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Abstract— The AC power flow equations are fundamental in
all aspects of power systems planning and operations. They are
routinely solved using Newton-Raphson like methods. However,
there is little theoretical understanding of when these algorithms
are guaranteed to find a solution of the power flow equations or
how long they may take to converge. Further, it is known that in
general these equations have multiple solutions and can exhibit
chaotic behavior. In this paper, we show that the power flow
equations can be solved efficiently provided that the solution
lies in a certain set. We introduce a family of convex domains,
characterized by Linear Matrix Inequalities, in the space of
voltages such that there is at most one power flow solution in
each of these domains. Further, if a solution exists in one of these
domains, it can be found efficiently, and if one does not exist, a
certificate of non-existence can also be obtained efficiently. The
approach is based on the theory of monotone operators and
related algorithms for solving variational inequalities involving
monotone operators. We validate our approach on IEEE test
networks and show that practical power flow solutions lie within
an appropriately chosen convex domain.

I. INTRODUCTION

Power systems are experiencing revolutionary changes
due to various factors, including: Integration of renewable
generation, distributed generation, smart metering, direct
or price-based load-control capabilities. While potentially
contributing to the long-term sustainability of the power
grid, these developments also pose significant operational
challenges by making the power system inherently stochas-
tic and inhomogeneous. As these changes become more
widespread, the system operators will no longer have the
luxury of large positive and negative reserves. Moreover,
operating the future power grid will require developing new
computational tools that can assess the system state and
its operational margins more accurately and efficiently than
current approaches. Specifically, these new techniques need
to go beyond linearized methods of analysis and ensure
that the power system is safe even in the presence of large
disturbances and uncertainty. In this paper, we focus on the
fundamental equations of the power system – the Power
Flow (PF) equations. The equations constitute a system
of nonlinear equations and are known to exhibit complex
and chaotic behavior [1][2]. In the past, when the power
systems were operated well within their security margins, the
PF equations were solved without difficulty using standard
techniques like Newton-Raphson and its variants. However,

1Krishnamurthy Dvijotham and Steven Low are with the De-
partment of Computing and Mathematical Sciences, California Insti-
tute of Technology, 1200 E California Blvd, Pasadena, CA, USA
dvij@cs.washington.edu,slow@caltech.edu

2Michael Chertkov is with the Center for Nonlinear Studies (CNLS)
and T-Division, Los Alamos National Laboratory, Los Alamos, NM, USA,
chertkov@lanl.gov

changes in the power system mentioned above mean that
this may no longer be possible. Thus, Newton-Raphson tech-
niques which rely on good initialization may fail to converge.
In such a situation, it becomes difficult to assess whether
the system is actually operationally unsafe or the Newton-
Raphson method failed because of numerical difficulties or
bad initialization. In this paper, we propose an approach to
remedy this problem. Our approach is based on the theory of
monotone operators. Just as a convex optimization problem
can be solved efficiently, one can find zeros of a monotone
operator efficiently. (In fact, the gradient of a convex function
is a monotone operator.) Thus, if we can show that the
nonlinear PF equations can be described by a monotone
operator, then they can be solved efficiently. It turns out
that the PF operator is not globally monotone, however it
is monotone over restricted domains.

Our main technical result is a description of the do-
main over which the power flow operator (whose zeros are
solutions to the PF equations), is monotone. In fact, we
introduce a family of monotonicity domains, parameterized
by a matrix-valued parameter. Each monotonicity domain is
characterized by a Linear Matrix Inequality (LMI) in the
real and imaginary components of the voltage phasor at each
bus. Within each of these monotonicity domains, there can
be at most one solution of the PF equations. Further, the
solution of the PF equations within each domain can be
reduced to the solution of a monotone variational inequality,
for which there exist efficient algorithms. The algorithms run
in polynomial time and terminate either by finding a solution
to the PF equations or a certificate that no solution exists to
the PF equations within that domain.

The choice of monotonicity domain is critical, since dif-
ferent domains cover different parts of the voltage space.
Ideally, one would like to find a monotonicity domain that
covers all the solutions of interest, i.e. solutions that satisfy
typical operational constraints on voltages and phases. In
general, this is a hard problem. We deal with this problem by
proposing a sufficient condition to ensure that voltages satis-
fying some bounds are constrained within the monotonicity
domain. Finding the largest bound can then be cast as a
quasi-convex optimization problem. We use this technique to
pick the monotonicity domain. Numerical tests show that this
approach is able to generate a sufficiently large monotonicity
domain for several test networks.

The rest of this paper is organized as follows. Section II
covers relevant background on power systems and monotone
operators. The main technical results are presented in Section
III. In Section IV, we discuss how our approach compares
to related work on conditions for existence and uniqueness
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of PF solutions. In Section V, we present numerical results
illustrating our approach on some IEEE benchmark networks.

II. MODELING POWER SYSTEMS

A. Notation
R is the set of real numbers, C the set of complex

numbers. Rn,Cn denote the corresponding Euclidean space
in n dimensions.

Given a set C ⊂ Rn, Int (C) denotes the interior of the
set. Given a complex number x ∈ C, Re (x) denotes its real
part and Im (x) its imaginary part. x∗ denotes its complex
conjugate. If X ∈ Cn×n is a square matrix with complex
entires, X∗ denotes the conjugate transpose. ‖x‖ refers to
the Euclidean norm of a vector x ∈ Rn or x ∈ Cn and
〈x, y〉 to the standard Euclidean dot product. Given an vector
x ∈ Rn, di (x) denotes the n×n diagonal matrix with (i, i)-
th entry equal to xi. Sk denotes the space of k×k symmetric
matrices.

Given a differentiable function f : Rk 7→ Rk, ∇f denotes
the Jacobian of f , a k × k matrix with the i-th row being
the gradient of the i-th component of f .

For M ∈ Rn×n, Sy (M) = M+MT

2 . I (p) is the indicator
function:

I (p) =

{
1 if p = True
0 if p = False

B. Power System Model
The transmission network is modeled as a graph (V, E)

where V is the set of nodes and E is the set of edges. In
power systems parlance, the nodes are called buses and the
edges are called lines (transmission lines). We shall use these
terms interchangeably in this manuscript. Nodes are denoted
by indices i = 0, 1, . . . , n and edges by ordered pairs of
nodes (i, j). We pick an arbitrary orientation for each edge,
so that for an edge between i and j, only one of (i, j) and
(j, i) is in E . If there is an edge between buses i and j, we
write i ∼ j, j ∼ i.

Edges correspond to transmission lines. The transmission
network is characterized by its complex admittance matrix
Y ∈ Cn×n. Y is symmetric but not necessarily Hermitian.
Let G = Re (Y ) , B = Im (Y ).

Let Vi be the voltage phasor, Pi and Qi denote active and
reactive injection at the bus i respectively. V is the vector of
voltage phasors at all buses. Buses are of three types:
• (P,V) buses where active power injection and voltage

magnitude are fixed, while voltage phase and reactive
power are variables. The set of (P,V) buses is denoted
by pv. The voltage magnitude setpoint at bus i ∈ pv is
denoted by vi.

• (P,Q) buses where active and reactive power injections
are fixed, while voltage phase and magnitude are vari-
ables. The set of (P,Q) buses is denoted by pq.

• Slack bus, a reference bus at which the voltage mag-
nitude and phase are fixed, and the active and reactive
power injections are free variables. The slack bus is
denoted by S and its voltage phasor by V0. We choose
bus 0 as the slack bus as a convention.

C. Background

1) Power Flow Equations: The PF equations model the
flow of power over the network. They are a set of coupled
nonlinear equations that follow from Kirchoff’s laws applied
to the AC power network. Circuit elements in the standard
power systems models are all linear, if one ignores discrete
elements like tap-changing transformers. Even though Ohm’s
laws and Kirchhoff’s laws are linear in voltages and currents,
power is a product of a voltage and a current and hence
quadratic.

PF equations are static and as such the equations model the
regime when the network is balanced, that is, the net sum of
power consumptions, injections and power dissipated is zero.
This relies on the assumption that at the time-scale where
the PF equations are solved (every few minutes), the system
is in a quasi-steady state, i.e. the dynamic disturbances
have been resolved through actions of the automatic control
(voltage regulators, power system stabilizers and primary and
secondary frequency control systems). The complete set of
PF equations over the graph (V, E) is formally stated as

Pi = Re
(
Vi(Y V )

∗
i

)
i ∈ pq ∪ pv

Qi = Im
(
Vi(Y V )

∗
i

)
i ∈ pq

|Vi| = vi i ∈ pv

VS = V0

It will also be convenient, for what follows, to utilize the
Cartesian parametrization of voltages:

Vi = V xi + jV yi , i ∈ pq ∪ pv.

Let V c =

(
V x

V y

)
denote the stacked vector of real and

imaginary voltage components, so that V ci = V xi , V
c
n+i =

V yi .

Definition 1. Define the power flow operator as F : R2n 7→
R2n

[F (V c)]i = Gii

(
(V xi )

2
+ (V yi )

2
)

−
∑
j∼i

Bij
(
V yi V

x
j − V xi V

y
j

)
−
∑
j∼i

Gij
(
V xi V

x
j + V yi V

y
j

)
− Pi, i ∈ pv ∪ pq

(1a)

[F (V c)]n+i = Bii

(
(V xi )

2
+ (V yi )

2
)

+
∑
j∼i

Bij
(
V xi V

x
j + V yi V

y
j

)
+
∑
j∼i

Gij
(
V yi V

x
j − V xi V

y
j

)
−Qi, i ∈ pq

(1b)

[F (V c)]n+i = (V xi )
2
+ (V yi )

2 − v2i , i ∈ pv (1c)

Then the PF equations can be written as

F (V c) = 0.



D. Monotone Operators

We now review briefly the theory of monotone operators,
as is relevant to the approach developed in this paper. For
details and proofs of the results quoted in this Section, we
refer the reader to the recent survey [3]. A function H :
Rk 7→ Rk is said to be a monotone operator over a convex
domain C if

〈H (x)−H (y), x− y〉 ≥ 0 ∀x, y ∈ C

A monotone operator is a generalization of a monotonically
increasing function (indeed, if k = 1, the above condition
is equivalent to monotone increase: x ≥ y =⇒ H (x) ≥
H (y)). H is said to be strongly monotone with modulus m
(or simply strongly monotone) if

〈H (x)−H (y), x− y〉 ≥ m

2
‖x− y‖2 ∀x, y ∈ C

for some m > 0. A common example of a monotone operator
is the gradient of a differentiable convex function.

Definition 2 (Monotone Variational Inequality). Let C ⊂ Rk
be a convex set and H be a monotone operator over C. The
variational inequality (VI) problem associated with H and C
is:

Find x ∈ C such that 〈H (x), y − x〉 ≥ 0 ∀y ∈ C (2)

The following result shows that monotone variational
inequalities with compact domains always have a solution
and can be solved efficiently.

Theorem II.1. If H is strongly monotone operator over
a compact domain C, then (2) has a unique solution x∗.
Further, an approximate solution xε ∈ C satisfying

‖xε − x‖ ≤ ε (3)

can be found using at most O
(
log
(
1
ε

))
evaluations of H

and projections onto C.

Remark 1. In this manuscript, we are interested in finding
zeros of the PF operators introduced above. We can use
monotone operator theory for this as follows: Suppose H
satisfies the hypotheses of theorem II.1. If there exists a point
x∗ ∈ C with H (x∗) = 0, then this is the unique solution
of the variational inequality. Conversely, if the variational
inequality has a solution with H (x∗) 6= 0, then have a
certificate that there is no solution of H (x) = 0 with x ∈ C.

The next result provides a simple characterization of
monotonicity for differentiable operators:

Theorem II.2. Suppose that H is differentiable. Then H is
strongly monotone with modulus m > 0 over C if and only
if

∇H (x) +∇H (x)
T � mI ∀x ∈ C

III. MONOTONICITY OF THE POWER FLOW OPERATOR

In this Section, we study the monotonicity of the PF
operator F (1). As described in Section II-D, zeros of F
(solutions to the PF equations) can be found efficiently if F
is monotone. Thus, if we can prove that the PF operator is

monotone, the PF solutions can be found efficiently. Since
PF equations can have multiple isolated solutions, it is not
possible that the PF operator is globally monotone because
this would imply a unique solution to the PF equations.
Thus, we focus on characterizing domains over which the
PF operator (or a scaled version of it) is monotone. Proofs
of all theorems in this section are deferred to the appendix
Section VI.

A. Characterization of Domain of Monotonicity of the Power
Flow Operator

We now derive our main results on the monotonicity of
the PF operator (1). In order to state the result succinctly,
we will need to define some matrices that are functions of
the network topology, locations of (P,V) buses and of the
network impedance matrices.

Definition 3. Define the following row vectors:

Gi =
(
Gi1, Gi2, . . . , Gin

)
Bi =

(
Bi1, Bi2, . . . , Bin

)
Gipq =

(
Gi1I (1 ∈ pq) , . . . , GinI (n ∈ pq)

)
Bipq =

(
Bi1I (1 ∈ pq) , . . . , BinI (n ∈ pq)

)
Let ei denote the i-th column of the n × n identity matrix,
so ei has zeros everywhere except the i-th entry.

Definition 4. Define the following matrices:

Mi =



(
di
(
Gi
)
+ eiG

i di
(
Bi
)
− eiBi

−di
(
Bipq

)
− eiBipq di

(
Gipq

)
− eiGi

)
i ∈ pq(

di
(
Gi
)
+ eiG

i di
(
Bi
)
− eiBi

−di
(
Bipq

)
+ 2eiei

T di
(
Gipq

) )
i ∈ pv

(4a)

Ni =



(
−di

(
Bi
)
+ eiB

i di
(
Gi
)
+ eiG

i

−di
(
Gipq

)
+ eiG

i
pq −di

(
Bipq

)
− eiBi

)
i ∈ pq(

−di
(
Bi
)
+ eiB

i di
(
Gi
)
+ eiG

i

−di
(
Gipq

)
−di

(
Bipq

)
+ 2eiei

T

)
i ∈ pv

(4b)

M0 =

(
di
(
G0
)

di
(
B0
)

−di
(
B0

pq

)
di
(
G0

pq

)) (4c)

N0 =

(
−di

(
B0
)

di
(
G0
)

−di
(
G0

pq

)
−di

(
B0

pq

)) (4d)

We now state our main technical result, which shows that
the PF equations can be solved by solving a monotone varia-
tional inequality (for which there exist efficient algorithms).

Theorem III.1. Let W ∈ R2n×2n be an invertible matrix
and m > 0. There is at most one solution of the PF equations
F (V c) = 0 over the domain:

C (W ) =

{(
V x

V y

)
:

n∑
i=0

Sy (W (MiV
x
i +NiV

y
i )) � mI

}
(5)



Define FW (V c) = WF (V c). FW is strongly monotone
with modulus m over the set C (W ). Let V c∗ be the unique
solution to the monotone variational inequality:

V c ∈ C (W ) (6)
〈FW (V c), α− V c〉 ≥ 0 ∀α : α ∈ C (W ) (7)

If F (V c∗) = 0, V c∗ is the unique solution to the PF
equations in C (W ). Otherwise, there are no solutions to
F (V c) = 0, V c ∈ C (W ).

Remark 2. We implicitly assume existence of a solution
to the variational inequality above. This is guaranteed (by
theorem II.1) if C (W ) is compact. Magnitudes of voltage
phasors in practical power systems are always bounded, and
one can simply pick a large positive number b > 0 such that
all power flow solutions satisfy ‖V c‖ ≤ b and define C (W )
with this additional constraint, ensuring it is a compact set.

1) Illustration on 2-bus network: We consider a 2-bus
network with admittance matrix

Y =

(
.05− j1.11 −.05 + j1.11
−.05 + j1.11 .05− j1.11

)
We fix = I, V0 = 1 + j0. Let V1 − V0 = V x + jV y . By

varying W , we can find two disjoint monotonicity domains
for this system:

W1 =

(
−6.75 .31

0 .1

)
,W2 =

(
−6.75 .31

0 −.1

)
It can be verified that these two monotonicity domains

cover the space of (V x, V y) and there is at most one solution
in each domain. In fact, in this system, as long as there is
a solution, there exist two (one in each domain). As the
loading increases, the two solutions move closer to each
other and eventually disappear (at the point of the saddle-
node bifurcation). Note that the boundary between the two
solutions is observed exactly at V1 − V0 = − 1

2 . Note that
letting V1 = V exp (jθ), or equivalently

V cos (θ) ≥ 1

2

which is a well-known classical criterion for voltage stability
in the two bus example.

B. Selection of the Monotonicity Domain

Theorem III.1 shows that PF solutions in C (W ) can be
found efficiently. However, the matrix inequality characteriz-
ing C (W ) is not intuitive and does not have a simple inter-
pretation. Further, the choice of W would affect the domain
of monotonicity. Thus, it is important to pick W so that
C (W ) contains the “operationally relevant” PF solutions. In
this Section, we describe a technique to achieve this goal.

We consider the following class of operational constraints:

|Vi − vi| ≤ δi

where v is a “nominal voltage profile. Intuitively, one can
think of this as the “center” of the monotonicity domain.

Stated in terms of V c =
(
V x

V y

)
, the constraint becomes√

|V xi − vxi |2 + |V
y
i − v

y
i |2 ≤ δi i = 1, . . . , n

Cop (δ) ={(
V x

V y

)
:
√
|V xi − vxi |2 + |V

y
i − v

y
i |2 ≤ δi i = 1, . . . , n

}
(8)

We now state a theorem that gives a sufficient condition
to guarantee that Cop (δ) ⊂ C (W ).

Theorem III.2. Let

K =

(
1−
√
2 −1 −1 1−

√
2

1
√
2− 1 1−

√
2 −1

)
(9)

Suppose ∃W,X1, . . . , Xn ∈ S2n satisfying
n∑
i=0

Sy (W (Miv
x
i +Niv

y
i )) � mI +

n∑
i=1

Xi (10a)

Xi � δk (−K1lMi −K2lNi) , l ∈ {1, . . . , 4} (10b)
Xi � δk (K1lMi −K2lNi) , l ∈ {1, . . . , 4} (10c)

Then Cop (δ) ⊂ C (W ). Further, this is a convex feasibility
problem in W , X1, . . . , Xn.

Theorem III.2 gives us a principled way to choose W so
that Cop ⊂ C (W ). However, the system of constraints (10)
may be infeasible. In this situation, we can try to see if a
scaled version of the constraint set C (δ) lies within C (W ).
Specifically, we look for the largest possible ρ > 0 such that
C (ρδ) ⊆ C (W ).

We then formulate the following problem:

Maximize
ρ≥0,W∈R2n×2n,Xi∈S2n

ρ (11a)

Subject to
n∑
i=0

Sy (W (Miv
x
i +Niv

y
i )) � mI +

n∑
i=1

Xi (11b)

Xi � ρδk (−K1lMi −K2lNi) , l ∈ {1, . . . , 4} (11c)
Xi � ρδk (K1lMi −K2lNi) , l ∈ {1, . . . , 4} (11d)

lemma 1. (11) is a quasi-convex optimization problem and
can be solved efficiently. Further, if the matrix

n∑
i=0

Miv
x
i +Niv

y
i

is full-rank, the problem is always feasible and the optimal
solution satisfies Cop (ρδ) ⊆ C (W ).

Remark 3. The condition that
∑n
i=0Miv

x
i + Niv

y
i is non-

singular means that the Jacobian of the power flow equations
at the nominal voltage profile v is non-singular. This is
generically true, except for very special choices of the v
and the network admittance matrix. Further, power system
voltage stability criteria are often formulated in terms of the
“distance to singularity” of the Jacobian matrix, so enforcing
a non-singular Jacobian is a reasonable restriction.



IV. RELATED WORK

Several papers have studied conditions for existence of
solutions to the PF Equations [4][5][6]. In [7], the authors
propose a sufficient condition for the insolvability of the PF
equations based on a convex relaxation. Our approach differs
from these in the following important ways:
• To solve the PF equations in C (W ), we provide neces-

sary and sufficient conditions, that is, our approach finds
a solution in C (W ) if there exists one, and a certificate
of non-existence if there is no solution.

• Our approach is algorithmic, that is, we provide an
algorithm (based on solving a monotone variational
inequality) that is guaranteed to find the solution ef-
ficiently, i.e. in polynomial time.

• If there are additional operational constraints
(V x, V y) ∈ S, where S is a convex set and S ⊂ C (W )
, e.g. corresponding to line protection [8] and/or line
flow limits, we can additionally answer the question of
whether there exists a PF solution with (V x, V y) ∈ S.
This is an important contribution, since most of the time
system operators are interested in finding PF solutions
that additionally satisfy operational constraints.

• We can find multiple PF solutions by choosing differ-
ent nominal voltage profiles v. This is relevant for a
number of important power system applications, such
as assessing distance to voltage collapse and transient
stability (computation of the so-called controlling un-
stable equilibrium point).

In [4], the authors also propose an algorithm based on a
contraction mapping. However, the algorithm only works in
a small ball around the origin in the (P,Q) space. This was
extended to other kind of sets in [9]. On the other hand, our
results are stated in terms of a convex constraint in (V x, V y)
space. Understanding the set of (P,Q) for which the solution
(V x, V y) ∈ C (W ), and conversely the set of (V x, V y) for
which (P,Q) lies in a certain set, is still an open problem,
even for the special case where all buses are (P,V) buses.
This setting was studied and the results were extended
and connected with results on synchronization in coupled
oscillators in a series of recent papers [10][11][12]. These
authors provided distinct sufficient and necessary conditions
on the injections for the existence of power flow solutions
with phase differences satisfying certain bounds.

In recent work [13], we have shown that for the special
case of lossless networks (and networks with constant ratio
of inductance to resistance) the PF equations can be solved
analyzing a convex optimization problem. Specifically, we
minimize the so-called energy function over a restricted
domain (the convexity domain of the energy function).
The optimization problem in [13] was formulated in polar
coordinates, i.e. in terms of the voltage magnitude and
phase at each bus. In that setting, we get a single domain
characterized by a nonlinear but convex matrix inequality,
and any solution within this domain can be found efficiently.
In fact, if one writes the PF equations in polar coordinates,
one can show that the monotonicity domain coincides pre-

cisely with the convexity domain of the energy function.
However, this polar-coordinate monotonicity domain of [13]
is not equivalent to monotonicity domain in the Cartesian
coordinates discussed in this manuscript. In this context,
work reported in the present manuscript was inspired by
our earlier attempt to extend the polar-coordinate based
approach to lossy networks. Even though we were not able
to find a simple convex characterization of the monotonicity
domain in the polar coordinates, it lead us to discover that
in the Cartesian coordinates the monotonicity domain can
be described using LMIs. Numerical tests show that the
domain of convexity of the energy function is a superset
of the monotonicity domain computed by (11) for lossless
networks. Furthermore, in that setting, we were able to prove
a stronger result for tree networks showing that there exists
a PF solution if and only if there exists one in the convexity
domain. The condition characterizing the convexity domain
also had a simple physical interpretation - it simply requires
voltage magnitudes and phases at the neighboring buses to
be “close” to each other.

However, the approach reported in the present manuscript
is more general. It allows one to tune the monotonicity
domain to compute multiple solutions. Furthermore, the
monotonicity domain is expressed as an LMI here and can
be handled using off-the-shelf software, while the nonlin-
ear matrix inequality from [13] requires specially designed
solvers. Understanding the relationship between the approach
of this manuscript and the one from [13], in particular, the
relationship between cartesian and polar parameterizations,
is an important direction for future work.

V. NUMERICAL ILLUSTRATIONS

This Section presents numerical experiments illustrating
theoretical results presented above. We start by illustrating
monotonicity domain on a 3 bus system example, and
then discuss numerical experiments performed on the case9
and case14 systems available with the MATPOWER [14]
software. For solving the convex optimization problem (11),
we use the parser-solver CVX [15][16]. For solving the
variational inequality, we implement our own solver based
on the extra-gradient method described in [3]. The imple-
mentations used here are not optimized and currently do not
scale to larger systems. Algorithmic developments that would
enable applications of these ideas to larger network will be
an important direction for future work.

A. Illustration of Monotonicity domain for 3-bus network

We consider a 3 bus network with bus 0 being the slack
bus, bus 1 a (P,V) bus and bus 2 a (P,Q) bus. The voltage
phasor at the slack bus is taken to be 1 + j0 and at the
(P,V) bus to be exp (jθ). The phasor at the (P,Q) bus is
parameterized as 1+ j0+V x+ jV y where V x, V y represent
the deviations from the reference voltage. The variables to
be solved for in the PF equations are V x, V y, θ. We pick
a nominal voltage profile by setting all voltages equal to
1 + j0. We use (11) to find a monotonicity domain W . We



then plot the monotonicity domain in (V x, V y) space for
multiple values of θ in Fig. (1).

Fig. (1) shows that for small values of θ, the monotonicity
domain covers a fairly large space in V x, V y . As θ increases,
the domain shrinks and ultimately, before |θ| hits π

2 , it
becomes empty. This is consistent with the idea that all
voltages “close” to the nominal voltage profile are contained
within the monotonicity domain. Fig. (1) also shows that
the domain actually includes a fairly large region around the
nominal voltage profile.

(a) θ = 0 (b) θ = .23π

(c) θ = −.23π (d) θ = .45π

(e) θ = −.45π

Fig. 1: Monotonicity Domain for a 3 bus system

B. Computation of Voltage Phasor Bounds

We use the methodology of Section III-B to find the
maximum possible deviation from a nominal voltage profile
contained within a monotonicity domain. We choose vi =
V0, so that every bus has a voltage phasor equal to the
reference at the slack bus. For a system with only (P,Q) buses,
this is in fact a solution to the PF equations for the case of
no, 0, injections. In practical power systems, large deviations
from the slack bus voltage are relatively rare. Therefore, it
is reasonable to seek a monotonicity domain that includes
all solutions in some neighborhood of this special (nominal)
one.

We choose a uniform bound δi = 1 and solve (11) to com-
pute W . We report the bounds for our test networks in the
Table I. These bounds easily suffice to cover typical voltages
observed in practical power systems operations. However,
these domains may be insufficient to describe solutions in
the case of extreme injections used in planning studies and
contingency analysis. Our numerical experience suggests that
these bounds are are conservative. More specifically, there
are many (V x, V y) that do not satisfy the bound given by
ρ, but still lie within C (W ). The results of the next section
establish this numerically.

System Limit on |Vi − V0| (p.u system)
Case 9 .2
Case 14 .25

TABLE I: Bounds on V c guaranteeing V c ∈ C (W )

C. Scaling Loads

In this Section, we use the monotonicity domain obtained
by solving (11), but instead of relying on the computed
bound ρ, we test numerically whether existence of a solution
of the PF equations implies existence of a solution in the
monotonicity domain. Of course, determining existence of
a solution to the PF equations is a hard problem, so we
instead rely on sufficient conditions for insolvability devel-
oped in [7]. We use the implementation available with the
MATPOWER package [17].

Our experimental approach is as follows: We take the
injections given as part of the Matpower test case, and scale
each injection by a complex scalar: S̃i = αSi. By scaling
the magnitude of injections, we reach a point where there
are no solutions to the power flow equations (maximum
loadability). By scaling by a complex factor, we effectively
achieve different scaling for the real and reactive parts of the
injections. We pick the magnitude of α uniformly distributed
between 1 and a maximum value and the phase uniformly
distributed between π/6 and π/3. (We observe that once
we scale beyond a certain threshold there are very few
cases where the PF equations have a solution.) These choices
create a space of injections that include at least part of
the solvability boundary (injections beyond which the PF
equations have no solution). For a uniform grid of the α
space described above with 100 points, we compute the
number of points at which there are no PF solutions (that
is in this case we have a certificate of infeasibility based on
[7]) and the number of points at which there are no solutions
in C (W ). The results are shown in Table (II).

System C (W ) −C (W ) NoSol
Case 9 38 6 56
Case 14 40 49 11

TABLE II: Existence of Solutions in the Monotonicity Do-
main: The first column denotes the number of instances
(out of 100) such that a PF solution within C (W ) was
found. The second denotes the number of instances for which
a PF solution within C (W ) was not found, and there is
no certificate of insolvability of the power flow equations
based on the sufficient condition from [7]. The last column
denotes the number of instance where we have a certificate
of infeasibility.

The results show that for the 9 bus network, most cases
where a solution exists lie within the monotonicity domain.
However, for the 14 bus system, there exists a significant
number of cases for which the solution does not lie in the
monotonicity domain, if it does exist. It turns out that there
are larger monotonicity domains that contain the original one



(we checked this post-hoc by solving a feasibility problem
to find a W such that C (W ) includes all the solutions found
using Newton-Raphson). Thus, it seems like the choice of W
based on (11) is not optimal and larger monotonicity domains
could be found. How one might do this in a principled way
constitutes a comprehensive direction for future work.

D. Comparison to Energy Function Approach

In this Section, we consider a lossless modification of the 9
bus and 14 bus networks and perform the same experiment as
described in the previous Section. This allows us to compare
the approach developed in this manuscript with the energy
function based approach described in [13].

The results (table III) show that for these networks, exis-
tence of a solution seems to imply existence within CEF but
not within CW . This suggests that CEF is a superset of CW
and that potentially choosing W based on (11) does not cover
all the solutions. Closing this gap and designing approaches
to ensure that CW would contain all the solutions in CEF is
a direction for future work. We anticipate that development
of this approach will likely suggest improvements applicable
to lossy networks as well.

System C (W ) CEF −C (W ) −CEF NoSol
Case 9 LL 50 56 6 0 44

Case 14 LL 62 92 30 0 8

TABLE III: Monotonicity vs Energy Function: The first,
third and final columns have the same meaning as table (II).
The second column is the number of instances where a PF
solution within CEF was found, and the final column the
number of instances where a PF solution within CEF was
not found and there is no certificate of infeasibility.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach to solving the PF
equations based on monotone operator theory. Our main
technical contribution is a characterization of the family of
domains over which the PF operator is monotone. Within
any of these domains, there can be at most one power
flow solution. The approach leads to efficient algorithms for
determining existence and actually finding solutions to the
PF equations within the monotonicity domains. In spite of
the progress reported, there still remain many unanswered
questions. First, the numerical experiments show that our
approach to selecting W based on solving (11) is potentially
conservative and misses some solutions that could be cap-
tured by other choices of W . Figuring out the relationship
between the monotone-operator approach developed h‘ere
and the energy function approach of [13] is another important
direction for future work. Finally, developing algorithms that
scale well and allow these techniques to be applied to larger
systems is another item in our path forward.
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APPENDIX

A. Proof of theorem III.1

Proof. The result is a direct consequence of the strong
monotonicity of FW over C (W ). By lemma 2, the Jacobian

http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html


of FW is given by

∇FW (β) =

n∑
i=0

W (MiV
x
i +NiV

y
i )

where β =

(
V x

V y

)
. FW is strongly montone with modulus

m if (theorem II.2)

Sy (∇FW (β)) =

n∑
i=0

Sy (W (MiV
x
i +NiV

y
i )) � mI

Thus, FW is strongly monotone over the domain β ∈ C (W ).
The remaining results follow from theorem II.1

B. Proof of theorem III.2

Proof. Let Q0 =
∑n
i=0 Sy (W (Miv

x
i +Niv

y
i )). Then,

n∑
i=0

Sy (W (MiV
x
i +NiV

y
i )) =

Q0 +

n∑
i=0

Sy (W (Mi (V
x
i − vxi ) +Ni (V

y
i − v

y
i ))) (12)

V c ∈ Cop (δ) ≡
√
|V xi − vxi |2 + |V

y
i − v

y
i |2 ≤ δi

=⇒
(
V xi − vxi
V yi − v

y
i

)
∈ δiConv

({(
K1l

K2l

)
,

(
−K1l

K2l

)}
1≤l≤4

)
This can be seen simply by plotting the points
δi (K1l + jKl2) on the complex plane and observing
that their convex hull contains the disc of radius δi centered
at the origin. Thus, for any V c ∈ Cop (δ),

− (Mi (V
x
i − vxi ) +Ni (V

y
i − v

y
i )) ∈

δiConv
(
{−K1lMi −K2lNi,Kl1Mi −K2lNi}l=1,...,4

)
From (12), we now have

n∑
i=0

Sy (W (MiV
x
i +NiV

y
i )) � Q0 −

∑
k∈E

Xk∀V c ∈ Cop

By (11b), we have V c ∈ Cop (δ) =⇒ V c ∈ C (W ), so that
Cop (δ) ⊂ C (W ).

lemma 2. The Jacobian of F (V x, V y) is given by:

∇F (V x, V y) =

n∑
i=0

MiV
x
i +NiV

y
i (13)

Proof. The entries of the Jacobian are given by:

∇F (V x, V y) =

(
S T
O L

)
with each block being n× n.

Sii = 2GiiV
x
i +

∑
j∼i

BijV
y
j −

∑
j∼i

GijV
x
j

Sij = −BijV yi −GijV
x
i

Tii = 2GiiV
y
i −

∑
j∼i

BijV
x
j −

∑
j∼i

GijV
y
j

Tij = BijV
x
i −GijV

y
i

The entries of O,L depend on whether i is a (P,Q) bus or
(P,V) bus. For i ∈ pq, we have

Oii = 2BiiV
x
i +

∑
j∼i

BijV
x
j −

∑
j∼i

GijV
y
j

Oij = BijV
x
i +GijV

y
i

Lii = 2BiiV
y
i +

∑
j∼i

BijV
y
j −

∑
j∼i

GijV
x
j

Lij = BijV
y
i +GijV

x
i

For i ∈ pv, we have

Oii = 2V xi , Oij = 0, Lii = 2V yi , Lij = 0

Using these expressions, it is not hard to see that

∇F (V x, V y) =

n∑
i=0

MiV
x
i +NiV

y
i

C. Proof of lemma 1

Proof. Suppose ∃W̃ ,Xi ∈ S2n such that the constraints are
feasible for some ρ. Then, clearly, with the same choice, they
are also feasible for any smaller ρ. Then, the sub-level sets
of the problem are convex, and hence the problem is a quasi-
convex optimization problem. Suppose

∑n
i=0Miv

x
i +Niv

y
i

is full-rank. When ρ = 0, for any fixed W̃ , we can choose
Xk = 0 and Tk, Sk to satisfy the final equality constraints.
Then, one needs to find W such that

Sy

(
W

(
n∑
i=0

Miv
x
i +Niv

y
i

))
� mI

This can always be done if
∑n
i=0Miv

x
i +Niv

y
i is full rank,

since one can simply choose

W = m

(
n∑
i=0

Miv
x
i +Niv

y
i

)−1
Hence, this optimization problem is always feasible when∑n
i=0Miv

x
i +Niv

y
i is full rank.
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