R� when a functional form
for the dependence of the tunneling probability/maximum
tunneling probability on �EDHA

° �R� or on �n−1/2� is
assigned.
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