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Particle Confinement in Realistic 3D Rotamak Equilibria
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The rotating magnetic field b, of a rotamak tilts the effective flux surface seen by electrons (but not
ions). Electrons are imperfectly confined to these tilted flux surfaces, but are energetically confined in a
3D potential well bounded by an untilted flux surface. When ebo/m.vei = ro/8sin the tilt is minimized
and the well depth corresponds to MHD pressure balance.

PACS numbers: 52.55.Hc, 52.20.Dq, 52.25.Fi, 52.50.Dg

Steady-state toroidal current I, and axisymmetry are
expected to confine plasma in a steady-state toroidal
magnetic fusion reactor as follows: Iy produces poloidal
magnetic fields with associated toroidally nested flux sur-
faces ¥(r,z) while axisymmetry constrains particles to
stay on a unique flux surface. The rotamak,'”’ an
unorthodox toroidal plasma confinement device, employs
a magnetic field b, rotating at a low frequency w to give
a net toroidal drift velocity ug to electrons (but not ions)
and so provide® the steady-state current

Io=>5eP/8m,v.j0nrd , )

where P is the rotating-field input power, v,; is the
electron-ion collision frequency, and r¢ is the major ra-
dius. Equation (1) was derived® assuming that the solu-
tion to the Grad-Shafranov pressure balance equation is
the 9analytically tractable, yet realistic, Solov’ev equilibri-
um

v(r,z) =vor?Qré—r*—a?z?%)/rf, ()

where ¥ is the flux on the magnetic axis (r=rg, z=0),
the outer intersection of the separatrix with the mid-
plane z=0 occurs at Ryp;=+2r), and a is the
separatrix’s ellipticity.

Equation (1) indicates very efficient current drive G.e.,
large Io/P) at large electron temperature T, where v,
becomes very small. Furthermore, Ref. 8 demonstrated
that Eq. (1) predicts reasonably accurately the Iy mea-
sured in two rotamak experiments*® sufficiently well di-
agnosed to make a comparison. However, the actual Ig’s
in Refs. 4 and 6 were low because 7, was low (= 6-10
eVv).

T. was low in Refs. 4 and 6 despite the injection of
substantial power (10-50 kW) into small volumes; thus,
energy confinement is clearly a critical issue for ro-
tamaks. In fact, Ref. 8 showed that the confinement of
the prolate rotamak of Ref. 6 was only slightly better
than what would be attained if there were no magnetic
confinement at all and instead the plasma simply drifted
out at the ion acoustic velocity, whereas the confinement
of the nearly spherical rotamak of Ref. 4 was only about
an order of magnitude better than acoustic confinement.
This suggests that prolate (a < 1) geometry provides in-
trinsically worse confinement than spherical (a=1)
geometry. The magnetic fields in these experiments were
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very low, making the ion Larmor orbits so large that ions
were unconfined. In contrast, electron Larmor orbits
were small and the electrons ought to have been confined
to magnetic flux surfaces ¥(r,z) =const. This observa-
tion of near-acoustic confinement (i.e., electrons confined
only by the retarding ambipolar potential resulting from
the charge separation setup when they try to escape)
suggests that the electrons in Refs. 4 and 6 were not well
confined to flux surfaces [however, the short mean free
path in Refs. 4 and 6 (order of the device size) somewhat
complicates this interpretation].

Concern has been expressed that the rotating magnetic
field opens field lines, and so destroys particle confine-
ment. In response to this concern, Hugrass and Turley '’
analyzed particle orbits in a field consisting of the sum of
the equilibrium field associated with a Solov’ev flux func-
tion, b,, and its associated electric field, and an ambipo-
lar electrostatic field. They showed for this particular
case that (i) when transformed to the rotating frame, the
equations of motion describe particle motion in a com-
bination of a steady magnetic field and an electrostatic
potential implying that the energy in the rotating frame
is constant, and (ii) electrons are in a potential well in
the rotating frame, whereas ions are in a potential hill;
(iii) they provided plots of numerically integrated parti-
cle orbits demonstrating confinement.

This Letter, using a Hamiltonian-Lagrangian analysis,
presents important new confinement effects. We begin
by assuming'® (i) that the rotating field is fully penetrat-
ed,'" (i) that it does indeed cause a net electron toroidal
drift constituting an Iy, and (iii) that an externally pro-
duced vertical field is added to balance the I, force so
that the net equilibrium field has surfaces of poloidal flux
w(r,z) given by Eq. (2). The total dc magnetic field is
related to ¥ by

B=02rx) " 'V¥xVe. 3)

Also, ¥ is related to the toroidal vector potential as
Y(r,z) =2nrAy(r,z).

We calculate particle orbits in the sum of the equilib-
rium magnetic field given by Eq. (3) and the fully
penetrated rotating rotamak electric and magnetic fields

E, =wrb,cos(0—wt) ,

B=b,[fcos(8— wt) —Bsin(6—wt)] . @
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Here &, <¥w<d., and &, =eb,/m;, @&..=eb,/m, are
cyclotron frequencies defined with respect to the rotating
field strength. Also, the fields of Eq. (4) can both be de-
rived from the vector potential

A, =rb,sin(0— wt) . 5)

Equation (4) gives the vacuum fields produced by the ro-
tating field coils; Jones and Hugrass'' showed that these
are also the fields when u, is synchronous with the rotat-
ing field, because then E. vanishes in the electron frame
and so the electron fluid cannot do any shielding. This
fully penetrated regime occurs when the accelerating
toroidal force associated with the rotating field is much
stronger than the frictional drag force, and corresponds '
to the condition

a.)re/vei = a/8in s 6)

where a~rg is the minor radius and &g, = (2m, v,/
powne?) 172 is the classical skin depth.

Defining the rotating-frame toroidal angle {=6— wt,
we see that 6=E+w. In this frame the Lagrangian of a
particle with charge q is

=imli?+r2E+e)?+27
+qr(é+w)Ag+qzirb,sing.  (7)

Constant ‘¥ surface Energy bounding surface Constant ‘¥ surface

. /
n/4<€<3m/4 Sn/4<g<Tn/4

- ﬁ/4<E,<n/4 3n/4<€<Sm/4

FIG. 1. Numerically integrated electron orbit in minor cross
section of rotating frame; dashed lines are untilted flux sur-
faces [Eq. (3)], solid line is energy bounding surface [Eq. (9)],
dash-dotted lines are tilted flux surfaces [Eq. (13)]; parameters
(chosen to be similar to Ref. 4) are 7.=10 eV, B=40 G,
bo=17 G, ro=8 cm, a=0.8, f=1 MHz, and duration of in-
tegration corresponds to 6 usec.

It is more convenient to use the Hamiltonian H=X P;Q;—L where P,=8L/d7=mr, P;=0L/3¢=mr*(é+w)
+qrAy(r,z), and P,=0L/8z =mz +qrb,siné. Evaluation of the Hamiltonian gives

H(rEz,7,62) =Lt mG +r2*+2:2) — s mrio?—qroAdy

or, in terms of canonical variables,

P,Z (Pg_qrAg)z
+ |-
2m 2mr?

H(r,é,Z,Pr,P.g,Pz)= —wP: |+
Since L does not explicitly depend on time, H =const;
i.e., the energy in the rotating frame is a constant ' of
the motion. Also, from Eq. (8a) we see that H=T+V,
where T=+mG*+r26%+2%) is the kinetic energy
in the rotating frame, and V(r,z)=— §mrie?
—grwAy(r,z) is the potential energy in the rotating
frame. If V(r,z) has a minimum, then a particle can be
trapped in the well centered about this minimum. Since
the electron mass is so small, the electron centrifugal
term is negligible. Using g, = —e, the electron potential
is just V=ef¥(r,z) where f=w/2r; this indeed has a
well shape, since ¥(r,z) has a minimum on the magnetic
axis r=rg, z=0. The maximum electron excursion up
the well “side” occurs when all the electron kinetic ener-
gy has turned into potential energy, i.e., when

To+Vo=ef¥(r,z), 9

where Ty and V) are the respective initial electron kinet-
ic and potential energies. Figure 1 shows electron orbits
obtained by numerical integration of the Lorentz-force
equation using the fields of Egs. (2)-(4); parameters
were chosen to simulate Ref. 4. The minor cross section

(P, — grb,sin)?

(8a)

(8b)

2m

is plotted in four segments, each corresponding to a
toroidal quadrant in the rotating frame. The electron
trajectory lies inside the volume bounded by the flux sur-
face defined by Eq. (9). This energy bonding surface
(solid line in the Fig. 1 quadrant plots) depends on both
the electron’s initial position (which determine V) and
its initial velocity (which determines To). The orbit in
Fig. 1 clearly stays within this bounding flux surface;
also, when initial conditions were varied to give a
different bounding flux surface, the electron orbit stayed
within this new bounding surface. For ions, the potential
energy reverses sign, so that the ions are on a potential
hill. '

A particle can be confined by (i) being in a potential
well (energy-based confinement), or, alternatively, by
(ii) conservation of canonical momentum (momentum-
based confinement). That these two mechanism differ
completely is demonstrated by the everyday example of
momentum-based confinement where a spinning top
stays upright due to angular momentum conservation
and yet is clearly not energetically confined, since its
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equilibrium position is at a potential maximum.

Particle confinement to flux surfaces is a form of
momentum-based confinement and so relies on symme-
try; to observe the effect of the rotating field on this
confinement consider now the & component of Hamil-
ton’s equations, dP¢/dt = — 0H/9¢&, or

dlmr?(E+w)+qrAel/dt =qrib,cost . (10)

Recalling that the particle’s gyroradius ~+/m, we see
that the particle’s guiding-center trajectory is easily
found by letting m — 0O (massless particle) in Eq. (10),
giving

d¥/dt =2nrzb,cosé . 11)

Thus, if b,=0 we obtain the familiar result that the
particle’s guiding center is confined to a flux surface ¥
(in fact, demonstration of this provided a useful check
for our numerical code). However, if b,#0, then
toroidal symmetry is destroyed, and Eq. (11) indicates
that d¥/dt=0 so that the particle is not confined to an
equilibrium flux surface ¥.

If somewhere in the particle’s orbit z changes more
rapidly than both r and &, then over this portion of the
orbit we can approximate r and & as being constant and
integrate Eq. (11) to obtain

¥ =¥ — 27rzb, cosé = const . 12)

Using Eq. (2) in Eq. (12) we see that the surfaces of
constant ¥ are given by the curves

, = 28cose + {(28c0s&)*+2a2lr (1 = r?/2) — ¥/21} /2

)
azr

(13)

where, for clarity, all lengths have been normalized to ro,
the flux has been normalized to ¥, &=b,/B, and
B=—wy/nrd is the equilibrium field measured on the
separatrix at z =0, r=2"2p;. The constant-¥ surfaces
given by Eq. (13) are drawn for £ =0 and 7 as the dash-
dotted lines in the first and third quandrants of Fig. 1.
These constant-¥ surfaces are tilted flux surfaces in the
rotating frame, since they are downwardly shifted for
£=0, and upwardly shifted for £ =x. The tilt is caused
by the rotating field enhancing (diminishing) the
strength of the horizontally directed equilibrium field on
the top (bottom) at £ =0 and vice versa at £ =r.
Electrons, moving with thermal velocities much faster
than the rotating field velocity, tend to follow the essen-
tially poloidal magnetic field, and so see cosé as an ap-
proximately steady-state term. Hence, electron guiding
centers are confined (within a gyroradius) to the surface
¥ == const for the orbit portion where z is large (i.e., this
excludes turning points in z where z =0). Since ¥ is an
imperfect constant of the motion, electrons are imper-
fectly attached to constant-¥ surfaces, and slowly shift
from one surface to another, filling up the entire volume
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bounded by the surface determined by Eq. (9). Exam-
ination of Fig. 1 shows that the electrons do indeed fol-
low the ¥ surfaces and also stay on a given surface for
only a limited time.

If the ion thermal velocity is much lower than the ro-
tating field velocity, the term cosé appears highly oscilla-
tory to ions. This term consequently averages to zero so
far as ions are concerned, and so the ion gyroradii are
confined to the original untilted flux surface ¥.

When there is no rotating field (no tilt), the separatrix
corresponds to the ¥(r,z) =0 surface. We quantify the
tilt by examining the shift in z of the separatrix. The
curve for the shifted separatrix is found by setting ¥ =0
in Eq. (13); if we assume that §< 1, we find that the
curve for the shifted separatrix is

_,.2)1n
L~ 26cosC 2-r? .

a’r a

(14)

From Eq. (14) we see that for small § the shift in z of
the separatrix due to the tilt is given by Az =26/a?,
since the maximum z of the separatrix occurs when
r=1. The z height of the untilted separatrix is zmax
= 1/a so that the normalized shift is Az/zm.x = 26/a.
This normalized shift is large for prolate (i.e., a<<1)
geometries; this is probably why the a=0.2 plasma of
Ref. 6 had® much worse confinement than the a =0.8
plasma of Ref. 4.

When the plasma is highly tilted, there is a nearly free
flow of electrons and thus heat from the central region of
the plasma to the outer surface, since (i) the tilted flux
surfaces intersect the wall and, additionally, (ii) the elec-
trons are imperfectly confined to flux surfaces. Col-
lisions make the electron velocity distribution Maxwelli-
an, creating some energetic electrons. If these electrons
have a total energy To+ V>0 (which will occur when
Ty exceeds the well depth ef¥,) then their bounding
surface will correspond to an untilted flux surface out-
side the untilted separatrix. For example, Ref. 6 had
¥y=3.6x10"% Wb and f=1 MHz, so that all electrons
with T greater than f¥(=3.6 eV would have bounding
surfaces outside the untilted separatrix, and since 7, was
6 eV most electrons would be in this class. Such flux
surfaces outside the separatrix are unbounded in the z
direction, and so an electron that attains kinetic energy
greater than ef'¥( could be lost by flowing out in the z
direction inside a cylindrical surface given by Eq. (9).
However, if these electrons have a finite magnetic mo-
ment, they will reflect off a magnetic mirror at some
value of z (since B, increases with |z | outside the
separatrix) resulting in a mirror-confined plasma
elongated in the z direction beyond the separatrix. This
probably explains the recent puzzling observation’ in the
UCLA Racetrack rotamak of significant plasma density
extending in the z direction 50% beyond the separatrix.

Summarizing, for electrons (i) the rotating field
causes a rotating tilt ~b,/aB of the effective flux sur-
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faces, and (ii) electrons are imperfectly confined to these
tilted flux surfaces, and (iii) the electrons are confined
with a 3D potential well =ef¥(r,z), which has the
shape of an untilted flux surface. Electrons rattle
around in this well, shifting from one tilted flux surface
to another until their orbit has filled up with entire po-
tential well volume. For ions, (i) providing the ion veloc-
ity is sufficiently slow compared to the rotation of the
tilted flux surface, the ions see only the average of the ti-
Ited flux surface, which is just the original untilted flux
surface and so are confined in the usual way, and (ii) the
potential well reverses sign and so becomes a potential
hill. Hence, ions are confined by momentum conserva-
tion, not energy conservation, whereas the opposite is
true for electrons. Geometrically, the electrons are
confined to a volume (the potential well volume),
whereas ions are confined to a surface (the flux surface).

Small b,/aB would minimize the tilt. This could be
achieved if the plasma were very hot so that a substantial
Iy and hence large B could be produced with a small b,,.
However, in all experiments to date the plasma was cold
so that b,/aB = 0.1-0.5, making the tilt very important.
Durance et al.* observed for the range of parameters ob-
tainable in their experiment (cf. their Fig. 6) that the
driven toroidal current Iy and hence B scaled as P'/2
Since b,, also scales as P '/2, this means that the tilt mag-
nitude b,/aB stayed constant when P was increased,
making it impossible to achieve better confinement sim-
ply by increasing P.

Let us now examine to what extent § can be mini-
mized and the related issue of how deep an energy well
can be created. Minimizing & requires maximizing the
rotating-field coils’ rf loading resistance R|o.4, because
Ig~P~1I?R o4 and I, ~b,, where I, is the ac current in
the rotating-field coils. This required maximization of
Rioaq is obtained when® the equal sign is used in Eq. (6)
and the corresponding I, is® approximately half what
would be obtained if all electrons moved synchronously
with the rotating field; i.e., I, is given by

Io=2\2nrdew/3a . (15)

Integration of the Solov’ev current density Jo=4¥,(1
+a?/4)r/ruord over the mirror cross section up to the
separatrix gives Iy=162W¥o(1+a?/4)/3nuoroa. The
flux corresponding to Eq. (15) is thus ¥o=rnnriewmuo/8
x (14 a?/4) making the depth of the energy well (for

minimum tilt)
efVo=ne’rdw’no/16(1+a?/4), (16)

and we see that confinement of high-temperature plas-
mas may be obtained most easily by making ro larger. If
we eliminate @ in Eq. (16) using Eq. (6), we find that
the minimum obtainable tilt is

b./B=4(1 +a2/4)Ve1/a~)ce =~ 4(1+a?/4)Sxin/ro, an

suggesting the desirability for using auxiliary heating to
increase T, and so reduce the tilt. We note that the
Grad-Shafranov equation also gives a limit on pressure
confinement (obtained by equating the J, expressed in
terms of flux to the Jy expressed in terms of pressure);
this MHD limit turns out to be identical to Eq. (16) [ex-
cept for a factor of 2, probably due to the approxima-
tions in the derivation of Eq. (16)]. It is consequently
not possible to make the Eq. (16) well depth significantly
deeper than kT, since if one tried, there would result ex-
cess MHD confining force which would pinch the plasma
to a smaller radius.

Finally, we postulate that the helical Rhythmac!'?
configuration probably has a related, but helical-like tilt;
however, due to the Rhythmac’s helical symmetry, it is
likely that electrons will be confined in stellarator
fashion to rotating helical flux surfaces, and unlike the
rotamak will not rattle around in a volume.
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