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We investigate the possibility that the dark matter candidate is from a pure non-Abelian gauge theory of
the hidden sector, motivated in large part by its elegance and simplicity. The dark matter is the lightest
bound state made of the confined gauge fields, the hidden glueball. We point out that this simple setup is
capable of providing rich and novel phenomena in the dark sector, especially in the parameter space of large
N. They include self-interacting and warm dark matter scenarios, Bose-Einstein condensation leading to
massive dark stars possibly millions of times heavier than our sun giving rise to gravitational lensing
effects, and indirect detections through higher dimensional operators as well as interesting collider
signatures.
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I. INTRODUCTION

An outstanding issue of fundamental importance in
particle physics is the nature of the dark matter (DM).
This question is particularly intriguing and perplexing,
given the preponderance of DM over visible matter and its
profound gravitational effects throughout the evolution of
the universe.
In this work, we investigate the viability of the dark

matter candidate from the hidden sector with a non-Abelian
gauge symmetry, a minimal theory with nontrivial mass
scale. The gauge group is chosen to be SUðNÞ, and, for
simplicity, neither fermions nor any other particle is
introduced in that sector. The dark matter is the lightest
hidden glueball state, which is likely a scalar field, and a
non perturbative bound state made of a pair of confined
gauge fields. This is a very simple setup with only a handful
of parameters, which are the intrinsic scale Λ, the number
of colors N, and θ—for the T and P-odd θ-term in the
hidden sector. They control the mass and all the couplings
of the hidden glueball dark matter (GDM), named ϕ
hereafter.
In spite of the simplicity of this setup, we will show that

the hidden glueball indeed satisfies all the conditions for a
dark matter candidate. Moreover, such dark matter could be
both self-interacting and warm, thus safely evading all the
potential problems of the usual collisionless cold dark
matter. The scalar GDM could have the novel feature of
Bose-Einstein condensation into compact objects thus
plausibly leading to interesting gravitational effects such
as microlensing. It could also be tested in particle physics
experiments if there exist interactions of it with standard
model particles via higher dimensional operators. We will
elaborate on these points in order in the following sections.
In passing, we want to briefly say that we are aware of

several other works which include a non-Abelian dark

sector in their overall setup. The hidden glueball as dark
matter was first mentioned in [1], but at that time the
cosmological observation data were very preliminary.
There are more recent works which involve, in addition,
other elaborate features with significantly different phe-
nomenology from this study; see, e.g. [2–6]. We emphasize
that to the best of our knowledge, no existing work in the
literature is devoted to the possibility of DM simply being
in a pure SUðNÞ gauge theory, which is what we are
studying here. In our following discussions, we point out
the impact of the number-of-color parameter N, and use
the recent results on bullet cluster and Lyman-α forest
observations to set important constraints on the GDM
parameter space.

II. HIDDEN GLUEBALL OF DARK MATTER

In this work, we consider a dark matter candidate from a
very simple setup, a hidden sector non-Abelian gauge
symmetry with only gauge fields and without fermions.
The Lagrangian of the model is

L ¼ −
1

4
Ha

μνHaμν; ð1Þ

where Ha
μν is the gauge field strength of the group SUðNÞ,

with an unspecified value of N to be determined later. As is
well known the gauge coupling gh becomes large at low
energy scale and dimensional transmutation generates a
scale Λ for the theory, similar to the emergence of the QCD
scale. Around the scale Λ, the physical degrees of freedom
turn into a tower of hidden glueballs. From the knowledge
based on existing calculations the lowest lying glueball
states when θ ¼ 0 carry quantum numbers JPC ¼ 0þþ or
0−þ [7,8]. Their masses depend on the two parameters of
the theory, Λ and N. Also from lattice calculations [9,10],
the lightest glueball masses approach a constant at large N,
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and can be parametrized as m ¼ ðαþ β=N2ÞΛ where α, β
are order one parameters. In general, we could also
introduce the θ-term in the above Lagrangian, which is
C even and P odd. It can mix the 0þþ and 0−þ states and the
lightest glueball state is then not an eigenstate under P.
We argue that within this simple setup the lightest hidden

glueball state ϕ could be a candidate for dark matter.1 It
could be cosmologically long lived. As the lightest state,
there is nothing in the hidden sector that ϕ could decay
into. It is possible for ϕ to decay into two gravitons,
and this decay rate can be estimated as Γϕ ∼m5=M4

pl ∼
τ−1U ðm=107 GeVÞ5, where τU ¼ 1017 sec is the age of our
Universe. The lifetime of ϕ against gravitational decay can
be long enough if its mass is less than 107 GeV. Moreover,
the hidden glueball ϕ particles could have the correct relic
density and be (non)relativistic enough as will be elabo-
rated in the next section. So far, we have not written down
any interactions between the hidden sector and the visible
sector, which by gauge invariance is only possible in the
form of higher dimensional operators. We will explore
the resulting experimental bounds in an example where the
hidden GDM ϕ decays into photons.

III. SELF-INTERACTING DARK MATTER

The effective potential of a real scalar ϕ takes the form

VðϕÞ ¼ 1

2
m2ϕ2 þ 1

3!
λ3ϕ

3 þ 1

4!
λ4ϕ

4 þ 1

5!
λ5ϕ

5 þ � � � ; ð2Þ

where the � � � represent higher power terms. It is useful to
consider the large N behavior of these couplings,

λ3 ¼
κ3m
N

; λ4 ¼
κ4
N2

; λ5 ¼
κ5

mN3
; ð3Þ

where κ3;4;5 are order one parameters to be determined from
non perturbative calculations. From these interactions, we
could obtain the 2 → 2 elastic scattering cross section of ϕ
as a function of the two model parameters, mðΛÞ and N,

σ2→2 ∼ 1=ðm2N4Þ: ð4Þ

The self-interacting dark matter scenario has been proposed
[11] to reconcile the core/cusp problem in dwarf galaxy
observations and simulations. For this scenario to work,
the elastic scattering cross section of dark matter must lie in
the range 0.1 cm2=gram < σ2→2=m < 10 cm2=gram. This
requirement puts a correlated constraint on m and N,

m ∼ 0.1 GeV · N−4=3: ð5Þ

This region is shown between the blue curves in Fig. 1.
Below the blue curves in the gray shaded region, the dark
matter has too strong of a self-interaction and is excluded
by the bullet cluster observation [12].

IV. SELF-HEATING AND WARM DARK MATTER

In addition to elastic scattering, the effective interactions
in (2) also allow ϕ to have the inelastic 3↔2 annihilation,
which changes the ϕ particle number. The analog of the
cross section could be estimated as

σ3→2 ∼ 1=ðm5N6Þ: ð6Þ

The 3 → 2 reaction rate is given by Γ3→2 ¼ n2ϕσ3→2, where
nϕ is the ϕ number density in the universe. This interaction
could play an important role in the velocity dispersion of
dark matter in the early universe, because after each 3 → 2
reaction, the two outgoing ϕ particles are relativistic. If this
process has a larger reaction rate than the Hubble expan-
sion, the annihilation will keep heating up the ϕ particles
until it reaches the balance with the inverse process where
two energetic ϕ’s annihilate into three.
Gauge invariance dictates the interactions between the

SM and hidden sector to take the form HμνHμνOSM. They
will cause the dark matter ϕ to decay and thus are highly
constrained as we show below. This makes the early

FIG. 1. The parameter space of m versus N where the lightest
hidden glueball could be a self-interacting and/or warm dark
matter candidate. The two blue curves correspond to constant
values a DM self-interaction cross section, σ2→2=m ¼
0.1; 10 cm2=gram, respectively. Self-interacting DM lives be-
tween the blue curves. The red curves correspond to constant
values of damping scale in the power spectrum, Rcutoff ¼ 0.01,
0.1, 1 Mpc, respectively. Warm DM lives along the middle red
curve. The glueball dark matter can be both self-interacting and
warm at the intersection of the two regions (thick purple curve).
In the gray shaded region, the dark matter either has too
strong self interaction and is excluded by the bullet cluster
observation, or is too warm and excluded by the observation of
the Lyman-α forest.

1If after mixing of the 0þþ and 0−þ glueball states, the heavier
mass eigenstate is kinematically forbidden to decay into two ϕ’s,
it can also be stable and be the dark matter. In this case, we could
have two components of dark matter existing in nature.
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universe history of dark matter in our model very different
from the one considered in [13]. Next, we assume that there
are no interactions for ϕ and SM particles to exchange heat
in equilibrium; therefore the entropy of the ϕ particles is
conserved, d

da ½ðρϕ þ pϕÞa3=T� ¼ 0. For nonrelativistic ϕ’s,
i.e., Tϕ ≪ m, one could derive

TϕðaÞ≃ Tϕða0Þ
�
1þ 3Tϕða0Þ

m
ln

a
a0

�−1
; ð7Þ

where a is the Hubble radius at a given time in the early
universe (a ¼ 1 today), and a0 < a corresponds to an
earlier time. This means the ϕ particles thermalize to a
temperature which drops more slowly than 1=ðln aÞ with
the expansion of the universe, as first noted in [1]. In
contrast, the temperature of the photons falls as Tγ ∼ 1=a,
thus leading to the interesting possibility that the hidden
and SM sectors have their own temperatures and evolve
separately.
It is useful to expand the energy density and pressure of

ϕ to next order in Tϕ=m, ρϕ ¼ mnϕð1þ 3Tϕ=ð2mÞÞ,
pϕ ¼ nϕTϕ. With this one can obtain the evolution equa-
tion of nϕ as a function of a,

dðnϕa3Þ
da

≃ −
ðnϕa3Þ

a

3Tϕ

m
: ð8Þ

The message here is that the number density of ϕ dilutes
faster than a−3; thus the total number of ϕ is still decreasing
while the 3 → 2 annihilation is in equilibrium. The con-
sumption of ϕ’s is used to maintain the temperature of the
remaining ϕ particles. The final DM relic density is given
by nϕ at the decoupling of 3 → 2 annihilation. In Fig. 2, we

show the ratio of the decoupling temperature Tϕ
dec to the

mass of ϕ that is needed to give the correct dark matter relic
density, for different values of the photon temperature at
this epoch. The initial conditions that give the desired
values of Tϕ

dec and Tγ
dec might be set by reheating the SM

and dark sectors to different temperatures after the inflation.
See e.g. [14], or through the freeze-in mechanism.
Before the 3 → 2 decoupling, the temperature Tϕ stays

roughly 1 order of magnitude below the mass m. The
strongly coupled ϕ particles form a fluid with a large speed
of sound cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tϕ=ð3mÞp

∼ 0.3c. It allows the perturba-
tions to the density of ϕ within one Hubble patch to be
smoothed out efficiently via collisional damping, thus
offering the opportunity for ϕ to be a warm dark matter
candidate.
To find when the 3 → 2 process decouples, or the

corresponding temperature of photon Tγ
dec, we first express

the 3 → 2 rate in terms of the photon temperature,

Γ3→2 ¼ n2ϕσ3→2 ≃ 10−17 GeV2T6
γ=ðm7N6Þ: ð9Þ

When it is equal to the Hubble rate, we get the photon
temperature at the decoupling of the 3 → 2 reaction

Tγ
dec ≃ 1 keV½m=ð1 keVÞ�7=4½N=ð104Þ�3=2: ð10Þ

The collisional damping length scale (measured today) is
determined by the Hubble radius at the 3 → 2 decoupling

Rcd ¼
1

HðTγ
decÞ

Tγ
dec

2.7 K
≃ 0.1 Mpc

�
1 keV
Tγ
dec

�
: ð11Þ

After the 3 → 2 decoupling, the temperature of ϕ will drop
as 1=a2 such that the velocity redshifts as 1=a. We calculate
the free streaming length of ϕ particles from this time, t3→2

dec ,
to the time of matter-radiation equality, teq. This corre-
sponds to the collisionless damping scale,

Rfs ¼
Z

teq

tdec

vðtÞ
aðtÞ dt ¼

2veqteq
aeq

ln

"
aeq
adec

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2eq

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2dec

p
#
:

At matter-radiation equality teq ¼ 2 × 1012 sec, aeq ¼
1=ð1þ zeqÞ, zeq ≃ 3360, and veq ¼ vdecadec=aeq. In prin-
ciple, the distance ϕ travels would be even shorter than Rfs
because of the 2 → 2 scatterings which if frequent would
make the ϕ particles diffuse rather than free stream. In
practice, we find that for most of the parameter space of
interest to this study, Rfs ≲ Rcd. Therefore, it is Rcd in (11)
that determines the actual damping scale Rcutoff in the dark
matter power spectrum.
For ϕ to be the warm dark matter which solves the

missing satellite problem, it is required that Rcutoff ¼ Rcd ∼
0.1 Mpc [15]. The contours of fixed Rcutoff are shown by
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FIG. 2. Ratio of temperature Tϕ to the mass m of ϕ particles at
the decoupling of 3 → 2 annihilation that could give the correct
dark matter relic density. The curves correspond to different
photon temperatures (Tγ

dec) at this epoch. Roughly, Tϕ is only 1
order of magnitude below the mass, and the ϕ particles remain
heated before the decoupling.
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the red curves in Fig. 1. We further find that for m ∈
ð0.1; 10Þ keV and N ∈ ð105; 103Þ (along the thick purple
curve), the hidden glueball ϕ dark matter qualifies to be
both self-interacting and warm, thus plausibly solving all
the small scale structure problems. Below the red curves in
the shaded region, the damping scale Rcutoff becomes too
large and is in contradiction with the Lyman-α forest
observation [16].
Moreover, if the dark matter still has non-negligible

velocity and fast 2 → 2 self-interactions during the for-
mation of the cosmic microwave background (CMB), it
might leave an imprint in the CMB spectrum. We leave this
interesting possibility for a future detailed study.

V. COMPACT BOSON STARS

So far, we have not considered any interactions
between the hidden SUðNÞ sector and SM particles. In
the absence of such interactions, we would look for the
dark matter only through gravitational effects. It has been
shown that the dark scalar field could have Bose-Einstein
condensation and form massive compact objects such as
boson stars [17,18]. This may result in very dramatic
gravitational effects in our universe today such as micro-
lensing [19,20].
The mass range of the boson star depends on whether the

self-interaction of ϕ is repulsive or attractive. The size of
the boson star is typically much larger than the inverse of
the glueball mass. In the hidden glueball model Eq. (2), at
low momentum transfer the effective coupling of the ϕ4

self-interaction is

λeff ¼ λ23=ð2m2Þ þ λ4 ¼ ðκ23=2þ κ4Þ=N2: ð12Þ

Non perturbative calculations are needed to reliably deter-
mine the size and signs of κ3, κ4, and in turn the fate of the
condensate.
The opportunity to observe the microlensing effect arises

if there are repulsive self-interactions for the ϕ field, with
λeff > 0. In this case, it has been calculated [18] that the
boson star mass from condensation lies in the range
1–108M⊙, for the glueball dark matter with mass from
the GeV to 0.1 keV scale. In particular, in the interesting
window of Fig. 1 where the dark matter is both self-
interacting and warm, the corresponding boson star mass is
in the range 106–108M⊙.
The sign of the λ4 term is closely related to the scattering

length in glueball-glueball scattering, which could be
determined using nonperturbative methods [21]. In
Ref. [22], an effective picture is discussed where the
intrinsic scale of SU(N) theory is connected to the vacuum
expectation of the scalar glueball. In this case, one finds
λ4 > 0, and this suggests that λeff is positive. On the other
hand, if λeff < 0, the boson star mass would be too small to
have an observable effect.

VI. INTERACTIONS WITH THE SM THROUGH
HIGHER DIMENSIONAL OPERATORS

In general, there may exist interactions between the
hidden sector and the SM sector. This may allow the
glueball dark matter to be discovered through means other
than gravitational effects. However, we do not want to
introduce other particles just to facilitate these interactions,
since as explained before, we want to explore how far our
setup with just a simple pure SUðNÞ gauge theory can go in
addressing the DM issue. So, without introducing addi-
tional particles, gauge invariance dictates that these inter-
actions may arise via higher dimensional operators,

Lint ¼ ð1=MnÞHμνHμνOSM; ð13Þ

whereM is the cutoff scale. There are many choices for the
OSM part. Here we discuss one representative which
couples the hidden sector directly to photons,

Lint ¼
1

M4
HμνHμνðFαβFαβÞ → Nm3

M4
ϕFαβFαβ; ð14Þ

where F is the photon field strength. In the second step, we
go to the low scale where ϕ is the lightest glueball field. In
the following, we choose the value of N making ϕ a self-
interacting dark matter, N ≃Max½ðm=0.1 GeVÞ−3=4; 2�. It
is also worth noting that the effective interaction of ϕ is
proportional to powers of its mass m3.
From Eq. (14), the decay rate of ϕ into two photons (see

the left diagram in Fig. 3) is

Γϕ→γγ ¼
N2m9

4πM8
: ð15Þ

There are experimental searches for monochromatic pho-
tons from decaying dark matter, from cosmic gamma rays
to x rays and even extragalactic background lights [23–27].
They give the strongest constraints on the scale M for the
dark matter ϕ mass above ∼100 keV. We show these
constraints in Fig. 4.
For lower ϕ masses, we find the energy loss constraints

of stars place a stronger lower limit. The relevant reaction is
the analog of the Primakoff-type process eþ γ → eþ ϕ, as
shown by the right diagram of Fig. 3. The cross section was
calculated in [28],

FIG. 3. Feynman diagrams for ϕ decay and production in stars
from Eq. (14). The relation between the decay rate and cross
section is dictated by Eq. (16).
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σv ¼ 64πα
ωΓϕ→γγ

m2

ðω2 −m2Þ1=2ðω −mÞ
ðm2 − 2ωmÞ2 ; ð16Þ

where ω is the energy of the incoming photon and m is
the mass of glueball dark matter. To calculate the rate of
energy loss from the star via ϕ emission, we first average
the σv · ω over the thermal photon energy distribution, and
then the energy loss rate per unit volume is given by
Φ ¼ nenγhσv · ωi. We consider the energy loss argument
[29] of horizontal branch stars (HB) and the cooling of
type-II supernova (SN). For HB, the core temperature
is 10 keV, the mass density is 104 gram=cm3, and the
energy loss rate per unit volume is required to be Φ <
10−42 MeV5. For SN, the core temperature is 30 MeV, both
photons and electrons are thermalized, and the energy loss
rate is required to be Φ < 10−14 MeV5. Their constraints
on M (lower bound) are shown in Fig. 4. Not-too-much
energy loss of HB sets the strongest lower bound on M for
ϕ mass below ∼100 keV. For the model to be realistic in
cosmology, the hidden sector must not thermalize with the
SM sector, at least not since the onset of BBN. We find this
to be a subdominant constraint (shown by the blue curve
in Fig. 4).
The operators in Eq. (14) not only lead the glueball dark

matter particle to decay, but also allow it to scatter with SM
particles by virtue of the expansion HμνHμν ∼ Nm3ϕþ
m2ϕ2 þ � � �. Given the above lower bounds on the cutoff
scale M, we find the direct detection cross section for the
glueball dark matter is more than 10 orders of magnitude
below the current LUX bound [30]. This is consistent with

the null results so far in the direct detections. It also implies
that if the future direct detection experiments discover the
dark matter, it cannot originate from our dark matter
candidate.2

From Fig. 4, we find that for the dark matter mass m in
the range keV to MeV, the cutoffM is allowed to be as low
as the weak (or TeV) scale. The effective operator in
Eq. (14) could be generated by integrating out a heavy
particle X in the ultraviolet theory, which carries both
electromagnetic charge and color under the hidden SUðNÞ
gauge group. If a pair of XX̄ can be produced at colliders,
they would eventually form a heavy X-onium bound state
and annihilate away into the hidden glueball dark matter or
photons. The final states will exhibit exotic signatures like
the quirks [31,32].
Furthermore, if the heavy X particle is a fermion

and also carries color under the SUð3Þc of QCD, the
effective Lagrangian will contain an operator
ð1=M4ÞðH ~HÞðG ~GÞ [similar to Eq. (12) of Ref. [33]]. In
the presence of the θH ~H term from the hidden SUðNÞ
theory, it induces an effective θQCDG ~G term, with θQCD∼
ðm=MÞ4θ, and makes a contribution to the neutron electric
dipole moment (nEDM). The important point we want to
make here is that the nEDM bound does not require the θ
parameter of SUðNÞ to be unnaturally small, unlike θQCD.
The current experimental upper bound on nEDM of around
10−26 e cm [34] translates, by the arguments of [35], into
θQCD ≲ 10−13. From the above relation between θQCD and
θ, we find that θ is allowed to be order one if m=M ≲ 10−3,
which is always satisfied from Fig. 4.

VII. GDM DECAY INSIDE A DARK STAR

In the last section, we have discussed the photon line
searches and constraints on hidden glueball dark matter
decay, which could most frequently happen at the center of
the galaxy. The other possibility is that, if the scalar GDM
undergoes the Bose-Einstein condensation and forms the
dark stars as we also discussed, their decays could contribute
to new (pointlike) sources of cosmic ray emissions.
Here we consider the decay of GDM inside a dark star

into SM neutrinos, and use the Super-Kamiokande (SK)
results to constrain the distance of the dark star from us
as a function of GDM mass and lifetime. The effective
operator for GDM decay could be of the form
ðHμνDρHμνÞðL̄γρðaþ biγ5ÞLÞ=M4, where L is the SM
lepton doublet. The SK experiment has taken data for
1679.6 days with an effective area of 103 m2, and set an
upper limit on the number of high energy neutrinos above a
GeV beyond the atmospheric neutrino background, which

Fermi LAT
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INTEGRAL

X Ray
HB

SN

TBBN

10 8 10 6 10 4 0.01 1 100
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104

107

1010
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M
G

eV
O 1 M4 H H F F

FIG. 4. Lower bounds on the cutoff scale M. Cosmic ray
photon observations constrain glueball dark matter decay into
photons, and from right to left, the curves correspond to
constraints from Fermi-LAT, EGRET, COMPTEL, INTEGRAL,
x ray. The black (brown) solid curve is the lower bound on M
from the energy loss argument of HB (SN). The blue curve
represents the requirement that the hidden sector is not thermal-
ized with the SM sector below the BBN temperature.

2A positive direct detection signal would imply our hidden
glueball dark matter decays too fast and cannot comprise all the
dark matter relic density. There then needs to be some other
components of dark matter too.
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is around ∼10 [36,37]. We will consider the GDM mass
above a few GeV scale. From the discussion of [18], the
largest allowed dark star mass as a function of the GDM
mass is

MDS ≃ 0.01M⊙
�
10 GeV

m

�
5=4

: ð17Þ

If the GDM particle has a lifetime τ, and the dark star is of
distance d away from the Earth, then the number of
neutrinos from all the GDM decay within a time interval
Δt ≈ 108 sec, and reaches the detector with effective area
A, is

Nν
SK ≃ 1045

�
1018 sec

τ

��
10 GeV

m

�
9=4 A

4πd2
: ð18Þ

The weak interaction cross section for high energy neutrinos
to interact with nucleons inside the SK detector is σ ∼
10−38Eν cm2=GeV [38]; thus the probably for each neutrino
to react to produce a signal is P ∼ 10−13ðm=10 GeVÞ, where
we have traded the neutrino energy for the dark matter mass.
The SK bound on the number of events then requires
Nν

SKP≲ 10, which translates into

d≳ 10−3 kpc

�
1018 sec

τ

�
1=2

�
10 GeV

m

�
5=8

: ð19Þ

Note that the distance of the Galactic Center to the Earth is
around 8 kpc, so the dark star is allowed to be much closer
and well within our Galaxy.

VIII. SUMMARY

In this paper, we investigate the physics of SUðNÞ
glueball dark matter from a pure gauge theory non-
Abelian hidden sector. In spite of the simple setup, with
few parameters, there are quite a few novel features of this
dark matter candidate. We have discussed the conditions
for it to be self-interacting and/or warm dark matter. The
glueball dark matter could also condense into more
compact objects like boson stars and be observed by
gravitational lensing effects. Therefore, our model can
naturally accommodate the fact that there is only gravita-
tional evidence for dark matter so far [39,40]. It could also
interact with the standard model sector via higher dimen-
sional operators and subject to traditional direct searches
for light scalar dark particles. The direct detection cross
section of the glueball dark matter is constrained to be well
below the experimental sensitivity, now as well as for the
foreseeable future. We also comment on the possible UV
origin of the higher dimensional operators leading to
interesting collider signatures.
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