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Abstract

We analyze data from the second-price maximum-value auction experiment reported

in Ivanov, Levin and Niederle (2010) in order to investigate the extent to which the

winner’s curse can be explained by quantal response, in combination with diffferent

assumptions about equilibrium (QRE) or nonequilibrium beliefs (QCH or QCE). We

find a close correspondence between the theoretical predictions of those models and

experimental behavior, even in the presence of frequent (and extreme) overbidding.

The basic pattern in the data consists of a combination of flat overbidding for low

signals, and monotonically increasing bidding for higher signals. The logit QRE model

fits this pattern reasonably well. Incorporating nonequilibrium beliefs into the QRE

model, in the form of either levels of strategic sophistication or cursed beliefs, leads to

an even better match with the data, as these models imply slightly higher bids. We also

show that these imperfect best response models predict essentially no treatment effects

across different versions of the game, consistent with the experimental findings. Overall,

our study indicates that the winner curse phenomenon in this auction is plausibly

attributable to limits on strategic thinking combined with imperfect best response.

∗We thank Asen Ivanov for promptly supplying the original data from the experiments in Ivanov, Levin
and Niederle (2010), and to audience members of ESA Meeting Fall 2010, especially Muriel Niederle, for
comments. Please do not quote or circulate without permission.
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1 Introduction

This paper discusses experimental evidence of bidding in a maximum-value auction game.

In these game, two bidders draw uniformly-distributed, independent, integer-valued private

signals from the set {0, 1, . . . , 10}. The common value of the auctioned object is the maximum

of the two signals. The two bidders make simultaneous bids in a second-price auction. The

highest bidder wins the object and pays the second-highest price. Ties are broken randomly.

The maximum-value auction has some interesting properties for testing theories of behavior

in games. There is a unique symmetric Bayesian-Nash equilibrium in which bidders bid their

signals. However, the equilibrium is weak because overbidding against signal-bidding is also

a best response. Therefore, regular quantal response equilibria (Goeree, Holt and Palfrey

(2005)) will typically entail a substantial frequency of overbidding.

Ivanov, Levin and Niederle (2010b) (ILN) conducted experiments on this maximum-value

auction game. They also conducted two different experimental treatments: in one treatment

(MinBid) bids cannot be lower than private signals; in the other treatment (phase II ),

subjects bid against their own previous bids from a phase I auction against other people.1

These are the two main results: first, there is substantial overbidding; the median bids in

phase I of the experiment range monotonically from about $5 to $10 for corresponding signal

values from $0 to $10. Second, bids do not change very much between the phase I auctions

and the MinBid and phase II treatments.

We show that these two empirical results are consistent with both quantal response equilib-

rium (QRE) and with two theories in which strategic thinking is limited, cursed equilibrium

(CE) and cognitive hierarchy (CH, similar to level-k), when quantal response is also assumed.

These results do not arise because ‘quantal response can fit anything’, a claim that is not

generally true for regular quantal response equilibria including the most common logit and

power specifications (Goeree, Holt and Palfrey, 2005).2 Instead, the phase I data are first

used to derive parameters which fit those data best using maximum likelihood estimation.

Then the phase II bidding results are forecasted using those same parameters derived from

1There are also two versions of phase II, reminding subjects of their phase I bids (ShowBid) or not
reminding them (Baseline). We pool those two versions because the results are similar.

2Regular equilibria satisfy various properties of continuity and responsiveness of choice probabilities to
payoffs, and monotonicity– higher expected payoffs lead to higher choice probabilities.
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fitting phase I.3 Phase II bids forecasted out-of-sample and phase I bids fitted in-sample are

predicted to be very similar (actually, predicted bids are slightly lower in phase II)– that is,

the treatment effects predicted based on the phase I behavior are very small. And in fact,

the empirical bid functions are also very similar. We also compute out of sample forecasts

for the MinBid treatment, with similar results. Thus, the pattern of bids in the initial phase

I auctions and the empirical (non-)response to the MinBid and phase II auctions can be

empirically explained by QRE, and can be explained somewhat more accurately by quantal

response versions of the CE and CH models.

1.1 The Winner’s Curse

The impetus for ILN’s paper is to further understand the winner’s curse (WC). The winner’s

curse results when bidders bid too high a fraction of a private value estimate, in common-value

auctions, leading them to overpay (relative to equilibrium bidding) and even lose money. The

winner’s curse is one of the most interesting and best-documented facts in empirical auction

analysis (Kagel and Levin (1986), Dyer, Kagel and Levin (1989), Levin, Kagel and Richard

(1996), Kagel and Levin (2002)). The fundamental explanation for the observed overbidding

has, surprisingly, proved to be elusive.

A likely cause contributing to overbidding is the failure of agents to appreciate the relation

between the bids of other agents and those agents’ perceived value of the auctioned good. This

mistake is the motivation for the concept of “cursed equilibrium” (Eyster and Rabin (2005);

CE) and similar limits on rationality which motivate analogy-based expectation equilibrium

(Jehiel (2005), Jehiel and Koessler (2008)).

Another possible cause is that agents simply find it conceptually difficult to compute a con-

ditional expectation of value of any sort. If the difficulty of this computation is the main

source of the winner’s curse, the same mistake should also occur in a single-person decision

where there is no other player or strategic uncertainty, but there is identical conditional ex-

pectation. Indeed, an early control experiment to the ”Acquire-a-company” game conducted

by psychologists showed that failures to adjust for adverse selection do also occur reliably in

3Note that if the models were wrong, and were overfit to phase I data, then the phase II and MinBid
predictions would be farther off than the phase I fits, and they are not. Another common procedure is to
fit models in each phase using part of the data, then predict for a hold-out validation sample. We have not
done this but conjecture that the results would be similar, except for the caveat that obvious heterogeneity
in the data implies that hold-out forecasts for some outlying subjects will be poor.

3



an individual-decision isomorph of that game (the ”beastie run”; see Carroll, Bazerman and

Maury (1988)). This fact became well known in decision research in the late 1980s and was

frequently discussed in that literature (see recently Tor and Bazerman (2003), who show the

relationship to imperfect updating in the Monty Hall 3-door decision problem). Charness

and Levin (2009) report evidence from a similar decision experiment, replicating these earlier

findings in psychology that winner’s curse-like effects are also present in individual decision

problems.

What about strategic models of the winner’s curse? Besides CE, a class of non-equilibrium

models, introduced in behavioral game theory around 1995, which have been applied to many

types of games, allow players’ beliefs about the likely actions of others to be mistaken. One

such model, mentioned above, is cursed equilibrium. Another class of models include “level-

k” and “cognitive hierarchy” (CH) specifications of beliefs.4 Both models start with some

clearly specified level-0 play (which is typically assumed to be random and uniform, but

could more generally be considered instinctive (Rubinstein, 2007), focal based on salience

(Crawford and Irriberri, 2007; Milosavljevic, Smith, Koch and Camerer, 2010).

Level-1 players assume they are playing level-0 players.5 An iterated hierarchy then follows,

most typically in two different ways: in “level-k” models level-k players (for k ≥ 1) believe

their opponents are all using level k − 1 reasoning. In cognitive hierarchy (CH) models

level-k players believe opponents are using a mixture of level 0, 1, . . . , k − 1 reasoning; their

normalized beliefs therefore approach equilibrium beliefs as k increases.

The simplest forms of these models assume players choose best responses given their be-

liefs. Indeed, ILN use the term “belief-based models” to refer exclusively to models with

nonequilibrium beliefs and best response. They write:

“[previous papers] rationalize the WC [winner’s curse] within theories that retain

the BNE [Bayesian Nash equilibrium] assumption that players best-respond to

beliefs (hence, we refer to these theories as belief-based), but relax the requirement

of consistency of beliefs”. (p. 1435)

(emphasis ours).

4A broader, early approach is Stahl and Wilson (1994, 1995) who hypothesize a larger space of interesting
types, including “worldly” types who respond to the true empirical distribution of play.

5This type was anticipated in research on signaling games, as discussed by Banks, Camerer and Porter
(1994) and Brandts and Holt (1993). See also Binmore (1988).
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Note that what ILN refer to as “belief-based models” combine two conceptually different

features: nonequilibrium beliefs, and best response. But these modelling features can be

combined in lots of ways. Indeed, the earliest forms of level-k and CH models (especially

for empirical estimation) typically did assume some kind of quantal response, or interval of

responses around a single best response (Nagel (1995); Stahl and Wilson (1994, 1995); Ho,

Camerer and Weigelt (1998); Costa-Gomes, Crawford and Broseta (2001)).

Another class of models, quantal response equilibrium (QRE), retains the concept of accurate

equilibrium beliefs (hence E), but relaxes the best response assumption (hence QR). Unlike

cursed equilibrium, QRE was not specifically proposed to explain the winner’s curse and

associated phenomena which seem to be evidence of strategic naivete. However, it is often

a useful benchmark model and can explain a wide variety of empirical deviations from best-

response Bayesian-Nash equilibrium (e.g. Goeree, Holt and Palfrey (2002, 2005); Camerer

(2003)).

Table 1 shows how different assumptions about accuracy of beliefs, and best response, can

be combined more generally in different theories of strategic choice. In terms of this table,

ILN use the phrase “belief-based models”to mean “best response models with nonequilibrium

beliefs”(the lower left cell).

Table 1 also gives a count of the number of empirical papers analyzing nonequilibrium beliefs

models which assume best-response (there are 24) and the number which assume quantal

response (there are 37).6 The counts indicate that a majority of studies of nonequilibrium

beliefs assume quantal response. Thus, the models ILN call “belief based models”, and

reject in discussion of their data, are not those most commonly used in empirical practice.7

This fact about model popularity, and the existence of the different combinations illustrated

in Table 1, suggests two interesting empirical questions left unexplored by ILN: first, can

an equilibrium quantal response model (QRE) fit the data? ILN conjecture (2010a) that

“our evidence... is probably also evidence against QRE.” We explore this conjecture further.

Second, can quantal response forms of nonequilibrium belief models explain the data, and

especially the empirical absence of treatment effects? We address this question by estimating

6These papers are listed in the references. The ones that assume best-response are [2-5], [8-9], [12], [17-18],
[23], [27], [34-36], [42], [45-46], [57], [60-61], [64], [69], and [72-73]. The ones that assume quantal response are
[1], [10], [13], [15-16], [19-21], [24], [28-33], [37-39], [41], [47-51], [62], [65-66], [68], [70], [74-78], and [80-82].

7In a brief discussion of the historical role of error in game theory, Goeree, Holt and Palfrey (2005) also
note that forms of quantal response have played a prominent role in theory for many decades, in the form of
trembles, and persistent and proper refinements of equilibria.
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quantal response versions of both CE and CH models.

Table 1:

Best Response Quantal Response

Correct Beliefs BNE QRE

Nonequilibrium Beliefs CE, Lk, CH (24) QCE, QLk, QCH (37)

1.2 The Maximum Value Game

In the maximum-value auction of ILN, two players observe private signals x1 and x2 drawn

independently from a uniform distribution over the set of integers, {0, 1, ..., 10}. They bid for

an object which has a common value equal to the maximum of those two signals, max(x1, x2).

The highest bidder wins the auction and pays a price equal to the second-highest bid.8.

How should you bid? Intuitively, if your own value is high you might underbid to save some

money. And if your own value is low you might overbid because the object value, determined

by the maximum of the two values, is likely to be higher than your low value.

These intuitions are not consistent with equilibrium, however. Bidding less than your signal

is a mistake because your bid just determines whether you win, not what you pay, so bidding

less never saves money. In fact, you might miss a chance to win at a price below its value

if you bid too low and get outbid, so underbidding is weakly dominated. Second, bidding

above your signal could be a mistake because if the other bidder is also overbidding, either

of you may get stuck overpaying for an item with a low maximum-value. In the unique

symmetric Bayesian-Nash equilibrium, therefore, players simply bid their values. In fact, the

equilibrium can be solved for with two rounds of elimination of weakly dominated strategies.

While these bidding intuitions are mistakes, they can be small mistakes in terms of expected

foregone payoffs. Moreover, payoff functions have many completely flat regions, so it turns

out that some ‘mistakes’ of overbidding actually have zero expected cost in equilibrium.

Whether mistakes are small or large is of central importance in the QRE approach. A key

insight of quantal response equilibrium analysis is that even if large mistakes are rare, small

8Carrillo and Palfrey (forthcoming) study the maximum game with a bargaining mechanism.
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mistakes could be common, and their equilibrium effects must be carefully analyzed. These

equilibrium effects could be large, so small mistakes in payoff space can lead to large changes

in the distribution of strategies. Therefore, even if over- and underbidding in maximum-value

games are mistakes, those mistakes in bidding patterns could be common and could also have

a substantial influence on bidding in general. Our paper explores the extent to which this

possibility can explain the empirical results in ILN.

1.3 How Predictions Change with Quantal Response Combined

with Belief Based Models

This section is designed to convey three ideas. First, we explain some intuitions of how

bidding in phase I depends on the change from an assumption of perfect best response

behavior (as in ILN) to imperfect best response, or quantal response, behavior. Second, we

explain the intuition for the effect of imperfect beliefs, à la CE and level K models, when

combined with imperfect best response behavior. Third, we provide a theoretical intuition for

why the treatment effects (phase II and MinBid) can be negligible under both the imperfect

best response models and the imperfect belief models.

First, to convey a sense of how QRE can approximate the behavior in phase I, it is useful

to consider optimal and nearly optimal responses to the bidding behavior of your opponent,

under different hypotheses about his or her degree of imperfect best response behavior. Recall

that in the logit version of quantal response behavior, for each possible signal x, a bidder uses a

behavioral strategy where the log probability of choosing each available bid is proportional to

its expected payoff, where the proportionality factor, λ, can be interpreted as a responsiveness

(or rationality) parameter. In particular, we have:

Pr(b|x) =
exp(λU(b|x))∑

a∈A

exp(λU(b|x))

where b ∈ B, the set of available bids, and U(b|x) denotes the expected utility of bidding b

conditional on observing x. The key question then is how a player forms his expectations,

in particular, how a bidder’s beliefs about the other bidder affects the expected utility term,

U(b|x).
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At one extreme, if the hypothesis is that your opponent is bidding perfectly, in the sense

of bidding according to the unique symmetric Nash equilibrium, then you believe he will

simply bid his signal. If this is the case, then underbidding by you can lead to expected

losses, however overbidding any amount is also a perfect best reponse, because if you win

you will never pay more than your opponent’s signal, which is less than or equal to the

common value! Thus, in this case, which corresponds to behavior in a quantal response

equilibrium with very high values of λ, we have U(b|x) ≈ U(b′|x) for all x ∈ {0, 1, ..., 10} and

for all b, b′ ≥ x. Thus, in a quantal response equilibrium, for high levels of rationality, payoff

functions are completely flat on the entire bidding space bounded below by b = x.

Next, consider the opposite extreme belief about your opponent. Suppose the hypothe-

sis is that your opponent is bidding completely randomly, corresponding to a bidder with

a responsiveness parameter of λ = 0. If this is the case, then there is no correlation

between your opponent’s signal and his bid, so there is in fact no possibility of a win-

ner’s curse! The expected value of the object to you, conditional on winning, is simply

E[max{xyou, xopponent}|xyou] = xyou(xyou+1)

11
+ (10−xyou)2(11−xyou)

22
. Straightforward calculations

show that your optimal bid is equal to 5 for signals less than or equal to 5 and increases

monotonically to 10 when your value is 10. Hence, the direct effect of quantal response

behavior involves a combination of over- and underbidding, while the equilibrium effect of

imperfect best responses leads to overbidding.

Figures 1a-c show three histograms of the predicted frequency of each bid under QRE, for

three values of λ. The three values are the 25th (λ = 0.114), the 50th (λ = 1.2975), and

the 75th (λ = 4.509) percentile of the distribution of λi estimated empirically for phase I

of the Baseline and ShowBid treatments (as described later in Section 3). As λ increases

from Figure 1a to Figure 1c, the distribution begins rather flat and then morphs to show

more concentrated bids and substantial overbidding for all signals. The key transition is from

Figure 1a to Figure 1b. When there is a lot of random bidding (from players with low λ

values), it pays for low-signal bidders with higher λs to overbid, since they have a chance to

get a bargain on high-value items if the high-signal players underbid. Similarly, high-signal

players with higher λ’s bid their signals or higher because underbidding is a substantial

mistake in expected payoff terms. The highest value of λ gives a piecewise linear distribution

that resembles an hockey-stick.

Of course, the discussion above simplifies the intuition of quantal response equilibrium; the
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Figure 1: QRE Strategies for different λ’s, Baseline & ShowBid Treatment, phase I

exact distribution of bids in a quantal response equilibrium depends in a complicated way on

how all these equilibrium effects balance out. In fact, these interaction effects are even more

complicated in the estimation of the next section, where we allow different bidders to have

different response parameters, as in the heterogeneous version of QRE (HQRE) developed in

Rogers, Camerer and Palfrey (2009).

The effects of CE and CH complement, and in some cases reinforce, the effects of imperfect

best response. With respect to CE, the easiest way to see this is to note that if λ = 0 there

is no winner’s curse, so imperfect best responses implies some degree of partially cursed

behavior. Both effects (CE and QRE) push bids up for low signal values, and reduce to

expected losses from overbidding. In level-k and CH models, Level 1 bidders behave exactly

as if they are facing λ = 0, so the discussion of optimal responses is the same as described

above. However, level-2 bidders who think they are playing level-1 (the level-k specification,

not CH) know they are playing overbidders, and therefore they might mistakenly pay too

much, so their optimal response is to bid their signal. To consider higher levels, recall that if

an opponent is bidding their signal, then overbidding and bidding one’s signal are both weak

best-responses. Therefore, a level-3 bidder is actually expected to overbid, in a statistical

sense, against a level-2 bidder. Following a similar logic, higher level players alternate from

level to level between overbidding (k even) and signal-bidding (k odd). Thus, the level-

k model assuming best response predicts a mixture of random bidding, overbidding, and

signal-bidding, as in QRE.

What are the implications of these models of imperfect best response and imperfect beliefs

for Phase II bidding behavior? In Phase II, each bidder competes against a machine player

that is programmed to bid exactly according to the bidding function the bidder used in Phase
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1. Because there is no feedback between phases, in our analysis we assume that the degree

of responsiveness or cursedness is the same in Phase I and Phase II, but take into account

that their opponent’s bidding strategy is governed by a different distribution in Phase I and

Phase II.9 First, consder the QRE model. In this case, if a bidder is a low-λi bidder who is

relatively unresponsive to payoff differences, we would expect a lot of variance in the form

of under- and over-bidding in Phase II as well as Phase I. Since the bidders who grossly

overbid in the Phase I reveal themselves to have very low λ this kind of behavior is expected

to persist in Phase II – indeed that is what the data shows. By the same token, bidders who

were bidding close to their signal in Phase I should bid close to their signal in Phase II. For

intermediate values of λ one also expects relatively small changes in behavior, if any. Thus

QRE predicts rather small treatment effects.

What about the CE model in phase II? While the players know the bidding strategy of the

computerized opponent, they must bid without knowing the signal drawn by the opponent

in a specific round. Thus, one can still apply the cursed equilibrium model, where one of

the players (the computer) simply has a fixed strategy. And, as in CE, there is no reason

to expect a human bidder who fell prey to cursed beliefs in Phase I would necessarily have

an epiphany and suddenly realize how to correctly account for the correlation between the

machine bidder’s signals and bids. As noted in our introduction, behavior based on cursed

beliefs has been widely observed in decision experiments with human players competing

against computerized rules in situations that are isomorphic to games. Thus, in Phase II, as

in Phase I, cursed behavior combined with QRE could produce a relatively modest increase

in the extent of overbidding relative to a pure QRE model.

Finally, consider the implications of level K models for Phase II. As ILN point out, with a

perfect best response model, a level k bidder in Phase I should behave like a level k+1 bidder

in Phase II. For example, if a bidder is a value bidder (k odd) in Phase I he should be an

overbidder in Phase II and vice versa. This is not what one observes in the data. However,

the picture changes in two interesting ways if there is quantal response. First, bidders who

are level-0 or odd-level bidders in phase I (because they overbid) could be revealing a low

response sensitivity λi. For example, their (stochastic) bidding function could look like Figure

1a or 1b above. If λi is not too large, they might respond very little to knowing that they

are bidding against their own previous phase I bids. Second, bidders who bid close to their

9Subjects were given zero feedback between Phase I and Phase II so there is no opportunity to ’unlearn’
cursed beliefs or reduce or increase their payoff responsiveness.
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signals in phase I will be identified as candidate even-level bidders. But when they are bidding

against their own previous bids in phase I (which are bids equal to signals), then bidding

signals and bidding above signals are equally “best” responses. Even a little quantal response

implies that these bidders may actually bid above their signals, and hence above their own

previous bids.10

So the combined effect of quantal response on the analysis of the response to the phase II

treatment is to dampen (depending on λ) the predicted effect of the level 1’s bidding lower,

and to add an effect of level 2’s bidding higher. Thus, it is not clear there will be any strong

effect overall in aggregate bids in the comparison of phase I to phase II. The same conclusion

holds for the CH model with quantal response, which predicts identical level-1 behavior and

a similar level-2 response to the phase II treatment.

2 Experimental Design Details

In the experiment, signals are said to be uniformly, independently, and discretely distributed

from 0 to 10. Subjects make a series of bids but do not receive any feedback after each

auction. In fact, each subject received each integer value exactly once; so the resulting bid

function is similar to what you might get if you asked for a bid for each possible value (a.k.a.

the strategy method). Payoffs are $.50 per experimental dollar. Subjects begin with $20 and

received that sum plus or minus the total of all the payoffs from random matching with other

bidders. Notice that it is possible to lose money, if you overbid persistently. In fact, about

27.50% of subjects lost money from their original base pay of $20 and 16.88% ended up with

a negative net balance (which they did not have to pay).

In a pilot experiment, ILN allowed subjects to bid above the maximum value, up to $100,

and they noticed substantial overbidding. They therefore decided to allow subjects in the

main experiment to bid up to $1 million.11

10Indeed, this shift does seem to happen: ILN classify 20 players as signal-bidders in phase I. Of those, 13
(65%) are also classified as signal-bidders in phase II, but 6 (20%) are classified as overbidders (some even
bidding above the maximum value of 10).

11The instructions and text are not crystal clear on how the maximum bids are implemented. The instruc-
tions appended to the paper do not say anything about maximum bid caps, but the paper is clear about the
maximum.
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3 Experimental Results and New Analysis

3.1 Preliminary Analysis of Experimental Data

Let’s start with a look at all the overall bids.12 Figure 2 reports the bids by signal for phase I

of the Baseline and ShowBid treatments (the two treatments are pooled because the results

are very similar). In the left graph, all bids are shown on a log scale (bids are between $0

and $1,000,000). To gauge the extent of overbidding, we add to this scatterplot two lines: a

continuous line drawn at a level of bidding equal to the private signal received, and a dashed

line signaling a bid equal to the upper bound of the common value (i.e. $10). The left graph

reports all bids. The right graph, using a linear scale, truncates bids above $15 and reports

only the bids between $0 and $15. The continuous line in this graph is the median bid as a

function of the private signal (considering all bids).

An eye-catching feature of the Figure 2 scatterplot of all the bids is the bids which are very

high (relative to the maximum object value of $10). Overall, 7.66% of bids are $100 or

above, and 2.27% of the bids are exactly $1,000,000. Note that these are actual (half) US

dollars (converted at $.50 per experimental dollar bid to payment)– an experimental bid of

$1,000,000 therefore corresponds to a subject imagining paying $500,000 in actual dollars.

These high bids are present in all sessions and treatments. We discuss them briefly in the

conclusion.

Excluding bids above $15, there is substantial evidence of both underbidding at high values,

and overbidding throughout (but especially for lower values). The median bids are relatively

flat, at around $5, for values $0-$5, then increase monotonically for higher values (the “hockey

stick” distribution).

Figure 2 reports the same data for phase II of the Baseline and ShowBid treatments, while

Figure 3 is for phase I of the MinBid treatment. Except for the truncation of bids below

values in MinBid, the pattern of bids in phase I and phase II look very similar.

12ILN report their results quite compactly, in the form of a heuristic classification of bidding strategies.
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Figure 2: Bids by Signal, Baseline & ShowBid Treatment, phase I

Figure 3: Bids by Signal, Baseline & ShowBid Treatment, phase II
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Figure 4: Bids by Signal, MinBid Treatment, phase I

3.2 Model Estimation and Forecasting

3.2.1 HQRE Predictions

In the logit version of HQRE (Rogers, Camerer and Palfrey (2009)) each agent, at each

information set, uses a behavioral strategy where the log probability of choosing each available

action is proportional to its expected payoff, where the proportionality factor, λi, can be

interpreted as a responsiveness (or rationality) parameter that can vary between subjects.

In particular, we have:

Pr(a) =
exp(λiU(a))∑

a∈A

exp(λiU(a))
(1)

where a ∈ A is one of the actions available to the agent.

In the maximal value auction, when agent i receives private signal si, his expected utility
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from bid bi is the following:

EU(bi|si) = Pr(bi > bj) [E(max(si, sj)|bi > bj)− E(bj|bj < bi)]

+
1

2
Pr(bi = bj) [E(max(si, sj)|bi = bj)− bi]

The first term is the probability of winning times the expected net benefit conditional on

winning, while the second term is the probability of a tie times the expected net benefit

conditional on tying (ties are broken randomly), and given the strategy of the other bidder.

Given these expected payoffs, the choice probabilities follow from the choice rule in (1), i.e.:

Pr(bi|si) =
exp(λiEU(bi|si))∑

b∈B

exp(λiEU(b|si))
(2)

An insight from Bajari and Hortacsu (2005) enables us to estimate HQRE consistently. They

note that if the model is correct, then the actual data provide an unbiased estimator of the

aggregate joint distribution of bids and signals – and also players’ beliefs, since beliefs are

assumed to be consistent with actual behavior, by the E part of the definition of QRE.

Therefore, we use the empirical joint distributions of signals and bids (i.e. the distributions

observed in the experiments) in phase I of the Baseline and ShowBid treatments to compute

the empirical expected utility of each bid given each private signal, ÊU(bi|si).13 Then, for

each subject playing in those sessions, we estimate, using MLE, the λ̂i that best fits his

observed bidding function. This gives us a distribution over bids (conditional on the signal)

for each subject. Aggregating over all subjects, we obtain a predicted distribution of bids for

each signal.

In Panel 1 of Figure 4 we show the quartiles of this distribution and we compare them with

the quartiles of the observed bids (represented with boxplots). The predictions for phase

II (Panel 2 of Figure 4) are, instead, out-of-sample predictions. For each subject, we first

compute ÊU(bi|si) using the empirical joint distribution of bids and signals from his previous

plays in phase I (i.e. each agent plays against his exact previous bidding function). Then, we

predict his behavior in phase II by plugging in these expected payoffs and the λ̂i estimated

13For tractability, we bin bids for the estimation. The bins use $.50 intervals for bids less than or equal to
$12, with progressively coarser bins for higher values.
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for phase I into (2).

3.2.2 CE-QRE Predictions

An agent i who is cursed, in the sense of Eyster and Rabin (2005), correctly predicts the

distribution of other players’ bids, but underestimates the degree to which these bids are

correlated with the other players’ private signals. In particular, the expected utility of a

cursed agent is given by:

EUCE(bi|si) = Pr(bi > bj)[E(max(si, sj)− E(bj|bj < bi)]

−1

2
Pr(bi = bj)[E(max(si, sj)− bi]

The extent to which agents are cursed is parameterized by the probability χ ∈ [0, 1] they

assign to other players playing their average distribution of actions irrespective of type rather

than their type-contingent strategy (to which she assigns probability 1−χ). In the maximal

value game, the expected utility of a χ-cursed agent i from bidding bi when observing signal

si is given by:

EUχ
CE(bi|si) = (1− χ)EU(bi|si) + χEUCE(bi|si)

We assume, moreover, that agents respond imperfectly as in a HQRE:

Pr(bi|si) =
exp(λiEU

χ
CE(bi|si))∑

b∈B

exp(λiEU
χ
CE(b|si))

As in the HQRE estimation, we use the empirical joint distributions of signals and bids in

phase I of the Baseline and ShowBid treatments to compute ÊU
χ

CE(bi|si). Then, we estimate

with a standard MLE procedure the vector of individual λ̂i’s and the cursed parameter χ̂

that fit the data best. To compute the out-of-sample predictions for phase II we use the same

λ̂i’s and χ̂ estimated for phase I but we take into account that everybody has different beliefs

(based on the empirical distribution of their previous bids in phase I) and, thus, different

expected payoffs. The predicted distributions for phase I are shown in Panel 1 of Figure 5,

while the out-of-sample predictions for phase II are in Panel 2 (assuming the same χ value).
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Intuitively, CE generates overbidding in phase I because players ignore, to an extent cal-

ibrated by χ, the connection between the bid and signal of the other player. Therefore,

bidders with low signals do not realize that a low bid indicates the other player’s signal may

be low, and hence overbid to take advantage of the perceived bargain.

3.2.3 CH-QRE Predictions

In the CH model (Camerer, Ho and Chong (2004)) players adopt an iterative decision rule

based on k steps of thinking, and assume a Poisson frequency distribution f(k) of step k

players. “Step 0” types do not assume anything about their opponents and merely choose

according to a uniform probability distribution. “Step k” players assume that their opponents

are distributed, according to a normalized Poisson distribution, from step 0 to step “k − 1”.

Therefore, they accurately predict the relative frequencies of less sophisticated players, but

ignore the possibility that some players may be as sophisticated or more. Step 1 players

assume that all the others players are step 0 players, while step 2 players assume the other

players are a combination of step 0 players and (quantal responding) step 1 players. In

particular, a step k player’s belief (for k > 0) about the proportion of h step players is given

by fk(h) = 0 for h > k − 1 and fk(h) for h < k, given by:

fk(h) =
f(h)
h∑

n=0

f(k)

where f(k) = e−ττ k/k!, which is characterized by one parameter τ > 0.

In this setting, denote the expected utility of step 1 players as EUCH1(bi|si, τ), and the one

of step 2 players as EUCH2(bi|si, τ). We assume, moreover, that agents respond imperfectly

as in a QRE with a homogeneous λ:14

14In principle, one could allow for heterogeneous λ in the CH model. However, the CH model already has
built into it different types so we conjecture that allowing for heterogeneity in responsiveness would add little
improvement in fit. Thus, for parsimony we estimate only a homogeneous CH-QRE model. Also, to keep the
estimation simple, we only consider types k < 3. Allowing for higher levels in the estimation adds little.

17



Prk(bi|si) =
exp(λEUCHk

(bi|si))∑
b∈B

exp(λEUCHk
(b|si))

(3)

For each pair (λ, τ), (3) implies a joint distribution of bids and signals for type 1 and type

2 players (and, combining this with the random behavior of type 0 players, an aggregate

distribution of bids). To generate the predictions in Panel 1 of Figure 6, we estimate with

MLE the pair (λ̂, τ̂) that fits best the empirical strategies from phase I of the Baseline

and ShowBid treatments. For the out-of-sample predictions for phase II we use the same λ̂

estimated for phase I and compute the corresponding QRE bidding strategies. Notice that

the estimated parameter for the Poisson distribution of types, τ̂ , has no role in phase II, as

players are now bidding against their own previous bid profile rather than against a mixture

of lower level players. Moreover, even if λ̂ is the same for every agent, we take into account

that each bidder has different beliefs (based on the empirical distribution of her previous bids

in phase I) and, thus, different expected payoffs. We present out-of-sample predictions for

phase II of the same treatments in Panel 2 of Figure 6.

We present two sets of CH-QRE predictions for the MinBid treatment. The left-hand panel of

Figure 7 shows predictions for phase I obtained by estimating (λ̂, τ̂) as described above. The

right-hand panel of Figure 7, instead, shows predictions for phase I of the MinBid treatment

obtained using the parameters estimated with the data from phase I of the Baseline and

ShowBid treatments.

4 General Discussion and Conclusion

The interesting empirical results originally reported by ILN in the maximum-value auction

show a hockey stick-shaped pattern of overbidding: bids for signals from 0-5 are around

4-6; higher signals also exhibit modest overbidding that increases linearly with the signal.

Models with heterogeneous quantal response fit these data rather well. Those models fit

the central hockey-stick tendency; and they also generate approximately the right degree of

variation in bids, measured by interquartile range. The fit is further improved (significantly)

by weakening the assumption of equilibrium beliefs (in QRE) according to the one-added-
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Figure 5: HQRE Predictions, Baseline & ShowBid Treatment

Figure 6: CE-QRE Predictions, Baseline & ShowBid Treatment
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Figure 7: CH-QRE Predictions, Baseline & ShowBid Treatment

Figure 8: CH-QRE Predictions, MinBid Treatment, phase I
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Table 2: Estimated Parameters

Baseline MinBid
# individuals 108 26
# observations 1188 286

HQRE

λ̂i - 1st quartile 0.114 0.883

λ̂i - 2nd quartile 1.2975 1.748

λ̂i - 3rd quartile 4.509 4.083
-Log-likelihood 3590 912

CE-HQRE
χ̂ 1 1

λ̂i - 1st quartile 0.1065 1.565

λ̂i - 2nd quartile 1.442 2.9925

λ̂i - 3rd quartile 4.3105 4.272
-Log-likelihood 3580 708

CH-QRE
τ̂ 0.9 3.4

λ̂ 2.01 13
-Log-likelihood 3730 759
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parameter versions of CE or CH. The addition of those nonequilibrium CE or CH beliefs

raises the level of predicted bids, which are about $1 too low in the QRE fits, to match the

general level of bidding more closely.

More importantly, the estimates obtained from the phase I data fit the phase II data out-

of-sample about as well as they fit phase I data in-sample, and fit the MinBid treatment

similarly well. This means that the treatment effects which were hypothesized by ILN based

on perfect best-response models, are not hypothesized to occur under quantal response.

Those hypothesized changes are not evident in the data either.

In their original analysis of these data, ILN draw a different broad conclusion than we do.

The difference is substantive, not semantic, and requires a careful distinction between two

different dimensions by which models may deviate from standard Nash equilibrium: perfect

vs. imperfect best response; and equilibrium (“rational expectations”) vs. nonequilibrum

beliefs.

ILN’s expressed interest in this bidding game is that some specialized perfect best-response

models of nonequilibrium beliefs (CE, and level-k) predict that bids will be lower under the

two experimental treatments, for certain types of bidders. The idea is that people may overbid

in phase I because they do not correctly infer the connection between signals and bids (CE),

or because they think they are facing random bidders (level-1). In theory, these erroneous

beliefs should be erased and replaced in phase II when they bid against their own previous

bid functions. The phase II treatment is therefore predicted to make their bids lower. Since,

empirically, bids are not much lower in the treatment conditions, ILN conclude, “Overall,

our study casts a serious doubt on theories that posit the WC is driven by beliefs.”(p. 1435)

However, that conclusion must be qualified by “...assuming perfect best responses” at the

end (or implicitly qualified by a reader correctly noticing that “driven by beliefs” is used as

shorthand to mean nonequilibrium belief modeling with perfect best response in the defini-

tion).15 Virtually the opposite conclusion is reached if one combines nonequilibrium belief

models with quantal response. Technically, both conclusions are correct; and together they

provide a full picture of what the data show about different kinds of theories. ILN’s analysis

shows that best response models clearly fail in this environment.16 We show that models

15This important qualification was later expressed by ILN coauthor Niederle (2010) who describes the ILN
results and says “The results of the experiment are in general bad news for any theory that relies on best
response behavior” (p.12).

16The same conclusion was reached by Carrillo and Palfrey (forthcoming) in their independent contempo-
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based on quantal response equilibrium do fit the data well, and even better when combined

with nonequilibrium beliefs.

The rest of our conclusion consists of four remarks.

First, note that nothing about these data or these models necessarily guarantees a good fit for

HQRE. In fact, the approximate accuracy of HQRE in fitting the overall distribution, in both

baseline and treatment conditions, came as a small surprise to us. It might surprise others

too. For example, while the published ILN paper (2010b) does not mention QRE at all, the

penultimate draft (2010a) says: “Informally, our evidence against (a′) [noisy best response

with zero median in noise] in initial periods of play in common-value auctions is probably

also evidence against QRE. However, formally, given that we cannot test assumption (a′)

[noisy best response], we cannot say much about QRE.”

Their first sentence is not right because QRE generally does not predict zero median in noise

– as this specific game beautifully illustrates. Noise around equilbrium strategies is driven

by expected payoff differentials, which in this game are highly asymmetric around signal

bidding; so probable evidence against a model with zero median noise could be evidence for

QRE, and is certainly not clear evidence against it. Also, our paper does show one way

to can “test assumption a′”, by using the maintained assumption of equilibrium beliefs to

justify using the data as an estimator of beliefs. An earlier working paper (ILN 2008) says

more about QRE, but we do not comment further on the grounds that authors should not

be held responsible for all details of early paper drafts.

Second, the maximum-value auction and associated treatments are not that useful for com-

paring different theories with equilibrium or nonequilibrium beliefs, under best response. All

those theories are clearly rejected by the phase I behavior alone. In contrast however, the

game is actually quite useful for comparing models with best response and quantal response.

Best response models cannot explain the distribution of bids and lack of treatment effects,

while quantal response models can. Given that best response and quantal response models

are both used frequently along with nonequiibrium beliefs (as shown by the Table 1 counts),

it is handy to have a game that can sharply distinguish them.

Third, the prevalence of very high bids in these auctions is striking: 2% of $1 million; and

8% of $100 or more. In their design, a $1 million experimental bid converts to $500,000 US

dollars in subject payments. These sky-high bids are evident in all sessions and treatments.

raneous study of the maximum value game in a bargaining setting.
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Many of these bids are concentrated in a few individuals, but 27% of subjects (36 out of 134)

make at least one bid of $100 or above, which is ten times the maximum object value. ILN

do not discuss or explain these interesting high bids at all. The published paper implicitly

acknowledges existence of bids above the theoretical maximum of 10, stating (footnote 32,

p. 1443): “We plot median, rather than average, bids because averages are distorted by bids

above 10.”17

One hypothesis is that subjects were amused by the possibility of actually bidding $1 million,

knowing full well they wouldn’t have to pay if they lost even a small fraction of that amount.

On the other hand, such bids are far from irrational. In fact, an alternative hypothesis is that

they are playing in accordance with one of the infinite number of asymmetric “bullying” Nash

equilibria in which a small percentage of subjects bid above 10, and other subjects weakly

best respond by bidding zero (which increases the bully’s payoff). ILN note that nothing in

the experimental design encourages emergence of such asymmetric equilibria18; on the other

hand, there is little to discourage it since there is no feedback to unlearn behavior if it is out

of equilibrium.

Fourth, the maximum-value auction results provide an opportunity to reflect upon how much

we demand, expect, and hope that models of human behavior can do. It is certainly the case

that the winner’s curse in common-value strategic auctions, and similar mistakes in single-

person decision analogues (the “Beastie Run” example from 1980’s decision research, and

Charness and Levin, (2009)) and common value bargaining settings (Carrillo and Palfrey,

forthcoming), clearly point to a widespread failure to correctly compute - or perhaps even

comprehend - conditional expectations. However, it is also true that simple models of the

difficulty of computing conditional expectations (as well as CE) cannot explain deviations

from equilibrium in complete information games or in Bayesian games with a private values

structure.19 An advantage of level-k and CH and QRE explanations is that they can ex-

plain anomalies in both complete information games and in private information games like

the maximum value auction (as results reported here demonstrate)– because limits on the

17Their 2008 version gives a little more information (footnote 39, p. 16): “We plot median, rather than
average, bids because averages are distorted by bids above 10 (which are sometimes very high, even up to
1000000).”

18ILN state: “In our experiment, matching of subjects is anonymous and there is no feedback, so that
asymmetric Nash Equilibria do not seem plausible.” (footnote 11, p. 7, 2008)

19Analogy Based Equilibrium (Jehiel (2005) and Jehiel and Koessler (2008)) is somewhat more general
and can have interesting implications in some games with private values.
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depth of strategic thinking about others automatically generate mistaken inferences about

information-strategy links (cf. Brocas et al. (2010)). Probably the best collection of mod-

elling tools will include quantal response (as our results in this paper suggest), level-k or CH,

and some specialized account of why conditioning expectations on hypothetical events that

must be imagined (even in apparently simple decisions) is so tricky. Progress beyond the

useful benchmark of Nash equilibrium has been so rapid in recent years, however, that it is

easy to be optimistic about making further progress on a more integrated, predictive general

theory that can be tractably applied to the empirical analysis of all these types of games and

decisions.
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