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Abstract

Purpose of review—Hematopoietic stem cells (HSCs) can self-renew and also give rise to the 

entire repertoire of hematopoietic cells. During acute infectious and inflammatory stresses, the 

hematopoietic system can quickly adapt to demand by increasing output of innate immune cells 

many-fold, often at the expense of lymphopoiesis and erythropoiesis. We review recent advances 

in understanding the regulation of stress-induced hematopoiesis with a specific focus on the direct 

effects of inflammatory signaling on hematopoietic stem and progenitor cells (HSPCs).

Recent findings—Recent studies have highlighted several areas of exciting new developments 

in the field, including the complex interaction and crosstalk within HSPCs and between bone 

marrow mesenchymal stem cells and endothelial cells needed to achieve regulated myelopoiesis, 

identification of increased number of inflammatory and infectious molecules with direct effects on 

HSPCs, the critical role of inflammatory signaling on embryonic specification of HSCs, and the 

ability of cytokines to instruct lineage choice at the HSPC level.

Summary—These exciting new findings will shape our fundamental understanding of how 

inflammatory signaling regulates hematopoiesis in health and disease, and facilitate the 

development of potential interventions to treat hematologic diseases associated with altered 

inflammatory signaling.
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Introduction

During infection and inflammation that is not limited to a local site, a stress-induced 

hematopoietic response is often elicited that is characterized by increased output of cells of 

the myeloid lineage from the bone marrow hematopoietic stem and progenitor cells (HSPCs) 

and mobilization of bone marrow neutrophils and HSPCs to the peripheral tissues. Similarly, 

hematopoiesis is shifted towards erythrocyte production during stresses like hemorrhage and 

anemia. The remarkable adaptability of the hematopoietic system to meet the demand of 
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various stressed situations is critical for survival. Myeloid cells are mostly post-mitotic and 

need to be produced from bone marrow HSPCs when they are consumed during a fight 

against infection. How is the increased production of myeloid cells achieved in response to 

an infection? In general, committed myeloid progenitor cells are induced to proliferate and 

mature as a rapid immediate response, a process termed “emergency granulopoiesis”. This 

process is covered in a recent comprehensive review [1*]. However, studies in the recent 

decade have convincingly shown that uncommitted HSPCs are actively involved in stress-

induced hematopoiesis.

HSPCs may respond to an infection via five general mechanisms: (i) respond to the 

depletion of downstream neutrophils. Although an intuitively attractive hypothesis, how 

HSPCs can sense and “numerate” peripheral neutrophils remains unclear. There is some 

evidence that a “neutrostat” system exists to sense the phagocytosis of apoptotic neutrophils 

consumed during an infection and thus signal the bone marrow to replenish the neutrophil 

pool accordingly [2-3]; (ii) respond to inflammatory cytokines produced by various 

hematopoietic and non-hematopoietic cells during an infection. There is clear evidence that 

HSPCs, including long term (LT)-HSCs, have the ability to directly respond to cytokines, 

including thrombopoietin (TPO), IL-3, stem cell factors (SCF), Flt3 ligand, interferons, 

TNFα, TGFβ, IL-6, G-CSF and M-CSF; (iii) respond to pathogen-associated molecular 

patterns (PAMPs) and danger-associated molecular patterns (DAMPs) directly through toll-

like receptors (TLRs). The evidence to support this mechanism is also strong; (iv) respond to 

paracrine signals from the stem cell niche. Stem cell niche cells, including but not limited to 

osteoblasts, perivascular stromal cells and mesenchymal stem cells, and endothelial cells are 

affected in various ways during an infection, which can influence proliferation, 

differentiation, and mobilization of HSPCs; (v) theoretically, pathogens can affect HSPC 

activity by infecting them. However, we are not aware of any convincing evidence to 

support this. In this review, we will focus our discussion of stress-induced hematopoiesis to 

mechanisms ii and iii—the direct effects of PAMPs, DAMPs and cytokines on HSPCs, 

including LT-HSCs and short term (ST)-hematopoietic stem cells and multipotent 

progenitor cells (MPPs). The important effects of infectious and inflammatory signaling on 

the bone marrow niche have been the subjects of several recent excellent reviews [4-5**] 

and will not be discussed here. We will also provide recent evidence on the pathologic 

consequences of chronic inflammation on the hematopoietic system, and how we may utilize 

our knowledge in this area to treat human hematologic malignancies.

Regulation of stress-induced hematopoiesis by TLR signaling

TLRs, belonging to a group of pattern recognition receptors, bind to conserved pathogen-

associated molecular patterns (PAMPs), e.g. lipopolysaccharide (LPS) of the bacteria cell 

wall and single-stranded RNA (ssRNA) of viruses, and signal through either MyD88-

dependent or TRIF-dependent pathways, leading to activation of the NF-κB and/or the IRF 

family of transcription factors [6]. Nagai et al. first demonstrated that HSPCs (defined as 

Flk2- LSK cells) expressed TLR2 and TLR4 receptors; furthermore, stimulation of HSPCs 

through either TLR2 or TLR4 drove myeloid differentiation in vitro in a MyD88-dependent 

manner [7]. Soon after, Massberg et al. showed that both bone marrow HPSCs and egressed 

HSPCs from peripheral lymph differentiated into myeloid cells after implantation under the 
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kidney capsule when stimulated with LPS in vivo [8]. Since then, many studies have 

confirmed these initial findings [9, 10, 11*, 12-15]. Furthermore, when highly purified LT-

HSCs (LSK CD150+CD48-) were stimulated directly with LPS in vitro, NF-κB activation 

was readily detected using a GFP-reporter mouse, demonstrating a functional TLR-4- NF-

κB axis in LT-HSCs [11*]. The consequences of TLR stimulation on HSPCs are many. In 

vitro activation of TLRs augments myeloid differentiation [7, 11*]. In vivo stimulation in 

mice generally results in increased HSC proliferation, decreased quiescence, skewed 

myeloid differentiation and decreased long-term repopulating ability [8-10, 13-18]. TLR 

stimulation of human HSPCs also induces preferentially myeloid differentiation [19-20]. 

While TLR4 and TLR2 are among the most commonly studied TLRs in the setting of 

infection, other TLRs may mediate similarly robust myelopoiesis when challenged with a 

real pathogen. This is highlighted in one study that subjected various genetic knockout mice 

to Staphylococcus aureus infection or polymicrobial peritonitis and found that stress-

induced hematopoiesis did not depend on any single TLRs, cytokines or interferons, 

suggesting that a tremendous redundancy has evolved in the mammalian hematopoietic 

system to sense and respond to bacterial infection [21].

Recent studies by us and others have shed additional insight into the complex crosstalk 

between hematopoietic and nonhematopoietic cells that corroboratively achieve efficient 

pathogen detection and subsequent upregulation of myelopoiesis (Figure 1A). Taking 

advantage of a microfluidic single cell proteomics platform, we found that a large subset of 

ST-HSCs and MPPs produced a surprisingly wide range of hematopoietic growth factors 

and cytokines in response to direct LPS and Pam3CSK4 stimulation [11*]. This was 

regulated by the TLR-NF-κB axis, as tuning up or down the strength of NF-κB activity 

could change the amounts of cytokines produced. Interestingly, the quantity and breadth of 

cytokines produced by HSPCs trumped those produced by mature myeloid and lymphoid 

cells by many-fold. More importantly, instead of a vestigial feature, HSPC-produced 

cytokines, especially IL-6, promoted myeloid differentiation in an autocrine or paracrine 

manner. This was demonstrated in vitro and during neutropenic in vivo conditions. The short 

distance autocrine and paracrine communication within HSPCs is likely also functionally 

important in the bone marrow stem cell niche or extramedullary sites where circulating 

HSPCs reside. These HSPC-initiated hematopoietic centers may be able to generate a wide 

range of hematopoietic responses tailored to particular pathogens or other stress signals. 

Future studies will be needed to address the functional significance of HSPC-produced 

cytokines in a physiological bone marrow niche in the absence of neutropenia or in an 

extramedullary site containing egressed HSPCs. In addition to HSPCs as a direct translator 

of pathogen signals into self-directing myelopoietic cytokine signals, bone marrow 

mesenchymal stem cells (MSCs) were shown to be involved in promoting myelopoiesis 

during a viral infection. A recent study nicely demonstrated that in response to antigen 

stimulation or acute viral infection, cytotoxic T cells released IFN-γ, acting on MSCs to 

produce IL-6. Similarly, IL-6 acted on bone marrow HSPCs to promote myeloid 

differentiation [22*]. Given the known effect of IFN-γ on HSCs [15], it will be interesting to 

separate the direct and indirect effects of IFN-γ on HSCs and the stem cell niche, 

respectively, during a viral infection.
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Furthermore, endothelial cells have been shown to be an important sensor of systemic LPS 

or E. coli challenge, leading to G-CSF production in a MyD88-dependent but TRIF-

independent manner [23*]. In these models, endothelium-produced G-CSF was shown to be 

the primary stimulator of emergency granulopoiesis. It is interesting to note that, in contrast 

to LPS injection, E. coli challenge stimulated emergency granulopoiesis, albeit at a reduced 

level, when MyD88 was deleted in endothelial cells. This suggests that cells other than 

endothelial cells and cytokines other than G-CSF can function to promote granulopoiesis in 

a more complex infectious model. In fact, G-CSF has been shown to be dispensable for 

emergency granulopoiesis in systemic fungal infection [24]. G-CSF signaling regulates 

granulopoiesis at multiple stages, from uncommitted HSPCs to neutrophils. However, the 

predominant effect of G-CSF is on lineage-committed granulocytic precursor cells, at least 

for steady state granulopoiesis [25-26]. It will be interesting to determine whether G-CSF 

acts primarily on committed myeloid progenitor cells, bone marrow niche cells, or directly 

on HSPCs to promote myeloid differentiation during stress conditions.

Mechanistically, the TLR-MyD88/TRIF-NF-κB axis is among the most commonly 

implicated pathway in regulating stress-induced hematopoiesis. Interestingly, a recent study 

showed that LPS induced granyzme B expression in LT-HSCs through the TLR4-TRIF-p65 

NF-κB axis and granzyme B caused cell-autonomous apoptosis in HSCs [27*]. On the other 

hand, LPS induced cytokine production in ST-HSCs and MPPs through the TLR-p50 NF-κB 

pathway, leading to cytokine production and autocrine/paracrine signaling [11*]. Suffice it 

to say that stress-induced hematopoiesis is a highly complex and dynamic process that 

involves crosstalk between HSPCs, bone marrow stromal cells, and nonhematopoietic 

tissues to sense a pathogenic organism and convert the signal of an infection into the signal 

for myeloid differentiation.

Regulation of stress-induced hematopoiesis by cytokine signaling

In addition to TLR ligands, cytokines produced during stressed conditions can directly act 

on HSPCs to regulate hematopoiesis. SCF, TPO, Flt3 ligand, IL-3 and IL-6 are among some 

of the first identified cytokines to regulate HSPC proliferation, self-renewal and survival 

[28-33]. For example, we and other groups recently showed that IL-6 can be produced by 

bone marrow HSPCs during TLR stimulation and by MSCs during IFNγ stimulation and can 

act on neighboring HSPCs, in particularly MPPs, to stimulate myelopoiesis [11*, 22*, 34]. 

Recent studies have also expanded the list of cytokines and PAMPs with direct effects on 

HSPCs (Figure 1B) [12, 15, 35, 36]. Both IFNα and IFNγ were shown to directly stimulate 

quiescent HSCs to proliferate [37-40]. More recent evidence suggested that the effects of 

interferons on HSCs may be complex. While the finding that IFNγ exposure has a negative 

impact on HSC’s long-term repopulating potential is generally agreed upon, whether IFNγ 

stimulates or inhibits HSC proliferation has been debated [41, 42]. A recent study showed 

that IFNα-driven HSC proliferation was only transient and HSCs rapidly returned to a 

quiescent state with chronic exposure, a protective mechanism from chronic infection-driven 

HSC exhaustion [43*]. Effects of TNFα on HSCs are also dose- and context-dependent. In 

general, it appears that activation of TNF signaling in HSCs inhibits proliferation and results 

in decreased long-term repopulating potential [44-46]. However, studies using aged mice or 

different doses of TNFα showed that activation of TNFα signaling in HSCs was protective 
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against apoptosis and thus enhanced hematopoietic engraftment in a transplant setting [47, 

48]. TGFβ1 appeared to have differential regulatory effects on different subsets of HSCs, 

stimulating myeloid-biased HSCs to proliferate while inhibiting lymphoid-biased HSCs 

[49]. Mechanistically, TGFβ1 signaling in HSCs was regulated in part by transcription 

intermediary factor 1γ (Tif1γ) and RNA binding protein Musashi 2 (Msi-2) [50, 51].

Recent years have also seen a renewed debate over whether cytokines can instruct lineage 

choice of uncommitted HSPCs versus simply promote preferential proliferation and survival 

of stochastically committed progenitor cells [52]. Mossadegh-Keller et al. took advantage of 

time-lapse single cell imaging and single cell gene expression analysis to show that M-CSF, 

but not G-CSF or GM-CSF, directly induced PU.1 expression in LT-HSCs and instructed 

LT-HSCs towards myeloid lineage in the absence of proliferative or survival advantage, thus 

providing a strong case that cytokines can instruct lineage choice in uncommitted HSCs 

[53**]. Furthermore, a high level of erythropoietin (EPO) was also shown to instruct HSCs 

and MPPs towards the erythroid lineage at the expense of myeloid and lymphoid cells by 

suppressing non-erythroid transcriptional programs in uncommitted stem and progenitor 

cells [54*]. These studies underscore the ability of hematopoietic cytokines released under 

different stress conditions to actively instruct uncommitted HSPCs to differentiate into a 

particular cell lineage on demand (Figure 1C).

Regulation of embryonic hematopoietic stem cell specification by 

inflammatory signaling

Another important concept has emerged recently inflammatory signaling plays a vital role in 

embryonic HSC specification. Several studies have shown that inflammatory pathways, 

including TNFα, IFNγ, IFNα and TLR signaling, serve a surprisingly important role in the 

emergence of early embryonic HSPCs in mice and zebrafish (Figure 1D) [55*, 56*, 57*, 

58*]. Sawamiphak et al. found that overexpressing IFNγ increased the number of emerging 

HSCs from the hemogenic endothelium in zebrafish, while knocking down IFNγ or its 

receptor had the opposite effect; the authors went to show that IFNγ likely acted 

downstream of Notch signaling and blood flow in an cell-autonomous manner through 

STAT3 to drive HSC emergence [58*]. In a parallel study, Espin-Palazon et al. examined a 

different inflammatory pathway involving TNFα in both zebrafish and mice and found that 

primitive neutrophils were the source of TNFα which acted through TNFR2 to activate 

again Notch signaling as well as NF-κB to promote the emergence of HSCs from hemogenic 

endothelium [57*]. Similar findings were reported almost concurrently in two additional 

studies. Li et al. demonstrated that both IFNγ and IFNα played important roles in HSPC 

formation in both mice and zebrafish and the source of interferons was also from primitive 

myeloid population [56*], while He et al. showed that inflammatory signaling involving the 

TLR-NF-κB-Notch axis was an important regulator of hemogenic endothelium-derived 

HSPC development [55*]. These studies are intriguing and have opened a new area of 

investigation in HSC development in the context of inflammatory signaling. Clearly, a 

conserved set of molecules and signaling pathways involving interferons, TNFα, TLRs and 

NF-κB that are traditionally linked to inflammation and infection is also critical in the early 

embryonic emergence of HSCs. From a more philosophical perspective, how did 
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inflammatory molecules evolve to regulate both embryonic HSC development and stressed 

hematopoiesis during an infection? It is interesting that mice with genetic deletion in many 

of these pathways are not only viable but have surprisingly few defects in the hematopoietic 

stem cell compartment, suggesting that there may be substantial redundancy and/or 

compensatory mechanism in the signaling pathways for hematopoietic stem cell 

specification. Perhaps stress is required to reveal the HSC defects in these mice with genetic 

deletions.

Conclusions and future directions

The remarkable ability of HSPCs to adapt to various stresses, such as infection and 

inflammation, is critical for an organism’s survival. In the acute setting, pathogen-associated 

molecules and inflammatory cytokines generally induce HSPCs to proliferate and 

differentiate towards the myeloid lineage, serving as a protective immune response against 

pathogens. However, chronic uncontrolled stimulation may be detrimental to HSC’s self-

renewal and long-term multi-lineage differentiation ability. Recent studies have increasingly 

recognized an active role of HSPCs at the heart of a well-orchestrated hematopoietic 

response during stressed conditions through the discovery of a highly complex cell-cell 

signaling network in which HSPCs participate and an expanding cast of inflammatory and 

infectious molecules that HSPCs react with. Several major areas of research have not been 

addressed. Firstly, viral, bacterial of fungal pathogens often activate multiple TLRs and 

stimulate production of numerous cytokines. A systems biology approach may be needed to 

understand how HSPCs integrate different combinations of TLR and cytokine signals into a 

unique hematopoietic response. Secondly, the recent discovery that basal activation of 

inflammatory signaling in the absence of infection promotes embryonic HSC development 

opens up many areas of research. Can we identify the core inflammatory signaling to aid ex 

vivo differentiation of HSCs from embryonic stem cells or induced pluripotent stem cells, 

one of the major hurdles in regenerative medicine? Is basal activation of TLR or cytokine 

signaling also important for steady state hematopoiesis? If so, what are the endogenous 

sources of TLR ligands and inflammatory cytokines? Lastly, how can we apply the 

knowledge of physiological stress-induced hematopoiesis to human hematologic diseases? 

One important question is whether dysregulation of stress-induced hematopoiesis 

contributes to bone marrow failure and hematopoietic malignancies in humans. 

Interestingly, several large scale epidemiological studies have shown that chronic immune 

stimulation from previous infections and autoimmune diseases increases the risk of 

developing myeloproliferative neoplasms (MPNs), bone marrow fibrosis, acute 

myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) later on [59-61]. 

Using a genetic mouse model with deficiency in microRNA-146a, we have provided direct 

experimental evidence that chronic low-grade inflammation in genetic susceptible hosts was 

sufficient to drive HSC exhaustion, leading to bone marrow failure and myeloid 

malignancies in mice. Furthermore, downregulating the p50 subunit of NF-κB or IL-6 

significantly dampened chronic inflammation-driven HSC exhaustion and oncogenesis, 

providing a potential strategy for intervention [62]. A strategy to target IRAK1, a kinase 

linking TLR and cytokine stimulation to NF-κB, has been tested in a pre-clinical model of 

MDS and shown to be effective in eliminating MDS cells while sparing normal human 
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HSPCs [63]. One other area of clinical application lies in the utilization of cytokines to 

activate dormant leukemic stem cells for targeted molecular therapies. This has been tried in 

CML and polycythemia vera by combining interferon therapy with Bcr-Abl and JAK2 

inhibitors, respectively [64-65]. In fact, combination of imatinib and IFNα was more 

effective in achieving a molecular response in CML patients in a Phase III clinical trial; 

however the mechanism underlying the improved efficacy was not studied [66-67]. 

Controlling chronic inflammation and targeting inflammatory signaling that is aberrantly 

activated in hematologic malignancies will be a promising chemopreventive and therapeutic 

strategy; on the other hand, waking up leukemic stem cells from dormancy with PAMPs or 

cytokines may finally make them vulnerable to therapeutic targeting.
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Key points

• Bone marrow HSPCs can be activated by TLR ligands while MSCs can be 

activated by IFNγ to release IL-6 in the stem cell niche to promote myelopoiesis 

in a paracrine manner.

• Numerous cytokines, PAMPs and DAMPs can act directly on HSPCs to 

stimulate hematopoiesis, leading to increased HSPC proliferation and myeloid 

differentiation.

• Cytokines, including M-CSF and EPO, have the ability to instruct lineage 

choice at the HSPC level during stressed conditions.

• Inflammatory signaling traditionally associated with infection and immune 

activation is also critical for embryonic HSC fate specification.

• Long-term consequences of uncontrolled chronic inflammatory stress include 

HSC exhaustion and myeloid oncogenic transformation.
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Figure 1. 
Emerging concepts in the regulation of hematopoiesis by inflammatory signaling. A. 

Complex paracrine and autocrine signaling within HSPCs and between bone marrow 

stromal cells. IL-6 is produced by ST-HSCs and MPPs upon LPS stimulation and by MSCs 

upon IFNγ stimulation; G-CSF is produced by endothelial cells upon LPS stimulation; IL-6, 

IFNγ and G-CSF stimulate myelopoiesis via paracrine and/or autocrine signaling. B. An 

expanding list of PAMPs, DAMPs and cytokines with direct effects on HSPCs. C. 

Cytokines such as M-CSF and EPO can instruct lineage choice of uncommitted HSPCs by 

promoting lineage-specific transcriptional factor while suppressing the alternative cell fates. 

D. Inflammatory molecules, including TLR agonists, TNFα, IFNα and IFNγ, promote 
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embryonic HSC cell fate specification from hemogenic endothelium through NF-κB, Stat3 

and Notch pathway.
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