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ABSTRACT

We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four H II regions with the Green
Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the
ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to
magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a
simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR
physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width
we estimate total magnetic field strengths of B 100 300–~ Gm in W3 and NGC6334A. Our results for W49 and
NGC6334D are less well constrained with total magnetic field strengths between B 200 1000–~ Gm . H I and OH
Zeeman measurements of the line of sight magnetic field strength (Blos), taken from the literature, are between a
factor of 0.5 1–~ of the lower bound of our carbon RRL magnetic field strength estimates. Since B Blos∣ ∣  , our
results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

Key words: H II regions – ISM: general – ISM: magnetic fields – photon-dominated region (PDR) –
radio lines: ISM

1. INTRODUCTION

Magnetic fields play an important role in many astrophysical
objects including planets, stars, and galaxies (Parker 1979).
Measurements of magnetic fields in the cosmos, however, are
difficult and therefore their paucity limits our ability to fully
understand a wide range of astrophysical processes. For
example, the role of magnetic fields in star formation is
currently a hotly debated topic (see Crutcher 2012, and
references within). There are a handful of magnetic field
diagnostics such as dust polarization, Faraday Rotation, and the
Zeeman effect. Only the Zeeman effect can directly measure
the line of sight (LOS) magnetic field strength in interstellar
clouds (Crutcher 2012).

Observations of spectral lines from molecular, neutral, and
ionized gas indicate line widths that are broader than the
thermal width, even on small spatial scales where macroscopic
effects such as rotation would be minimal. These non-thermal
line widths are thought to be a result of motions either from
MHD waves (e.g., Mouschovias 1975) or turbulence (e.g.,
Morris et al. 1974). Specific examples include CO in molecular
clouds (Arons & Max 1975) and Hα in H II regions
(Ferland 2001; Beckman & Relaño 2004). H2CO absorption
toward compact extragalactic sources reveals secular changes
to the absorption intensity on AU scales, with a non-thermal
component to the velocity dispersion, indicating that these
motions occur on very small spatial scales (Marscher
et al. 1993).

Carbon radio recombination line (RRL) emission detected
toward star formation complexes originates from the cooler,
mostly neutral gas, surrounding the H II region called the
photodissociation region (PDR). Roshi (2007) suggested that
the non-thermal line widths of carbon RRLs toward PDRs
adjacent to H II regions are dominated by MHD waves and

could be used to derive the magnetic field strength. The PDR is
a thin layer lying between the molecular cloud and the H II

region. At cm-wavelengths the carbon RRL intensity is
enhanced by stimulated emission from the background H II

region (Roshi et al. 2005; Quireza et al. 2006). This provides
information about the geometry and allows for relatively
simple PDR models to be developed (see Roshi et al. 2005).
Here we test the Roshi (2007) hypothesis by measuring the
non-thermal line widths in four PDRs that also have either H I

or OH Zeeman based determinations of magnetic field strength.

2. OBSERVATIONS AND DATA REDUCTION

We observed the RRL and continuum emission at C-band
(4–6 GHz) toward four H II regions with the National Radio
Astronomy Observatory (NRAO)7 Green Bank Telescope
(GBT) on 2008 April 5, 27 and May 8. The GBT has a half-
power beam-width (HPBW) of 2.34¢ at an observing frequency
of 5.3 GHz. The aperture efficiency and beam efficiency are
0.70 and 0.92, respectively, yielding a sensitivity of 2 K Jy−1.
We selected W3, W49, NGC6334A, and NGC6334D as
targets since these sources have bright carbon RRL emission
regions and Zeeman measurements in the neutral gas. More-
over, these sources have been detected in carbon RRLs with a
similar spatial resolution but at a different frequency (8.7 GHz)
with the NRAO 140 Foot telescope (Quireza et al. 2006). We
require at least two carbon RRLs, separated in frequency, to
model the PDR and derive the magnetic field strength (see
Section 4). The C91a and C92a RRLs were observed with the
140 Foot. At these frequencies the 140 Foot has a HPBW of
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3.20¢ . The aperture efficiency and beam efficiency are 0.51 and
0.68, respectively, giving 0.27 K Jy−1.

For each GBT observing session we first checked the
pointing and focus by observing a nearby calibrator. Con-
tinuum scans in R.A. and decl. were then made to measure the
free–free emission. We scanned the GBT both forward and
backward for each cardinal direction while simultaneously
sampling both linear, orthogonal polarizations. So each
continuum observation consisted of 4 scans times 2 polariza-
tions or 8 total measurements. We used the Digital Continuum
Receiver (DCR) with a bandwidth of 80 MHz, centered at
5.3 GHz, and an integration time of 0.1 s. The GBT was driven
at a rate of 80 arcsec per second for 30 s, providing a scan
length of 40 arcmin. Data from both directions (forward and
backward) and linear polarizations (XX and YY) were
averaged for several continuum observations to increase the
signal-to-noise ratio of the continuum intensity measurement.

Finally, spectra were taken using total power, position
switching where we observed a reference (OFF) position for
6 minutes, and then, tracking the same sky path, observed
the target (ON) position for 6 minutes. The Autocorrelator
Spectrometer (ACS) was configured with eight spectral
windows, each with two orthogonal, linear polarizations
yielding 16 independent spectra. Each spectral window
contained 4096 channels with a bandwidth of 12.5 MHz,
providing a spectral resolution of 3.05 kHz, or 0.18 km s 1- per
channel at 5 GHz. We centered each spectral window to
include the carbon RRLs: C104a–C110a, and C112a. The
C111a transition is confused by a higher order RRL and
therefore was not observed. The intensity scale was calibrated
in Kelvins using noise diodes that injected noise into the signal
path. We verified that the accuracy of the calibration was
within 10% by making continuum observations toward 3C286.

Both the spectral line and continuum data were reduced and
analyzed with the single-dish software package TMBIDL.8

Typically, a third-order polynomial function was fit to the
continuum baseline and removed from the data. A Gaussian
profile was fit to the main continuum source to determine the
peak intensity, full width at half maximum (FWHM) H II region
size, and the center position. Spectral line data were reduced by
first averaging spectra in each spectral window, and then
combining the different Cnα transitions to improve the signal-
to-noise ratio. At these high principal quantum numbers the
difference in energy between adjacent Cnα transitions is
negligible and therefore we can average these different
transitions (e.g., Balser 2006). This was done by first
resampling the spectral channels of each spectral window to
match the velocity resolution of the 104α spectral window and
then shifting each spectrum to be at the same LSR velocity.
Here no correction was made for the different HPBW’s. The
C112a RRL was not included in the average, however, because
of variations in the calibration scale near the carbon RRL that
we suspect was caused by resonances in the telescope feed. A
third-order polynomial was fit to the line-free regions of the
spectral baseline to remove the continuum level and any other
instrumental baseline structure. Multiple Gaussian functions
were then fit to the various RRLs within each spectral window
to determine the peak line intensity, the FWHM line width, and
the LSR velocity. The He and heavier element RRLs were fit
simultaneously, whereas the H RRL was fit separately.

3. RADIO CONTINUUM AND RRL RESULTS

Star-forming complexes that contain early-type stars consist of
H II regions that have formed due to the large number of
hydrogen-ionizing photons, molecular clouds where the next
generation of stars may form, and PDRs that lie at their interface.
The radio continuum emission observed toward star-forming
complexes is primarily produced from free–free emission in the
H II region. The non-thermal Galactic background emission may
contribute to the observed continuum, but because this back-
ground emission is smoothly distributed over spatial scales larger
than the H II region size it will be removed in our baseline fitting
procedures. Figures 1–2 show the continuum profiles for both
the R.A. and decl. scans. Table 1 summarizes the H II region
continuum parameters based on Gaussian fits to the main source
component. Listed are the source name, the B1950 equatorial
coordinates, the distance from the Sun, RSun, and the peak
intensity, TC, and FWHM size, Θ, and their associated 1s errors.
We detect hydrogen and helium RRL emission from the four

H II regions in our sample. Typically RRLs from heavier elements
are not detected from H II regions since they have small
abundances producing line intensities below the sensitivity limit
of most radio telescopes. In many cases, however, a narrower,
weaker line is detected at higher frequencies and has been
identified as carbon RRL emission formed within the PDR (e.g.,
see Zuckerman & Palmer 1968; Wenger et al. 2013). The
physical temperature of PDRs is about an order of magnitude
lower than that in H II regions. This lower temperature makes the
carbon RRL from PDRs detectable since the line optical depth
has a strong inverse dependence on the gas temperature. Since
the carbon RRL arises from the PDR it often has a slightly
different LSR velocity than the hydrogen and helium RRLs.
Figure 3 shows spectra for each source with a magnified view to
highlight the carbon profiles. The velocity scale is defined relative
to the hydrogen RRL which resides about 150 km s 1- at more
positive velocities. Each spectrum reveals multiple heavy element
RRL profiles. Carbon is likely to be the brightest heavy element
RRL because of its low ionization potential (11.3 eV), high
cosmic abundance, and low depletion. Other candidates are sulfur
and magnesium. The W49 spectrum contains two carbon RRLs
that have been shown to originate from spatially distinct PDRs
(Roshi et al. 2006). For each source there exists a weaker
transition, labeled as “X,” that is consistent with an element
heavier than carbon since the line center is at higher frequencies.
For W3 and W49 the “X” line may be another carbon RRL from
a different component, or possibly sulfur. Based on the center
velocity and reduced line intensity we expect the “X” line to be
sulfur in the two NGC6334 sources. Table 2 summarizes the
RRL line parameters. Listed are the source name, the element, the
peak intensity, TL, the FWHM line width, VD , the LSR velocity,
VLSR, the total integration time, tinteg, and root-mean-square noise
in the line-free region, rms, together with their 1s errors.

4. PDR MODELS

To derive the total magnetic field strength requires knowing
both the carbon RRL non-thermal velocity width and the PDR
density (see Section 5). Here we develop PDR models to
determine the PDR density that are constrained by carbon
RRLs at two different frequencies (see, e.g., Roshi et al. 2005).
Infrared observations of H II region/PDR/molecular cloud
complexes typically find 22 μm emission surrounded by 12 μm
emission (e.g., see Anderson et al. 2014). The 22 μm emission8 See https://github.com/tvwenger/tmbidl.git.
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Figure 1. Continuum data for W3 (top) and W49 (bottom). The antenna temperature is plotted as a function of offset position relative to the nominal coordinates in
Table 1 for the R.A. scan (left) and the decl. scan (right). A polynomial has been fit to the baseline to remove any instrumental effects such as weather.

Figure 2. Continuum data for NGC6334A (top) and NGC6334D (bottom). See Figure 1 for details.
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is produced by stochastically heated small dust grains within
the H II region, whereas the 12 μm emission is thought to be
polycyclic aromatic hydrocarbon, PAH, emission within the
PDR. We therefore consider a simplified model consisting of
homogeneous cylinders of PDR material, co-located with the
molecular gas, in front of the H II region. This geometry is
consistent with both observations and models. Observations
show that the carbon RRL intensity is correlated with the H II

region continuum intensity (e.g., Quireza et al. 2006). This
implies that the carbon RRL is amplified by stimulated
emission from the H II region which lies behind the PDR.
Models of the radiative transfer show that without stimulated
emission, at cm-wavelengths, we would not have the sensitivity
to detect the carbon RRL emission (Roshi et al. 2005).

We use the formulation of Shaver (1975) to perform the
radiative transfer and to calculate the carbon RRL brightness
temperature at frequency ν:

T T e e

T
b

e

e

1

1

1 ,

1

L
B

bg

PDR
m L C

L C

C L

L C

C

( )
( )

( )

( ) ( )

( ) ( )
( ) ( )

( )

( )

( ) ( )

( ) ( )

( )

⎛
⎝⎜

⎞
⎠⎟

*

n n

t n t n
t n t n

= -

+
+

+
-

- -

t n t n

t n t n

t n

- -

- +

-

where the first term is the contribution to the line temperature
due to the background radiation field and the second term is the

Table 1
H II Region Continuum Parameters

R.A. Decl.

R.A. (B1950) decl. (B1950) RSun TC TCs Θ s Q TC TCs Θ s Q
Name (hh:mm:ss.s) (dd:mm:ss) (kpc) (K) (K) (arcsec) (arcsec) (K) (K) (arcsec) (arcsec)

W3 A 02:21:56.9 +61:52:40.0 2.1a 70.42 0.35 360.25 2.14 69.34 0.19 154.37 0.62
W49 A 19:07:52.1 +09:01:08.0 11.8a 58.66 0.57 202.66 2.38 59.53 0.15 161.33 0.53
NGC6334 A 17:16:57.8 −35:51:45.0 1.7b 34.37 0.11 208.69 1.06 34.48 0.17 182.41 1.84
NGC6334 D 17:17:23.0 −35:46:20.0 1.7b 39.91 0.16 246.70 1.86 38.20 0.10 189.84 0.81

Notes.
a From Bania et al. (1997).
b From Neckel (1978).

Figure 3. H II regions radio recombination line spectra at 5.3 GHz. The antenna temperature is plotted as a function of LSR velocity relative to the hydrogen RRL. The
view has been magnified to show only the helium and heavier element RRLs. The continuum emission and any instrumental baseline has been removed using a third-
order polynomial fit to the line-free regions. The horizontal solid line defines the zero-level. The helium and carbon lines are labeled. The label “X” denotes that the
line identification is uncertain (see text).
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intrinsic emission from the PDR cylinder. The background
temperature, Tbg ( )n , is dominated by the H II region and so

T T e1 , 2bg e C
H II( )( ) ( )( )n = - t n-

where C
H II ( )t n is the H II region continuum optical depth given

by Equation (31) in Shaver (1975). The PDR thermal
temperature, TPDR, is typically between 100 and 500 K (e.g.,
Abel et al. 2005). The line and continuum optical depths of the
PDR are given by L ( )t n and C ( )t n , respectively. We calculate
the PDR continuum opacity from Equation (31) in Sha-
ver (1975).

The PDR line opacity is

b , 3L n n L( ) ( ) ( )*t n b t n=

where bn and nb are the departure coefficients of the energy
level n. The LTE line opacity n n ℓL e

PDR
i
PDR( ) ( )*t n µ where

ne
PDR and ni

PDR are the electron and ion number densities of the
PDR, respectively, and ℓ is the PDR cylinder thickness (see
Equation (71) in Shaver 1975). We assume all of the ions in the
PDR arise from carbon and therefore n n ni

PDR
C
PDR

e
PDR= =+ .

The departure coefficients are calculated using a new computer
code developed by Roshi et al. (2014) that includes modifica-
tion of the level population of the carbon atom due to a
dielectronic-like recombination process (Walmsley & Wat-
son 1982) and a background radiation field from an H II region.
This is a modified version of the original code developed by
Brocklehurst & Salem (1977) and Walmsley & Watson (1982).
For the computation of bn and nb , we assume 25% of the
carbon atoms are depleted onto dust grains (Natta et al. 1994),
and a cosmic carbon abundance of C/H=3.9 10 4´ - by
number (Morton 1974). With these assumptions the hydrogen
number density in the PDR is n n3.4 10H

3
e= ´ .

The PDR models require the background, H II region,
intensity as a function of frequency to be known, for
calculating the departure coefficients. We adopt the spherical,
homogeneous H II region models of Balser et al. (1995) and
constrain these models with our C-band (5.3 GHz) radio
continuum data, listed in Table 1, to derive the size, sphq ,
electron number density, ne, and the number of hydrogen-
ionizing photons emitted per second, NL. The values of NL
provide an estimate of the stellar spectral type, assuming all of
the hydrogen-ionizing photons come from a single star. The
peak emission measure, EM n dℓeò= , is taken from the
formalism of Wood & Churchwell (1989). Radio continuum
data alone cannot constrain the electron temperature (Te), and
therefore we adopt the values from Balser et al. (1999) that
were derived from RRL and continuum emission at 8.7 GHz.
Table 3 lists these physical properties for each H II region in our
sample.
We use the numerical code developed by Roshi et al. (2014)

to compute the carbon RRL flux density from the PDR by
solving the non-LTE radiative transfer equation. The line
temperature, TL, provided by the model is converted to flux
density, SL, using the equation

S
k T2

, 4L
L

2
( )

l
= W

where k is the Boltzmann constant, λ is the observed
wavelength, and Ω is the source solid angle. We assume the
source size equals the GBT’s HPBW of 2.34¢ . There are three
free parameters in this model: the PDR temperature, TPDR, the
PDR electron number density, ne

PDR, and the PDR cylinder
thickness, ℓ. Since PDR temperatures range from 100 to 500 K,
we consider values of 100, 200, and 500 K for our models. The
departure coefficients are a function of TPDR and ne

PDR. They are
calculated for a set of electron densities between 1 and

Table 2
Radio Recombination Line Parameters

TL TLs VD Vs D VLSR VLSRs tintg rmsb

Name Elementa (mK) (mK) (km s 1- ) (km s 1- ) (km s 1- ) (km s 1- ) (hr) (mK)

W3 H 3159.30 6.38 29.795 0.040 −40.462 0.010 10.7 11.20
K H 416.86 6.41 9.076 0.139 −41.069 0.037 K 11.20
K He 326.76 1.23 24.848 0.113 −40.222 0.046 K 8.42
K C 342.99 2.73 5.525 0.077 −39.054 0.035 K 8.42
K Xc 80.08 2.45 6.519 0.400 −46.556 0.163 K 8.42
W49 H 2918.63 2.77 29.159 0.032 8.345 0.014 29.6 12.23
K He 296.59 0.74 24.039 0.084 8.857 0.032 K 4.77
K C 93.06 3.29 7.856 0.307 13.580 0.192 K 4.77
K C 96.66 1.47 9.608 0.536 4.464 0.203 K 4.77
K Xc 11.35 1.59 5.805 1.43 −6.386 0.539 K 4.77
NGC6334 A H 2130.88 1.54 26.827 0.023 1.035 0.009 21.4 6.75
K He 125.76 0.54 23.834 0.118 2.671 0.050 K 4.44
K C 184.97 1.17 5.212 0.042 −2.478 0.017 K 4.44
K Xd 39.97 1.20 5.083 0.204 −11.141 0.077 K 4.44
NGC6334 D H 3083.08 1.63 22.270 0.014 −3.375 0.006 23.7 7.59
K He 280.85 0.84 15.999 0.062 −3.713 0.024 K 4.73
K C 94.54 0.96 7.022 0.112 −2.722 0.040 K 4.86
K Xd 20.03 1.08 5.492 0.509 −11.888 0.172 K 4.86

Notes. Spectral line parameters correspond to the average of 7 RRLs (104 110–a a).
a The RRL frequencies are specified using the Rydberg equation which depends on the reduced mass (Gordon & Sorochenko 2009).
b The H RRL was fit separately from the He and heavy element RRLs and therefore has a different rms line-free spectral noise.
c The line identification is unclear. It may be carbon from a different PDR component or possibly sulfur.
d The line appears to be sulfur based on the LSR velocity and reduced line intensity relative to carbon.
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500 cm 3- for each TPDR value. Modeling requires two observed
carbon RRL intensities to solve for ne

PDR and ℓ, since we
assume a set of values for the PDR gas temperatures.
Therefore, we use the 140 Foot 8.7 GHz carbon RRL data
from Quireza et al. (2006) together with the GBT
5.3 GHz observations discussed in Section 2. Antenna
temperatures are converted to flux density by using 2 K Jy−1

and 0.27 K Jy−1 for the GBT and 140 Foot, respectively. We
assume the PDR is filling the 2.34¢ HPBW of the GBT and we
therefore scale the 140 Foot flux density by the ratio of the
beam areas, 2.34 3.20 2( )¢ ¢ . Table 4 summarizes the constraints
to the models. Listed are the source name, the RRL transitions,
the peak intensity, the FWHM line width, the LSR velocity,
and the flux density, together with their associated errors. The
errors listed for the carbon RRL peak intensity, FWHM line
width, and LSR velocity are the 1s uncertainties in the
Gaussian fits to the line profile. These errors are propagated to
the flux density, Sn.

For each PDR temperature we ran a grid of models with a set
of PDR electron densities, and then solved for the PDR
cylinder thickness. So for each (TPDR, ne

PDR) pair choice, ℓ was
varied to determine, by eye, the range of ℓ that was consistent
with our two observational data points within the errors.
Therefore for each PDR temperature we determined a range of
possible values for ne

PDR and ℓ. We explored ne
PDR=1, 5, 10,

25, and 50 cm 3- for W3 and NGC6334A; and ne
PDR=5, 10,

25, 50, 100, and 200 cm 3- for W49 and NGC6334D. Model
results are shown in Figure 4 through 7 where we plot the flux
density as a function of frequency. The curves correspond to
the models that set the extreme range in ne

PDR and ℓ for each
PDR temperature, whereas the points are the constraints from
the GBT and 140 Foot observations. For NGC6334A, only
one model in our grid is consistent with the data to within the
uncertainties. Our modeling predicts lower PDR temperatures
( 200 ) for W3 and NGC6334A. The flux density uncertainties
are significantly higher for the 140 Foot X-band data and
therefore dominate the scatter in these plots. The results are
summarized in Table 5. For each PDR temperature we show
the range of ne

PDR and ℓ values that “fit” the data; that is, their
model curves lie within the observed error bars. Listed in
Table 5 are the source name, the PDR temperature, the range of
PDR electron densities, the range of cylinder thicknesses, and
the range of magnetic field strengths (see below).

5. MAGNETIC FIELD STRENGTH

It is now well established that the observed spectral line
widths from molecular clouds are significantly larger than
expected from thermal broadening alone. Arons & Max (1975)
first proposed that this non-thermal line width is due to MHD
waves, but the contribution of a pure hydrodynamic turbulence
component cannot be ruled out (Morris et al. 1974). Spectral
line widths from PDRs, which reside at the interface between
the molecular cloud and the H II region, are also dominated by

Table 3
Spherical Homogeneous H II Region Modelsa

Te
b

sphq ne Peak EMc Log10(NL) Spectrald

Name (K) (arcmin) (cm−3) 105 (pc cm−6) (photons s−1) Type

W3 A 8000 5.24 522 7.23 49.63 O4.5
W49 A 8500 3.26 318 6.22 50.82 <O3
NGC6334 A 8000 3.89 526 3.54 48.97 O7.5
NGC6334 D 7000 4.56 480 3.84 49.13 O7

Notes.
a See Balser et al. (1995).
b Taken from Balser et al. (1999).
c See Wood & Churchwell (1989).
d Using the stellar models of Vacca et al. (1996).

Table 4
Radio Recombination Line PDR Model Constraints

TL TLs VD Vs D VLSR VLSRs Sn Ss n
Name RRLa (mK) (mK) (km s 1- ) (km s 1- ) (km s 1- ) (km s 1- ) (mJy) (mJy)

W3 A C104 C110–a aá ñ 342.99 2.73 5.525 0.077 −39.054 0.035 171.5 1.4

C91a 56.39 4.93 7.68 0.79 −40.10 0.33 113.4 9.9

W49 A C104 C110–a aá ñ 93.06 3.29 7.856 0.307 13.58 0.192 46.5 1.6

C104 C110–a aá ñ 96.66 1.47 9.608 0.536 4.464 0.203 48.3 0.7

C91 C92–a aá ñ 24.77 1.79 15.72 1.36 7.33 0.67 49.8 3.6

NGC6334 A C104 C110–a aá ñ 184.97 1.17 5.221 0.042 −2.478 0.017 92.5 0.6
C91a 26.93 3.42 8.34 1.23 −3.14 0.52 54.1 6.9

NGC6334 D C104 C110–a aá ñ 94.54 0.96 7.022 0.112 −2.722 0.040 47.3 0.5

C91a 24.73 2.91 9.99 1.37 −4.37 0.58 49.7 5.8

Note.
a The C-band (C104a–C110a) RRL data are from the GBT (Table 2), and the X-band (C91a–C92a) RRL data are from the 140 Foot telescope (Quireza et al. 2006).
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non-thermal broadening. Roshi (2007) investigated the origin
of this non-thermal component in PDRs using carbon RRLs.
He concluded that (1) the origin of the non-thermal carbon
RRL width is magnetic; (2) the non-thermal line width is
approximately the Alfvén speed in the PDR; and (3) the
minimum MHD wavelength for which carbon ions and neutrals
are strongly coupled is much smaller than the size of the PDR.

Perturbations in the magnetic field due to MHD waves create
a velocity field in the plasma. This velocity field results in the
non-thermal broadening of the observed spectral lines. The
amplitude of the velocity field will be equal to the Alfvén speed
if the perturbing magnetic field is approximately equal to the
total magnetic field strength, B. But pure hydrodynamic
motions in the PDR may also contribute to the non-thermal
width of spectra lines. We therefore introduce a parameter α to
relate the Alfvén speed,VA and the observed non-thermal width

of the spectral line:

V
V

ln8 2
, 5A

nt

( )
( )a=

D

where VntD is the FWHM non-thermal line width defined as

V V V . 6nt
2

t
2 ( )D = D - D

Here VD is the observed FWHM line width and VtD is the
thermally broadened FWHM line width given by

V ln
kT

m
4 2

2
, 7t

PDR

c

1 2

( ) ( )
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥D =

where mc is the mass of the carbon atom (Shaver 1975,
Equation (57)). At one extreme, 0a ~ if the turbulence is non-
magnetic in origin. At the other extreme, where the magnetic
field dominates the turbulent motions, 3a . The exact
value depends on the geometry of the magnetic and matter
perturbations in the PDR since we need to convert the
observed, one-dimensional velocity dispersion into a three-
dimensional velocity dispersion (see for example McKee &
Zweibel 1995). The parameter α must be determined by
observations. Roshi (2007) compared the magnetic field
strength measured via the Zeeman effect in molecular clouds
with the magnetic field strength derived from carbon RRLs in
PDRs (see Roshi’s Figure 3). Such a comparison is possible
since it has been shown that the magnetic field strength scales
with density (Crutcher 1999). From this comparison Roshi
(2007) concluded that the non-thermal motions in PDRs are
primarily caused by MHD waves and that 1a ~ . Here we
follow Roshi et al. (2014) and take 3 2 0.87a = = as a
mean value between the two extremes, mentioned above.
The magnetic field is given by

B V 4 , 8A ( )p r=

Figure 4. PDR model results for W3. The flux density is plotted as a function of frequency. The lines correspond to different models and the points are from carbon
RRL observations at 5.3 GHz (Section 2) and 8.7 GHz (Quireza et al. 2006). The error bars shown are 3s values.

Table 5
PDR Model Physical Properties

TPDR ne
PDR ℓ Ba

Name (K) (cm−3) (pc) (μG)

W3 A 100 5–25 0.4–0.013 140–320
200 5–25 1.7–0.048 140–320

W49 A 100 50–100 0.0015–0.0004 650–910
200 25–200 0.0199–0.0004 460–1300
500 5–200 3.1–0.0016 200–1300

NGC6334 A 100 10 0.07 190

NGC6334 D 100 5–100 0.23–0.0005 180–820
200 5–200 0.73–0.0004 180–1200
500 5–200 3.4–0.0017 180–1100

Note.
a The range in B is determined from the PDR models and does not include any
uncertainty in α (see Section 5).
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where ρ is the mass density of the gas coupled to the magnetic
field (Parker 1979). Roshi (2007) showed that the size of the
PDR is larger than the minimum MHD wavelength. Thus in the
PDR there exists a spectrum of MHD waves for which carbon
ions and neutrals are strongly coupled to the field. The
perturbations produced by these waves result in the non-
thermal broadening of carbon lines. The ions and neutrals are
coupled to these waves which implies that ρ in Equation (8)
should be the total (i.e., ion, atomic, and molecular) mass
density of the PDR. The PDR mass density is given by

n m , 9H H ( )r m=

where nH is the hydrogen number density, mH is the hydrogen
mass, and μ is the mean molecular weight. The hydrogen
number density is determined by modeling the observed carbon
lines. A pure hydrogen and helium gas with a He/H ratio of

10% by number yields 1.4m = . Since the contribution of
heavier elements, such as carbon, to the mean molecular weight
is negligible, we take 1.4m = .
In Table 5 we list a range of magnetic field strengths

calculated using Equation (8) and the range of determined ne
PDR

values for each PDR temperature. Most of the uncertainty in
determining B comes from our PDR models and therefore we
specify a range of possible values instead of a value and 1s
error. The exception is NGC6334A where only one model fits
the data. The magnetic field strength for W49 and NGC6334D
are not well constrained with a wide range of possible magnetic
field strengths. Note well that these uncertainties do not include
any contribution to α which can range from 0 to 3 .

6. DISCUSSION

The role of magnetic fields in star formation has been an
important astrophysical topic for decades (Shu et al. 1987;

Figure 5. PDR model results for W49. See Figure 4 for details.

Figure 6. PDR model results for NGC6334A. See Figure 4 for details.
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McKee & Ostriker 2007). Recently, the debate has centered
around competing theories that depend on the strength of the
magnetic field. Strong magnetic fields will support molecular
clouds from collapse, but neutral material will slip past these
fields and thereby increase the molecular mass in a process
called ambipolar diffusion (Shu et al. 1987). On the other hand,
weak magnetic fields allow molecular clouds to form from
turbulent flows on timescales equal to the free fall time
(MacLow & Klessen 2004). There are also star formation
theories that include both of these processes (e.g., Nakamura &
Li 2005). Understanding magnetic field properties in star-
forming complexes provides important constraints to these
theories (Crutcher 2012).

Measuring magnetic field properties in star-forming com-
plexes is difficult, however, and therefore additional data are
necessary to properly constrain star formation models. Roshi
(2007) proposed a new method of deriving the magnetic field
strength in PDRs using carbon RRLs. If the non-thermal
motions in PDRs are dominated by MHD waves, then the non-
thermal line widths provide a measure of the magnetic field
strength. Here we test this hypothesis by comparing the
magnetic field strength derived from carbon RRLs with
Zeeman measurements in four sources: W3, W49, NGC6334A
and NGC6334D. Zeeman observations provide a measure of
the magnetic field along the LOS and therefore information on
the morphology and a lower limit to the magnetic field strength
(i.e., B Blos∣ ∣  ). If we consider a large number of PDRs that
have a magnetic field that is oriented randomly relative to
the LOS, then statistically B B2 los∣ ∣= (Crutcher 1999). The
magnetic field orientations in PDRs may not be random,
however, given their geometry and formation.

Below we discuss each source separately.
W3 is a nearby, bright H II region with at least 8 resolved

components (A-H) in the core region (see, e.g., Tieftrunk
et al. 1997). Roberts et al. (1993) derived the LOS magnetic
field strength from H I Zeeman observations to be
B 47 3los = -  Gm , 103 7+  Gm , and 36 6+  Gm toward
components A, B, and C+D, respectively. Our GBT
observations are centered near W3A but include most of
the core. We therefore consider B 30 110los∣ ∣ –= Gm for

comparison with our GBT data. The LSR velocity of the
carbon RRL is −39.1 km s 1- , consistent with the H I Zeeman
data. We estimate B to be between 140 and 320 Gm .
W49 is one of the most luminous star-forming complexes in

the Galaxy and contains the H II region W49A and a supernova
remnant W49B (De Pree et al. 1997). Our GBT observations
cover the W49A north region that consists of a ring of
ultracompact H II regions. Brogan & Troland (2001) detected
the H I Zeeman line toward W49A and determined
B 60 300los∣ ∣ –= Gm . The V 4LSR ~ km s 1- Blos component is
negative, whereas the V 7LSR ~ km s 1- Blos component is
positive. Also, higher resolution Zeeman detections are
stronger. Our GBT data constrain the magnetic field strength
to be between B 200 1300–= Gm . Our C-band data contain
two velocity components (∼14 and ∼4 km s 1- ), but the lower
spectral resolution 140 Foot, X-band data has only one
component at ∼7 km s 1- . We have modeled the PDR using
the C-band ∼14 km s 1- component. The results are similar if
we use the ∼4 km s 1- component.
Since W49 is complex and distant (R 11.8Sun = kpc), it is

difficult to compare the VLA Zeeman observations with our
lower resolution GBT data. The carbon RRL emission regions
may not be probing the same volume of gas as the VLA H I

data. The differences in LSR velocity between our C-band and
X-band carbon RRL data are troubling and therefore our results
for W49 are suspect. Furthermore, the carbon RRL intensity is
weighted by the emission measure ( ne

2µ ), whereas the H I

intensity is proportional to the hydrogen column density. So the
carbon RRLs may be probing denser gas where the magnetic
field strengths should be higher.
NGC6334 is a nearby (R 1.7Sun = kpc), star-forming region

that contains at least seven star-forming components (Kraemer
et al. 2000). Here we focus on components A and D. Sarma
et al. (2000) made H I and OH VLA measurements toward
both of these components with LSR velocities around −2 to
−5 km s 1- , consistent with our carbon RRL velocities.
Significant Zeeman detections were made toward NGC6334A
in OH where B 148 20los =  Gm and B 162 33los =  Gm
for the 1665 and 1667 MHz lines. We consider
B 128 195los∣ ∣ –= Gm for comparison with GBT data. From

Figure 7. PDR model results for NGC6334D. See Figure 4 for details.
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our carbon RRLs we estimate B 190 96=  Gm , where we
assume a 50% error. For NGC6334D, Sarma et al. (2000)
measure B 93 13los = -  Gm from H I Zeeman spectra
yielding B 80 106los∣ ∣ –= . Our carbon RRL data toward
NGC6334D do not provide a good constraint for the magnetic
field with B 180 1200–= Gm , but the lower bound is within a
factor of two relative to the Zeeman value.

Figure 8 summarizes these results. We plot a comparison of
the magnetic field strength from our carbon RRL measurements
with the LOS magnetic field strength from Zeeman spectra as
discussed above. We assume a 50% error for NGC6334A
since we were not able to determine a range of B values from
our models. The uncertainties are quite large but the trend is
that Blos∣ ∣ is between 0.5 and 1.0 of the lower bound of B, and
this is consistent with our expectations that B Blos∣ ∣  . Similar
results are obtained for PDRs in OrionB (Roshi et al. 2014) and
W3, W49, and S88B (Roshi 2007).

Overall, our GBT carbon RRL data are consistent with the
hypothesis of Roshi (2007) that the non-thermal motions in
PDRs have a magnetic origin. But our results are not
conclusive since we do not know α or the orientation of the
magnetic field vector. Moreover, there are many assumptions
and approximations in deriving the magnetic field strength
using the carbon RRL method. Here we list some of the issues.

1. PDR Geometry: We assume the PDR region is a thin
cylinder that covers the H II region. Infrared data do show
that PDR material as seen in 8 mm emission typically
surrounds H II regions (24 mm emission) with a thin,
sheet-like morphology (e.g., Anderson et al. 2014). Our
GBT and 140 Foot data lack the spatial resolution,
however, to confirm that the PDR covers the H II region.
Interferometers like the VLA can spatially resolve some
of these regions with enough sensitivity to verify this
geometry (see Roshi et al. 2014).

2. Model Constraints: Observations at only two frequencies
are used to constrain three free parameters: TPDR, ne

PDR,
and ℓ. Therefore we had to assume several values for the
PDR temperature to constrain the fits. This could be

significantly improved by obtaining additional carbon
RRL data separated in frequency.

3. H I /OH Zeeman Data: We use H I and OH Zeeman data
to check the hypothesis by Roshi (2007) that carbon RRL
non-thermal widths are magnetic in origin with the goal
of using such data to determine magnetic field strengths
in PDRs. We expect the H I and OH emission to arise
from the PDR but this emission may not be sampling the
same region as the carbon RRL emission. RRLs probe
higher density gas compared with H I, and our models
indicate that cm-wavelength carbon RRLs are sensitive to
PDR material in front of the H II region relative to our
LOS. So we may not be sampling the same material. This
can be mitigated by observing the carbon RRL Zeeman
effect.

4. Alfvén Speed: We calculate VA from VntD . If the gas
pressure is small compared to the magnetic pressure then
the velocity dispersion should be approximately the
Alfvén speed (see Arons & Max 1975). But we have to
convert the one-dimensional velocity dispersion, VntD , to
a three-dimensional velocity dispersion. Since we do not
know the magnetic field geometry the value of α must be
constrained from observations. Therefore, the parameter
α in Equation (5) is another free parameter. The magnetic
field strength is proportional to α, and here we assume

3 2a = . The uncertainties given in Table 5 are taken
from the PDR models and do not include the uncertainties
in α.

5. B Versus Blos: Since Zeeman observations probe the LOS
magnetic field strength we cannot directly compare these
results with our estimates of the total magnetic field
strength from our carbon RRL data for a given source. If
we observed many PDRs using both methods we could
make a statistical argument that B B2 los∣ ∣= (e.g.,
Crutcher 1999). But this assumes that the orientation of
the magnetic field vector is random which may not be
true for PDRs.

How to proceed? Observations of carbon RRLs at several
different frequencies using both the VLA and GBT could
significantly improve our understanding of the PDR geometry
and provide better constraints to the models. Observing many
sources would allow a statistical comparison with Zeeman
results and an estimate of α. A more direct comparison of the
magnetic field strength could be made by measuring the
Zeeman effect in carbon RRLs. To do this in many sources
with good accuracy, however, would probably require the SKA
or NGVLA. Nevertheless, our results here are consistent with
the Roshi (2007) hypothesis of a magnetic origin for the
observed carbon RRL non-thermal line widths.

7. SUMMARY

Magnetic fields play an important role in star formation, but
they are difficult to measure, and therefore have not provided
very stringent constraints on a host of relevant astrophysical
processes. Roshi (2007) proposed a new technique to derive
magnetic field strengths using carbon RRLs in PDRs. It
assumes that the non-thermal motions in PDRs are dominated
by MHD waves. Here we measure the C104a–C110a
(5.3 GHz) RRL emission with the GBT toward four star-
forming regions to test this hypothesis. We use the models
developed by Roshi et al. (2014) to calculate the carbon RRL

Figure 8. Magnetic field strengths derived here from carbon RRLs (thick green
lines) for W3, W49, NGC6334A, and NGC6334D, compared to line of sight
magnetic field strengths from Zeeman observations (blue lines). The magnetic
field strengths from carbon RRLs correspond to the range of values in our
model grid that are consistent with the data. The range for Blos∣ ∣ are taken from
H I or OH Zeeman measurements in the literature (see text). The plot has been
truncated at B 500 Gm= for clarity.
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flux density by performing the non-LTE radiative transfer. To
constrain these models requires at least two carbon RRLs
separated in frequency, and to do this we use the
C91a–C92a (8.7 GHz) RRLs from Quireza et al. (2006)
together with the observations reported here.

We estimate B 100 300–~ Gm in W3 and NGC6334A, and
B 200 1000–~ Gm in W49 and NGC6334D. These results are
consistent with H I and OH Zeeman observations, which
measure the LOS magnetic field strength Blos. That we find
B Blos∣ ∣  in all cases is consistent with the hypothesis that the
non-thermal component of the velocity dispersion measured by
carbon RRLs is magnetic in origin. There are many assump-
tions and approximations made in deriving B, however, and
therefore to use this method to determine magnetic field
strengths accurately may require telescopes like the SKA or
NGVLA.

Facility:GBT.
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