CaltechAUTHORS
  A Caltech Library Service

Temporal homogenization of linear ODEs, with applications to parametric super-resonance and energy harvest

Tao, Molei and Owhadi, Houman (2015) Temporal homogenization of linear ODEs, with applications to parametric super-resonance and energy harvest. Archive for Rational Mechanics and Analysis, 220 (1). pp. 261-296. ISSN 0003-9527. https://resolver.caltech.edu/CaltechAUTHORS:20160224-071627521

[img] PDF - Submitted Version
See Usage Policy.

544Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20160224-071627521

Abstract

We consider the temporal homogenization of linear ODEs of the form ẋ =Ax+ϵP(t)x+f(t), where P(t) is periodic and ϵ is small. Using a 2-scale expansion approach, we obtain the long-time approximation x(t)≈exp(At) (Ω(t)+∫^t_0exp(−Aτ)f(τ)dτ), where Ω solves the cell problem Ω=ϵBΩ+ϵF(t) with an effective matrix B and an explicitly-known F(t). We provide necessary and sufficient conditions for the accuracy of the approximation (over a O(ϵ^(−1)) time-scale), and show how B can be computed (at a cost independent of ϵ). As a direct application, we investigate the possibility of using RLC circuits to harvest the energy contained in small scale oscillations of ambient electromagnetic fields (such as Schumann resonances). Although a RLC circuit parametrically coupled to the field may achieve such energy extraction via parametric resonance, its resistance R needs to be smaller than a threshold κ proportional to the fluctuations of the field, thereby limiting practical applications. We show that if n RLC circuits are appropriately coupled via mutual capacitances or inductances, then energy extraction can be achieved when the resistance of each circuit is smaller than nκ. Hence, if the resistance of each circuit has a non-zero fixed value, energy extraction can be made possible through the coupling of a sufficiently large number n of circuits (n≈1000 for the first mode of Schumann resonances and contemporary values of capacitances, inductances and resistances). The theory is also applied to the control of the oscillation amplitude of a (damped) oscillator.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1007/s00205-015-0932-4DOIArticle
http://link.springer.com/article/10.1007%2Fs00205-015-0932-4PublisherArticle
http://arxiv.org/abs/1310.6460arXivDiscussion Paper
ORCID:
AuthorORCID
Owhadi, Houman0000-0002-5677-1600
Additional Information:© 2015 Springer-Verlag Berlin Heidelberg. Received November 18, 2014. Accepted September 18, 2015. Published online October 1, 2015. Communicated by M. Ortiz. This work was supported by NSF Grant CMMI-092600, a generous gift from UTRC, and Courant Instructorship from New York University. We thank Wei Mao for knowledge in engineering aspects of Amplitude Modulation, Gérard Ben Arous, Emmanuel Frenod, Jonathan Goodman, Robert Kohn for stimulating mathematical discussions, and anonymous referees for helpful comments.
Funders:
Funding AgencyGrant Number
NSFCMMI-092600
United Technologies Research Center (UTRC)UNSPECIFIED
University of New York Courant InstructorshipUNSPECIFIED
Issue or Number:1
Record Number:CaltechAUTHORS:20160224-071627521
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20160224-071627521
Official Citation: Temporal Homogenization of Linear ODEs, with Applications to Parametric Super-Resonance and Energy Harvest Molei Tao, Houman Owhadi Pages 262-296
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:64712
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:24 Feb 2016 18:16
Last Modified:03 Oct 2019 09:40

Repository Staff Only: item control page