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Using an elementary application of Birkhoff’s ergodic theorem, we give necessary and sufficient
conditions for the existence of asymptotically n? diffusion (where n is an integer representing discrete
time) in the angle variables in a class of volume-preserving twist maps. We show that nonergodicity is
the dynamical mechanism giving rise to this behavior. The influence of accelerator modes on diffusion
is described. We discuss how additive noise changes the diffusive behavior and we investigate the
effective-diffusivity dependence on bare diffusivity and accelerator modes. In particular, we find
that the dependence of the effective-diffusivity coefficient on bare-diffusivity is universal for small

values of bare-diffusivity coefficient o if asymptotic n? diffusion is present in the o = 0 case.

PACS number(s): 02.50.—r, 05.20.—y

Counsider a volume-preserving diffeomorphism M : B x
T™ — B x T™, which is of the form

I )
onTh = 0" + QUI™) + (I, 6™), (1)

where I € B C IR™, B is a closed ball in R™,
and § € T™, where T™ denotes the n torus. We as-
sume that the functions f, g, and ©Q are bounded func-
tions measurable on B x T™, with f and g periodic in
61,...,6™ . When discussing our results in the context of
the Kolmogorov-Arnold-Moser (KAM) and Nekhoroshev
theorems, stronger regularity conditions are required,
real analyticity is sufficient, and certain nondegeneracy
conditions on the frequencies are required.

The map M can be viewed as a generalized twist map
of the form that arises in a variety of applications. For
an equal number of “action” and “angle” variables (1)
(i.e., m = n), and for f and g small, (1) has the form of
a Poincaré map of the type arising in studies of perturba-
tions of completely integrable Hamiltonian systems (see
(1]). In these studies, the KAM theorem and Nekhoro-
shev’s theorem are important global dynamical results.
Roughly speaking, Nekhoroshev’s theorem states that
for any initial condition the evolution of the action vari-
ables is small over exponentially long time scales: The
KAM theorem states that the evolution of certain action
variables corresponding to sufficiently nonresonant ini-
tial conditions is small over infinite time intervals. Both
Nekhoroshev’s theorem and the KAM theorem are deep
results. However, neither result says anything about the
evolution of the angle variables. On the other hand, we
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shall show below that relatively simple methods can be
used to prove statements about the statistics of angle
evolutions for a broad class of relevant maps.

For m = 1 and n = 2, (1) is of the form recently
studied in [2] in an application to fluid transport in time-
periodic volume-preserving three-dimensional fluid flows.
Recently, generalizations of the KAM theorem to maps
of the form (1) for m # n have been made in [3-6]. Re-
cent extensions of Nekhoroshev’s theorem to maps can
be found in [7-9]. For m = 0, (1) is a map of the n torus;
for n = m = 1, it is of the form of the standard map on
the cylinder of which there have been many numerical
studies.

Our goal is to discuss the notion of “diffusion” in the
individual components of the 6 vector for this map. The
ith component of the ™ is given by

n—1

07 =00 + ) Qu(Ix) + gi(Ix, Ok)-
k=0

We are not considering 6 mod 27, but 67 defined on IR,
which is relevant in many applications.
The mean square deviation of this quantity is given by

(67 — 09 — (67 — 69))) = Do, (),

where the average indicated by the angle brackets is de-
fined as

(OF —07) = / (67 — 67) pdp,
BxTn
where p = p(I, 0) is the initial distribution of points (as-
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sumed to be integrable on B x T™) and du denotes the
measure or “volume element” on B X T™. ‘One is then
interested in the following limit:
lim =%\
n—aoco N
- |

lim Do:(n) ,E,n)
n— oo n

Do,(n)
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for values of the exponent v for which the limit exists and
is nonzero. If v = 1, the motion is referred to as diffusive
and for v # 1 it is referred to as anomalous diffusion.

We are interested in determining the asymptotic be-
havior of Dg,(n) as n — oo. Consider the following cal-
culations.

= nli,né‘o< (% i (i + g:) (M*(1,6)) — <% Z_: (2 + g:) (M*(1, 0))>) >
k=0 k=0
< (nn_,xgo LS @+ 0 (MH(1,6)) - <,}3g, LS @+ 00 O, e))>) >
k=0

k=0

= ([(Q +9:)* (1,6) — (% + 9:)" (1,6))]%) = a.

The mathematical manipulations in these calculations
are justified as follows:

(i) The passage from the first to the second line is jus-
tified, using Lebesgue’s bounded convergence theorem,
by the fact that the function (€2; + g;) is bounded and
measurable on B x T™.

(ii) In the second line, the limit

n—1

lim = 37 (9 + g:) (M*(1,0)) = ( +g2)" (1,6)

n—oo N
k=0

exists for all points in B x T™ by Birkhoff’s ergodic the-
orem (see [10]), with the possible exception of a set of
p-measure zero. This limit is the time average of the
function (€2; + g;) along the orbit trajectory that starts
at the point (1,0).

The nature of the coefficient a gives some insight into
the dynamical mechanism giving rise to n? diffusion. Let
B. be the set of all points (I,0) in B x T™ such that
(Q +g:)" (I,0) = c. Suppose further that the initial
distribution p(I, 6) is such that it is not entirely contained
in By, for some c (with the exception of a set of y-measure
zero). Then it can be shown that a # 0 (see [11]), and
from boundedness of g and €2, we can conclude a < oo.
This means that if we choose initial conditions such that
the particles are not initially in only one B., then we
will observe n? diffusion when the number of iterations is
large. The converse is also true: If we observe n? diffusion
(i.e., a # 0), then the initial distribution of particles is
not entirely contained in a set B,, for only one ¢. Now
suppose our system is ergodic on B x T™. Then, clearly,
a = 0 and the diffusion exponent (if it exists) v < 2.
Thus, nonergodicity is necessary (but not sufficient) for
v=2.

The above analysis is intuitively completely clear in
one direction: assuming that different initial conditions
travel with different average speeds leads to n? diffusion.
The converse question is interesting. In particular, is
it possible to obtain n? diffusion from a map for which
the time averages are equal for almost all initial con-
ditions (an extreme example being any ergodic map)?
The answer provided by the above analysis is no. The
only mechanism that leads to n? diffusion in determinis-
tic maps is the difference in time averages of (Q; + g;).

[
In many studies of the diffusion in maps, asymptotic n
behavior for diffusion was observed, but a clear associ-
ation with the difference in time averages was not pre-
sented. For example, in their pioneering work on diffu-
sion in maps Cary and Meiss [12] observed n? diffusion in
a nonergodic regime caused by the so-called accelerator
modes (see the discussion below). In a recent study of
Neishtadt et al. [13] on the diffusion of charged particles
moving at an angle to the magnetic field in the field of
a wave packet, the n? regime is the only one observed.
There are many examples of maps arising from fluid me-
chanical problems that exhibit n? diffusion. Nonergodic-
ity is common in measure-preserving maps (see [14,15]).
Therefore, the phenomenon analyzed here should be im-
portant. It is especially important in numerical studies,
where the convergence of the diffusion exponent -y should
be carefully tested. In particular, small nonergodic re-
gions in the phase space may cause v to converge to two
on very long time scales, although it may seem to have a
very well defined value at intermediate time scales.

Let us consider a common situation arising in two-
dimensional maps of the form (1),where M : B x T! —
B x T'. Maps of this form may possess so-called ac-
celerator modes, which we now define. In many nu-
merical studies it has been observed that there may ex-
ist an elliptic fixed point p = (Ip,00) of M such that
(Q: + g:)" (I0,600) = ¢ # 0. This elliptic fixed point is
typically surrounded by invariant curves. This structure
is then usually referred to as an accelerator mode island.
Physically, the requirement on the time average means
that, when viewed on IR, the point p moves to oo when
n — oo, depending on the sign of the time average of
(€2 + g:) at that elliptic fixed point (a similar argument
goes through for cycles of elliptic fixed points). Now we
show that this means that there is a subset of BxT?, hav-
ing nonzero measure, containing the elliptic fixed point,
which has the property that almost all points in that sub-
set have the same time average of (Q2; + g;) as the elliptic
fixed point.

Consider M : B x T* — B x T! as defined above,
where B is an interval in IR, L is the period or “length”
of T, and p = (o, 6p) is an elliptic fixed point such that
0;41 — 0; = L, which implies that (; + g:)* (Zo,60) =
L # 0. Suppose further that M is sufficiently differen-
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tiable so that the KAM theorem can be applied. Then
there is a set D of positive measure, with p € D, such
that (2; + g:)* (I,0) = L for almost every (I,6) € D.

To prove this, we first observe that by Moser’s version
of the KAM theorem [16] there is a closed curve I, in-
variant for M, such that I' is the boundary of a region
of the phase space containing p. We refer to this region
as A. By continuity of M and the fact that p maps to
p+(0,L),

M(A) = A+ (0,L),

meaning that the region A is just translated by the map
M.

For every point p; starting inside A, the difference be-
tween its 6 coordinate at the nth iterate and 6(M™(p)),
denoted €(n) is, by the above argument, bounded. We
have

lim S (PY) _ i O(M(p)) + e(n)

n—00 n n—oo n
0 n

o 0OM@)
n—o0 n

= (s + g:)* (lo,00) = L,

if the quantity on the left hand side exists. Since, by
Birkhoff’s ergodic theorem, it does exist for amost all p;
inside T', we are done.

Now suppose that for M an accelerator mode island as
above exists. Suppose also that a chaotic region exists, in
which (€ + g:)* (Zo,60) = 0, and the initial distribution
of particles is such that it occupies both the accelerator
mode island and the subset of the chaotic region of pos-
itive measure. Then our results on diffusion apply, i.e.,
a # 0 and the long time diffusion behaves as n%. Actu-
ally, it is enough to assume that (2; + g;) # (2 + g:) (p)
to conclude n? diffusion.

Many studies of diffusion have been done in the con-
text of dissipative maps, rather then volume-preserving
ones (see, e.g., [17]), with n? diffusion observed. The gen-
eral reasoning above (not the accelerator-mode example)
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applies to those, if we assume that the time averages ex-
ist. The necessity of such an assumption is connected
to the fundamental difficulty of proving an equivalent of
Birkhoff’s ergodic theorem in a dissipative context.

Let us now turn to the question of how the above pic-
ture changes when a small amount of noise is added to
the system. In particular, we consider the perturbation
of a system (1) of the form

[ = I 4 f(Im,07) + 61,
0n+1 L Q(In) +g(In,0‘n) + 60, (2)

where 61, 60 are random variables sampled from Gaussian
distributions with mean zero and variance o. We call o a
bare diffusivity. In [18], Karney et al. studied this prob-
lem for the case where the deterministic part was given by
the standard mapping. Using heuristic arguments, they
have discovered that for small o, the diffusion coefficient,

lim Do 1

n—oo n o
when o is small. Note first that as a small amount of noise
is added, the exponent v jumps from 2 to 1: the limit
o = 0 is singular in that sense. This can be shown rig-
orously using homogenization methods for (2) [19]. Also
the following can be proven: n? diffusion in the o = 0
limit is equivalent to the % dependence of the diffusion
coefficient for small o. Thus, the result of Karney et al.
admits a rigorous justification.

The above provides a clear connection between a de-
terministic diffusion of (1) and diffusion in a stochastic
map (2). As we have already mentioned, n? is a common
result in a class of volume-preserving maps. Besides, it
implies universal 1/o0 scaling of the diffusion coefficient
once a small amount of noise is added to a system.
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