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ABSTRACT

Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems
of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is
known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof
might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration
within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star’s habitable
zone formed farther out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical
interactions may naturally destroy the moon through capture into a so-called evection resonance.Within this
resonance, the lunar orbit’s eccentricity grows until the moon eventually collides with the planet. Our work
suggests that moons orbiting within about ∼10 planetary radii are susceptible to this mechanism, with the exact
number dependent on the planetary mass, oblateness, and physical size. Whether moons survive or not is critically
related to where the planet began its inward migration, as well as the character of interlunar perturbations. For
example, a Jupiter-like planet currently residing at 1 AU could lose moons if it formed beyond ∼5 AU.
Cumulatively, we suggest that an observational census of exomoons could potentially inform us on the extent of
inward planetary migration, for which no reliable observational proxy currently exists.
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1. INTRODUCTION

The past two decades have brought thousands of extrasolar
planetary candidates to light. These systems have repeatedly
challenged the notion that our solar system is somehow typical
(Winn & Fabrycky 2015). Notable examples include the
existence of hot Jupiters (Mayor & Queloz 1995), spin–orbit
misalignments (Winn et al. 2010), and the prevalence of highly
compact, multiplanet systems (Lissauer et al. 2011; Rowe
et al. 2015). However, as of yet, we have not been able to place
the many known solar system moons into their appropriate
Galactic context. Observational surveys are now under way
with this specific goal (Kipping 2009; Kipping et al. 2009,
2012, 2015). Motivated by the potential for upcoming exolunar
detections, this work explores how the present-day configura-
tions of exomoons might have been sculpted by dynamical
interactions playing out during the epoch of planet formation.

Not long after the first detections of giant extrasolar planets
(Mayor & Queloz 1995), speculations arose regarding what
types of moons these bodies may host (Williams et al. 1997).
Much of the interest has been astrobiological in nature—if
giant planets reside in the habitable zones of their host stars,
perhaps the moons thereof are capable of sustaining liquid
water on their surfaces (Heller et al. 2014). In contrast, any
putative liquid water within the moons of Jupiter and Saturn
must be maintained by way of tidal heating. Within the current
observational data set, however, our solar system’s giant-planet
configuration is by no means universal. A significant popula-
tion of giant planets is found to reside in the range of ∼1–5 AU
(Dawson & Murray-Clay 2013), just inside the orbit of
Jupiter4 (5.2 AU).

Moons are expected to arise as an intrinsic outcome of giant-
planet formation (Canup & Ward 2002; Mosqueira et al. 2010).
In particular, the core accretion model dictates that cores
comprising multiple Earth masses of materialform outside
their natal disks’ ice line, before initiating a period of runaway
gas accretion (Pollack et al. 1996; Lambrechts & Johansen
2012). Restricting attention to planets with masses greater than
Saturn, their gravitational influence on the protoplanetary disk
will eventually clear a “gap” in the gas within their vicinity
(Crida et al. 2006). Material is capable of flowing through the
gap and entering the planet’s Hill sphere (rH; the region around
the planet where its potential dominates the motion of test
particles). The residual angular momentum of the material is
then distributed into a circumplanetary disk, extending out to
∼0.4rH (Martin & Lubow 2011), where moons are thought
to form.
The angular momentum exchange associated with gapclear-

ing, in concert with viscous accretion within the protoplanetary
disk, is expected to drive Type II migration of young planets,
taking them to shorter-period orbits. Traditional theoretical
treatments have suggested that the Type II migration rate is
similar to the accretional velocity of disk gas (Armitage 2010;
Kley & Nelson 2012), though reality is likely more
complicated (Duffell et al. 2014). Regardless, it is widely
suspected that migration rates can be sufficient to reduce
planetary semimajor axes by well over an order of magnitude
within a typical disk lifetime (1–10Myr; Haisch et al. 2001; see
below). Consequently, the “Jupiters” currently residing at
several AU probably formed at more distant radii. Crucially,
however, there currently exists no reliable, observational proxy
that constrains the extent of migration.
In this paper, we demonstrate that if the migrating planet

hosts a moon, inward migration can lead to the moon’s
destruction by way of the “evection resonance” (Yoder &
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4 The apparent scarcity of planets at Jupiter’s distance is subject to
observational biases, not least owing to the associated long orbital periods.
Recent searches are uncovering more distant bodies (e.g., Knutson et al. 2014).
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Kaula 1976; Touma & Wisdom 1998; Ćuk & Stewart 2012).
To illustrate the problem, consider the apsidal precession of a
lunar orbit around an oblate giant planet. At large heliocentric
distances, this precession is more rapid than the planetary mean
motion about the central star. As the planet migrates inward, its
orbital frequency increases before becoming approximately
commensurate with the lunar precession frequency. Assuming
resonant capture (see Equation (35)), further migration will
pump the moon’s eccentricity upwarduntil its pericenter
approaches the planet’s surface and the moon is lost.

Our treatment here remains largely outside of the realm of
hot Jupiters (giant planets with orbital periods of several days),
whose reduced Hill spheres permit satellites only within a few
planetary radii (Domingos et al. 2006; Kipping 2009).
Planetary migration may therefore remove moons around these
objects without the resonant mechanism proposed here.
Additionally, tidal planet–moon interactions further reduce
the stability region of lunar orbits by expelling (or destroying)
larger moons over Gyr timescales (Barnes & O’Brien 2002).
These issues make it difficult to relate current exolunar
architectures of closer-in planets to their formation conditions.
Consequently, we restrict our attention to bodies outside of
∼0.5 AU from their stars.

The mechanism described herein requires both that the
planet–moon system begins outside of resonance and that
migration proceeds until the moon is lost by collision. These
conditions are quantified in Section 3. The dynamics are
critically dependent on the planetary radius planet and second
gravitational moment J2 (these determine the lunar precession
frequency). Accordingly, we must begin with a brief discussion
of reasonable parameters associated with young giant planets.

1.1. Properties of Young Giant Planets

Early models of giant planets naturally focused on older
planets, such as Jupiter and Saturn. The advantage here was
that interior models lost their sensitivity to initial conditions
over the relatively short (∼20Myr) Kelvin–Helmholtz time-
scale (Stevenson 1982; Marley et al. 2007). However, during
the epoch of disk-driven planetary migration, the initial
condition is crucial. Models extracting initial conditions from
core accretion theory infer much smaller planetary radii Rp than
so-called hot-startmodels, such as gravitational instability
(Marley et al. 2007). For illustration, we focus on planets
arising from core accretion, where radii sit close to 1.2–1.4
times Jupiter’s current radius RJ, but all further arguments
could easily be applied to larger, hot-start planets. For the sake
of definiteness, we choose Rp=1.4RJ for the moon-hosting
planet throughout this work.

Eccentricity growth will remove moons either through
physical collision with the planet or through tidal disruption,
whichever happens earlier. Tidal disruption will occur close to
the Roche radius (e.g., Canup 2010), which, expressed in terms
of satellite mass ms, satellite radius Rs,and planetary mass Mp,
may be written as
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For parameters typical of Io-like bodies around young
Jupiters (R R1.4p J= ), RL/Rp<1, and so moons are only lost
by way of direct collision with the planet. Therefore, we
consider a moon as lost when its pericenter approaches Rp with

the caveat that the Roche radii of more massive, compact
planets may indeed lie outside the planetary surface.
In addition to the planetary radius, an approximation for J2 is

required. For purely rotational deformation, the relationship
between J2, the Love number k2 (twice the apsidal motion
constant), and the planetary spin rate Ω may be expressed as
(Sterne 1939)
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the above expression merely expresses one unknown quantity
J2 as a function of two other unknown quantities. However, k2
can be estimated by modeling the planet as a polytrope with
index χ=3/2(Chandrasekhar 1957; Batygin & Adams 2013),
yielding a Love number k2≈0.28.
It is more difficult to speculate on Ω/Ωb. The young giant

planet in β Pictoris b has had its spin period estimated at ∼8 hr
(Snellen et al. 2014), close to what one would expect by
extrapolating the equatorial velocities of the solar system’s
planets to the mass of β Pictoris b (about M8 J). This result
tentatively suggests that spin rates of young giant planets are
little altered between 10Myr and 4.5 Gyr after their formation,
but the spin rate within the first 1 Myr remains purely
speculative. For the sake of definiteness, we take J2=0.02
as a nominal value for young giant planets, slightly larger than
Jupiter’s current J2≈0.015 (Murray & Dermott 1999). We
note, however, that J2 may reasonablylie within the range
0.01>J2>0.1, with the upper bound deduced from Equa-
tion (2), and so further research is required to better constrain
this quantity.

2. EVECTION RESONANCE

In this section, we quantitatively describe the dynamical
influences on a lunar orbit hosted by a young, giant planet.
Consider the moon’s orbit to have eccentricity e, inclination i,
and semimajor axis am. The effect of planetary oblateness, J2,
is to force a precession of the longitude of pericenter ϖ with
frequency (for a derivation, see, e.g., Danby 1992)
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where nm is the mean motion of the lunar orbit and Rp is the
planetary radius. Note that the magnitude of J2n increases
monotonically with eccentricity, but its sign changes at a
critical inclination of icrit≈63°.4.
For simplicity, in all further analyses we will assume that the

lunar orbit is coplanar with the planet’s equator (that is, we set
i= 0) and, furthermore, that the planet itself has zero obliquity.
These assumptions are motivated by the expectation that young
giant planets inherit sufficient angular momentum from their
natal disks to align both their spin axes and circumplanetary
disks with their heliocentric orbits. It should be noted, however,
that spin–orbit resonances have been proposed as an explana-
tion for Saturn’s obliquity (Ward & Hamilton 2004), and so
similar dynamical processes may generate obliquities in moon-
hosting planets. For the purposes of this work, we simply note
that mild non-coplanarity slows the lunar precession rate,
which, as discussed below, leads to a more distant encounter
with the evection resonance.
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Provided that the planet forms sufficiently far out, the
precession frequency of the exomoon orbit will exceed the
planetary mean motion np. During inward migration, np
increases until, at some point, the two frequencies J2n and np
are approximately equal (Figure 1), known as the evection
resonance. This condition may be written in the form
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where Mp is the mass of the planet, ap is the planetary orbital
semimajor axis, and Må is the mass of the central star.
Therefore, supposing the moon to originate at low eccentricity
(e≈0), resonance crossing occurs at the heliocentric distance,
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If the moon is caught into resonance, subsequent planetary
migration drives the moon’s orbital eccentricity to ever higher
values. The physical source of eccentricity modulation is the
torque supplied by the central star (Touma & Wisdom 1998;
Ćuk & Stewart 2012).

In order to demonstrate the relevance of resonant capture
under typical parameters, consider the planetary period Tp
corresponding to the resonant condition above,
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We have scaled the parameters appropriately for the current
Jupiter–Io configuration. Jupiter’s orbital period is 4332 days,
meaning that, were Jupiter to be slowly forced in toward the
Sun (and we ignore the influence of the other Jovian satellites),
Io would encounter the evection resonance at roughly 3.8 AU.
Abundant extrasolar giant planets have thus far been detected
with similar heliocentric distances (∼1–5 AU; Dawson &
Murray-Clay 2013), suggesting that the conditions for evection
resonance might frequently be encountered in young giant
planet–moon systems.

2.1. The Evection Hamiltonian

Criterion(4), describing an encounter with resonance, takes
a simple form;however, there is in general no guarantee that
the moon will become captured into the resonance. Further-
more, assuming that capture occurs, the subsequent evolution
of eccentricity is nontrivial to compute. In order to tackle these
aspects, we adopt a Hamiltonian approach, describing the lunar
dynamics in terms of the combined gravitational potential of
the central star and the planetary quadrupole (J2). This section
focuses on the dynamics of capture into resonance. The reader
may skip to Section 3 for a discussion of the dynamical loss of
moons assuming that capture occurs.
The Hamiltonian describing the dynamics of a moon in orbit

around an oblate planet has been derived elsewhere (e.g.,
Touma & Wisdom 1994, 1998). Despite their intuitive
convenience, Keplerian orbital elements do not compose a
canonical set of coordinates. Accordingly, in order to utilize a
symplectic form, we work in terms of reduced Poincaré
(ormodified Delauney; Murray & Dermott 1999; Morbi-
delli 2002) variables, defined as follows:
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where M is the mean anomaly, and subscripts “m” and “p” are
used below to refer to the moon and the planet, respectively.
Physically, Λm corresponds to the angular momentum the
moon would possess on a circular orbit of semimajor axis am,
and Γm describes the angular momentum difference between
the moon’s true orbit and a circular orbit sharing its semimajor
axis. We assume that the lunar orbital frequency is large
enough to utilize a secular approach, whereby the Hamiltonian
is “averaged” over a lunar orbit. Consequently, explicit
dependence on M is removed, extracting Λm as an integral of
the motion. In terms of the variables(7), the Hamiltonian takes
the form (Touma & Wisdom 1998)
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where the planet–moon system orbits the host star with mean
motion np, such that n tp pl = .
The dynamics are best analyzed in a frame co-orbiting with

the planet. Accordingly, we perform a canonical transformation
of the above Hamiltonian using the new angle
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to obtain the autonomous Hamiltonian
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The first term arises as a result of transformation(9), where-
asthe second term describes the influence of planetary
oblateness on the lunar orbitand gives rise to the precession

Figure 1. Dimensionless illustration of resonant capture and eccentricity
growth. The red line denotes the lunar eccentricity corresponding to the stable
equilibrium of the Hamiltonian (10). The thicker gray line denotes the
analytical expression(43) describing exact resonance. The two solutions are
almost indistinguishable.
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frequency (3). The third term is new and describes the secular
perturbation on the moon’s orbit arising from the star. Note that
the Gaussian averaging process is inertially equivalent to
considering the orbit of the moon to act as an eccentric,
massive wire. Thus, the third term arises from the torques
communicated between the stellar gravitational potential and an
eccentric wire.

It is appropriate to scale the action Γm by the integral of
motion Λm, thus defining a new canonical momentum

. 11m
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In order to preserve symplectic structure, we likewise scale the
Hamiltonian itself by Λm, yielding
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such that the system evolves according to Hamilton’s equations
in the form
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As mentioned earlier, we consider inward planetary migra-
tion (increasing np), but do not explicitly consider the case
where the moon itself is migrating within a circumplanetary
disk (Canup & Ward 2002). Qualitatively, the effect of
inwardmoonmigration would be to postpone the crossing of
an evection resonance by increasing the influence of the
planetary quadrupole. Additionally, we assume that any
variations in the radius of the planet and its J2 during the
nebular epoch are negligible compared to the influence of
variations in np.

2.2. Capture into Resonance

In this section, we outline the conditions under which moons
are expected to become captured into resonance. The moon’s
orbital eccentricity is likely to be small during resonance
passage, and so we analyze the dynamics of capture using the
small-e (and, consequently, small- mG̃ ) approximation to
Hamiltonian(12) (e.g., Touma & Wisdom 1998):
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Borderies & Goldreich (1984) computed the probability for
resonant capture of a system governed by the integrable single-
parameter Hamiltonian
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and so we make progress by casting Hamiltonian (14) into a
similar form.

First, we scale both the Hamiltonian and the actions mG̃ by a
factor η such that
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between the coefficients of 2Φ2 and cos( )fF . Dividing the
Hamiltonian by this factor reproduces the form(15), with the
caveat that time must now be measured in units of 1n¢- . That is,
we have introduced a “slow” canonical time
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By inspection, we see that the “resonance proximity parameter”
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which is highly negative for planetary orbits far outside of
resonance (large am), but increases upon inward migration.
For dynamics governed by Hamiltonians of the form(15),

capture in the adiabatic limit is certain for Φ<1/2 (Borderies
& Goldreich 1984). In our case, this condition corresponds to a
lunar eccentricity ecap, above whichadiabatic capture is not
guaranteed. Within the small-e approximation, e 2m

2G̃ » , and
so we find the critical eccentricity, below which resonant
locking is certain, to be
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At resonance crossing, n J R a n3 2p 2 p m m( ) ( )» , and so the
criterion above yields the condition
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where we have chosen R a 1 10p m = as a reference value
because, as discussed later, more distant orbits are typically
only lost outside of the adiabatic regime.
Note that e=0.03 is significantly larger than the eccentri-

cities of the Galilean satellites, but approaches that of Titan
(e=0.028; Iess et al. 2012). Owing to their position within a
circumplanetary disk, we expect that any young moons will
possess eccentricities at least as small as the Galilean satellites
and ought therefore to be captured in the adiabatic regime.
However, the presence of moon–moon resonances or other
sources of eccentricitypumping may quench the evection
resonance in specific cases.

2.2.1. The Adiabatic Criterion

It is well known in celestial mechanics that passing through
resonances sufficiently rapidly can prevent capture (Quillen
2006) by way of leaving the “adiabatic regime.” Adiabatic
motion occurs when the libration timescale of the moon within

4

The Astrophysical Journal, 817:18 (13pp), 2016 January 20 Spalding, Batygin, & Adams



resonance is shorter than the timescale of resonance crossing.
When satisfied, adiabatic motion allows the lunar orbit to grow
in eccentricityand therefore precession frequency, keeping
pace with the rising planetary mean motion.

The adiabaticity criterion is best derived by changing to the
canonical Cartesian coordinates,
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In Figure 2, we plot contours of Hamiltonian(23) for a range of
values of δ, where it can be seen that the number of equilibria
increases from one to three to five upon increasing from
δ=−1.5 to δ=0.5. We may compute when resonance is
encountered by quantifying the fixed points of Hamilto-
nian(23). On the y-axis (f=π/2, 3π/2), fixed points occur at

y y0, 1 . 24( )d= =  +

and so the equilibria away from y=0 existfor δ>−1. As δ
continues to grow, equilibria appear on the x-axis at

x x0, , 25( )d= = 

when 0d (see Figure 2). Accordingly, as the planet migrates
inward, resonance is encountered at δ=–1 and an inner,
circulation region develops at δ=0.5 In other words, the
“width” of the resonance is equivalent to Δδ=1, correspond-
ing to the amount of migration the planet must undergo to take
its moon from outside to inside of resonance.

A nonadiabatic crossing of resonance corresponds to the
transitioning from outer to inner circulation in less than one
oscillation period. This crossing time is given by

d

dt t t

1
. 26( )d d

»
D
D

=
D

We now suppose that the planetary migration proceeds on the
characteristic timescale τm, such that

a

da

dt

1 1
. 27

p

p

m
( )

t
= -

With this prescription for ap, we may take the time derivative
of δ (Equation (19)), yielding the resonance crossing time

t
a n

n a n R J n
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3
. 28
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p
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p p
2

2 m
m

( )
( )tD =

-

For definiteness, we evaluate Δt when δ=–1/2, which is
equivalent to the condition given in Equation (2). Adopting this
midway point, the resonance crossing time is given by

t
n

n
5 . 29

p

m
m ( )tD =

All that remains is to estimate the libration timescale. Let us
analyze the local neighborhood of  around the resonant fixed
point (x 0eq = , y 1eq d= + ). Recalling that, at x=0,

f=π/2 and y2F = , we define the variables

y

2

1

2

2
, 30

eq
2

¯

¯ ( )

d

f f
p

F = F - = F -
+

= -

which measure the distance away from the equilibrium fixed
point. We now expand the Hamiltonian(23) as a Taylor series
to second order in F̄ and f̄, setting δ=–1/2. After one final

Figure 2. Contours of the small-eccentricity Hamiltonian derived in the text under three scenarios. On the left, the moon is outside of resonance and all trajectories
circulate about the origin. The middle panel represents the situation when the moon is inside resonance and the stable, null equilibrium eccentricity in the left panel has
bifurcated into two, nonzero stable solutions and one unstable solution. On the right, we illustrate the situation once the moon leaves resonance. If capture occurs, the
trajectory remains near the upper or lower equilibria. Unsuccessful capture causes the system to remain within the circulating region around the null-eccentricity
equilibrium.

5 The exact resonant position(5) corresponds to δ=–1/2.
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scaling of the variables

1

2

1

2
, 31ˆ ¯ ˆ ¯ ( )f fF = F =

we arrive at the local Hamiltonian

1

2
, 32

2 2¯ ( ˆ ˆ ) ( ) w f= - F +

where the corresponding “harmonic oscillator” frequency
around this fixed point is ω=2. We now convert back into
real time unitsand obtain the libration period

P
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1
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Equating this quantity to the resonance crossing time, we arrive
at the adiabatic criterion, expressed in terms of the planetary
migration timescale:
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We may immediately substitute in the resonance criterion(4)
to determine the requirement for adiabatic migration in terms of
lunar semimajor axis. The planetary migration timescale is
likely to scale with planetary Keplerian orbital period Tp
(Tanaka et al. 2002), and so it makes sense to likewise scale the
adiabatic criterion:

T
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. 35m
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This dependence comes about because moons at larger am/Rp

are resonant at greater ap/am, such that the typical libration
timescales are reduced and the adiabatic criterion is easier to
break. (As found above, more distant moons are also more
likely to break the requirement e<ecap.)

2.3. The Adiabaticity of Planetary Migration

In the above derivation, we supposed that the semimajor axis
of the planet decays over a characteristic timescale τm. The
exact value of τm, i.e., the rate of Type II migration, is still an
active area of research (Kley & Nelson 2012). In this work, we
adopt the reasonable, first-order approximation that once giant
planets open a gap in the protoplanetary disk, they migrate
inwardwith the accretionary flow (but see Duffell et al. 2014).
Utilizing the Shakura–Sunyaev form for disk effective
viscosity (Shakura & Sunyaev 1973), the accretionary velocity
is given by (Armitage 2011)

v
h

a
a
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2
, 36acc
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where h is the scale height of the disk, α is the dimensionless
turbulence parameter, and ΩK is the Keplerian velocity at
radius ap in the disk. From this equation, we derive the form for
the time evolution of the planetary semimajor axis,

a
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, 37
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which we may estimate by supposing the disk aspect ratio
h a 10p

1~ - . The value of α (and even the validity of its
usage) is widely debatedand probably varies throughout the
disk, depending on which mechanisms dominate turbulent
motions (Hartmann et al. 1998; King et al. 2007; Armi-
tage 2011). That said, the inferred value is usually within the
range 10−4<α<10−2. Substituting these parameter values
in for the migration timescale, we obtain reasonable bounds on
the adiabaticity parameter:

T10 10 . 384
m p

6 ( ) t

Using the above criteria, we may now estimate the most distant
exolunar orbit that is guaranteed to be captured. From
condition(35),
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we obtain the requirement for adiabatic capture that
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To put this number into perspective, 13 planetary radii of
R R1.4p J= sitoutside of the current orbit of Ganymede (for
whicham/Rp≈11). Stable lunar orbits may exist out to
roughly 1/3 to 1/2 of the Hill radius (Nesvorný et al. 2003),
meaning that a Jupiter-mass planet, residing beyond about
0.5 AU from its host star, may possess moons too far out for
adiabatic capture. Capture can still occur outside of the
adiabatic limit, but the probability drops rapidly. Consequently,
in the rest of the paper, we focus on moons situated at am/
Rp10, but maintain the caveat that specific cases may exist
where capture occurs outside the regime of guaranteed capture.

3. EVOLUTION WITHIN RESONANCE

In this section, we calculate the evolution of the moon’s
eccentricity within resonance, assuming that the planet–moon
system satisfies the capture criteria given by Equations (20) and
(40). Furthermore, we derive the conditions under which the
lunar pericenter a e1m ( )- coincides with either the Roche
radius of its host planetor the planetary radius itself. The
Roche radii of young, Jupiter-mass planets are likely to reside
inside the planetary radius (see Section 1.1 above), and so we
consider a planet-crossing orbital trajectory as the criterion for
moon loss, which occurs at an eccentricity

e
R

a
1 . 41coll

p

m
( )= -

We only consider the case whereby moons are lost at the
planetary radius, but mention that higher-mass, compact gas
giants might lose moons through tidal stripping, potentially
generating a primordial ring system (Canup 2010). Further-
more, planets forming under the “hot-start” regime, as opposed
to core accretion, will have significantly larger radii, lowering
the required eccentricity for moon loss (Marley et al. 2007).

3.1. Lunar Eccentricity Growth

As mentioned above, when the system crosses δ=–1 from
below (by way of inward migration), the single equilibrium at
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e=0 becomes unstable and undergoes a bifurcation into two
stable equilibria appearing at nonzero eccentricities (Figures 1,
2). Provided that the lunar eccentricity begins relatively small,
the resonant orbit will perform small-amplitude oscillations
about the eccentricity corresponding to the equilibrium fixed
point of the Hamiltonian. As long as the evolution proceeds
within the adiabatic regime, quasi-conservation of phase-space
area guarantees that the oscillation amplitude will remain small
(see Figure 3). Moreover, dissipative processes, stemming from
tides or disk interactions, will reduce the amplitude of these
oscillations, causing the moon to very closely track the fixed
points.

Cumulatively, we may determine the evolution of the
moon’s eccentricity by solving for the stable fixed points of
the governing Hamiltonian. The small-e case considered in the
previous section was sufficient for analysis of adiabatic capture,
but we must work with unrestricted eccentricities in order to
accurately describe evolution of the moon within resonance.
The first-order approximation is to assume that the equilibrium
eccentricity corresponds to an exact balance between the lunar
precession period and planetary mean motion, described by
Equation (4). It is sensible to work in terms of a dimensionless
semimajor axis

a
a

a
, 42

p

res
˜ ( )º

such that, in solving criterion(4), we find that the moon’s
resonant eccentricity growth is welldescribed by

e a1 . 43eq
3
4˜ ( )= -

One can show, both perturbatively and through numerical
solution, that the above expression corresponds very closely
with the exact equilibrium of Hamiltonian(10). Such an
equilibrium may be obtained by a similar approach to that used
above to calculate the small-e equilibria, except that the
resulting polynomial is nontrivial to solve.

We plot both the approximate solution(43) and the exact,
numerical solution in Figure 1 to demonstrate their similarity.
Furthermore, in Figure 3, we compare the analytic expres-
sion(43) (the black line) to a direct numerical solution of
Hamilton’s equations (the oscillatinggreen line), where it is
apparent that the approximate solution is more than adequate to
describe the eccentricity growth of the moon.

3.2. Condition for Moon Loss

With an analytic solution for eeq in hand, we are now in a
position to calculate the semimajor axis acoll at which a
resonant moon will collide with the planet. We suppose the
moon to be lost at eeq=ecoll, which, from Equations(43)
and(44), occurs when

R
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a
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For convenience, we define the dimensionless variable

r
a

R
, 45m
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such that the condition for a moon being lost (after subbing in
for ares) becomes
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where rloss is the dimensionless semimajor axis of a moon lost
at heliocentric distance ap. An analytic solution exists for rloss
above, but its functional form is rather complicated (though
analytic approximations exist).
As mentioned above, in order to capture a moon into the

evection resonance, the planet must originate outside of
resonance (a0>ares, where a0 is the location of the planet at
the time of moon formation). This condition may be recast in
terms of the most distant lunar orbit that would encounter
resonance (r=rMax) as the planet migrates from ap=a0.
Rearranging the expression for ares, we obtain

r
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In other words, any moons forming farther than rMax from their
host planet will not become captured during subsequent inward
migration. Combined with the condition for moon loss r=rloss
above, we may define an “exclusion zone,” within which
moons may be lost via the evection resonance as a planet
migrates from a0 to acoll:

r r r , 48loss excl Max ( )< <

where expressions for rloss and rMax are given by Equations (44)
and(47).
Crucially, the excluded region’s outer edge rMax depends

only on where the planet began its inward migration, a0.
Consequently, if such a region is observed among future
exomoon detections, its outer edge may be used to directly
constrain where the planet–moon system formed, irrespective
of where the planet resides currently. This is fortunatebecause
giant planets have long been suspected to undergo planetesi-
mal-driven migration following the epoch of disk-driven

Figure 3. Numerical solution of the capture and subsequent loss of a moon
with semimajor axis equal to that of Io’s current value. The greenjagged line
follows the numerical solution, whereasthe black line close to its center
illustrates the analytic solution derived in the text for the equilibrium of the
Hamiltonian (Equation (43)). The horizontalred line denotes the eccentricity at
which the lunar orbit crosses the planet’s surface, and the blue line, decreasing
from left to right, depicts planetary migration. We consider parameters typical
to the Io-Jupiter system except with the planetary radius inflated to R1.4 J.
Notice that the analytic solution is almost indistinguishable from the mean
lunar trajectory. The addition of dissipation collapses the numerical curve on
top of the analytic one, provided that the dissipation is not too severe (e.g.,
excessive tides;see Figure 5).
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migration (Tsiganis et al. 2005). We note, additionally, that the
extent of postdisk planetary migration may in principle be
inferred from the discrepancy between the current planetary
position and that derived from expression(44) for rloss.

3.3. Illustrative Example of Exclusion Zone

The condition(48) is general, but for clarity, in Figure 4 we
present the extent of moonremoval appropriate to a Jupiter-
mass planet around a Sun-like star. We display the specific
regions of moonloss for a planet currently found at 0.5, 1, and
1.4 AU, as a function of a0. It is clear that, provided that the
planet–moon system formed sufficiently far out, a significant
extent of moonspace may be removed. For example, a
hypothetical Jupiter, currently found at 1 AU, could have lost
a Europa-distanced moon (r≈6.8) had the system originated
at 5.3 AU.

It can be seen from Figure 4 that for each current planetary
location (horizontal line)there exists a minimum initial
location (a0=acrit), below which no moons are lost (where
the horizontal lines meet the red curve). This situation
corresponds to when the migration extent is not sufficient to
take any one lunar orbit all the way from circular to planet-
crossing. We may approximate acrit as a function of the final
position af by solving

r r , 49a a aloss Maxf 0 crit∣ ∣ ( )= =

which yields the solution

a R
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3.4. Time Required for Moon Loss

Having related the extent of planetary migration to a range of
lost lunar orbits, we now consider how much time must pass
in order to lose these moons and whether it may occur

adiabatically. We mentioned above that the Type II migration
timescale is expected to scale inversely with planetary mean
motion. Accordingly, moons at larger distances from their
planets (larger r), which are captured when their host planets
cross more distant heliocentric radii, will be subject to much
longer migration timescales than closer-in moons. Furthermore,
imposing more rapid migration timescales would begin to
impinge on the adiabatic criterion(34). In what follows, we
calculate the time taken for adiabatic moonloss and compare it
to the lifetime of a typical protoplanetary disk.
Suppose that the planetary semimajor axis evolves according

to Equation (27), and that the migrationary timescale
Tm pt x= . In this case, we may calculate the time interval

Figure 4. Region of lunar orbit parameter space resulting in moonloss. The shaded region between each horizontal line and the red curve illustrates lunar orbits lost
when the host planet migrates from a0 (horizontal axis) to the location denoted by the horizontal lines (1.6, 1.0, and 0.5 AU). Requiring migration to occur
subadiabatically (slowly) limits capture of orbits to r10 (see text), corresponding to a0∼15 AU. As an illustrative example, a Jupiter-like planet migrating from 15
to 1 AU may lose moons between r∼6.8 and10.

Figure 5. Illustration of the required degree of migration for capture and loss of
moons as a function of their planetocentric location. For clarity, we refer to the
semimajor axes of the moon and planet as amoon and aplanet (where “m” and “p”
were used as subscripts in the text). The dashedgray and black lines indicate
the loci where tidal dissipation of eccentricity occurs as rapidly as libration. To
the right of these lines, dissipation can break resonance. As can be seen,
everywhere moons may be captured adiabatically, tides are unimportant, except
when we artificially enhance the dissipation to roughly model the influence of
continents and oceans in a similar configuration to the modern-day Earth.
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teD within which a given planet may migrate from some outer
distance a a0 res= to an inner semimajor axis ac (equivalent to
traversing the shaded region in Figure 5). We do this through
the solution of

a

da

dt
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p
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whereby we obtain
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where we have made use of relationship(44), derived above,
which states that
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We illustrate the timescale teD in Figure 6 for the cases
10 , 10 , 104 5 6{ }x = —all reasonable numbers given the cur-

rent knowledge of Type II migration (Armitage 2010; Kley &
Nelson 2012). The critical planetocentric distance, below
which moons may be adiabatically lost, may be found by
solving Equation (52) for the value of r such that teD equals
some nominal disk lifetime τdisk.

There are two competing effects at play. First, a planet must
migrate slowly enough to capture its moon into resonance.
Second, the planet must traverse a sufficient extent in
semimajor axisfor its moon to crash into the planetary surface
before the protoplanetary disk dissipates. What Figure 6
suggests is that moons are unlikely to be adiabatically lost
around Jupiter-mass planets if they lie farther than ∼10
planetary radii away. In other words, if migration is slow
enough for adiabatic capture, the disk dissipates before
moonloss at larger radii is complete. If migration is rapid,
such as 10 4x = , the planet can traverse the required distance
in time, but only closer orbits (r∼3) satisfy the adiabatic
criterion, making capture of more distant moons rare. Herewe
focus on Jupiter-like planets, but the range of lunar orbits over

which adiabatic loss may occur expands for more massive
planets, larger J2, and less massive stars.

4. DISSIPATIVE EFFECTS

In the calculations presented above, we described the
dynamics of a lunar orbit under the influence of purely
gravitational forces. However, there exist two major sources of
dissipation that may complicate the picture. First, moons around
gas giants are thought to originate from within a circumplanetary
disk of gas and dust (Canup & Ward 2002, 2006). Analogously
to planets embedded in circumstellar disks, moons are thought to
interact with their disks such as to lead to inward migration of
the moons in addition to a potential modulation of eccentricity.
The second dominant source of dissipation is tidal planet–moon
interactions, the strength of which is dependent on both lunar
eccentricity and semimajor axis (Hut 1981; Mignard 1981). We
may generally suppose that dissipative influences will signifi-
cantly alter the picture described above if the dissipation
timescale is shorter than the libration timescale of the
conservative Hamiltonian(12).

4.1. Tides

In this section, we discuss the influence of tidal dissipation
on the evection resonance. Specifically, the effect of the
evection resonance is to increase eccentricity. Therefore, it is
important to determine whether tidal damping of eccentricity
will counteract its resonant growth. Recall that, in the
conservative problem, we worked with the canonical variable

e1 1 2G̃ = - - , the rate of change of which is directly
obtainable from Hamiltonian(12) by Hamilton’s equation
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where we now suppose that sin 2 1m( ˜ )g  because this
corresponds to the maximum restoring torque that the
conservative dynamics can apply. The tidal damping must
overcome this eccentricity forcing if it is to break the system
out of resonance. Therefore, we may write the conservative
eccentricity growth as

de
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The degree to which tidal eccentricity damping operates is
somewhat uncertain, especially for general eccentricity. How-
ever, we obtain an approximate expression for the tidal
damping by utilizing the tidal formulae of Hut (1981).
Specifically, we may approximate the tidal evolution of
eccentricity by
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Figure 6. Time taken to adiabatically lose a moon by way of the evection
resonance. Capture into resonance occurs with certainty only below a threshold
migration rate. The vertical lines indicate the most distant moon where the
migration time τm/Tp=104 (gray) and τm/Tp=105 (blue) lead to adiabatic
capture. A migration time of 104 can traverse the resonant dynamics within a
disk lifetime but is too rapid for adiabatic capture of moons beyond ∼2.9
planetary radii. Times scale as J2

1- , and we have chosen J2=0.01 for
illustration.
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where, for Ωm, we consider the satellite to be in the equilibrium
spin state ( 0mẆ = ). In Appendix A, we provide a brief
derivation of the functional form of the equilibrium Ωm, which
evaluates to

n
f e

e f e1
. 57m m

2
2

2
5

23
2

( )
( ) ( )

( )W =
-

In the above equations, Rs is the satellite’s physical radius
and ms is its mass. In addition, we must specify the tidal Love
number k2 and the quality factor Q, which are highly uncertain
even in well-studied solar system bodies, such as the Galilean
satellites, let alone hypothetical exomoons (Lainey et al. 2009).
Accordingly, we choose three reasonable cases. First, we
consider two moons with dissipative parameters appropriate for
Io, with k2/Q≈0.015, but with one having the mass of Earth
and the other the mass of Io. Owing to the dependence of the
tidal damping on satellite radius and mass, the Earth-mass
moon will dissipate eccentricity more rapidly, assuming similar
k/Q. As a third case, we note that a truly “Earth-like” moon
will come complete with oceans and continents, from which the
vast majority of Earth’s tidal dissipation stems (Egbert &
Ray 2000). Therefore, in the interest of completeness, we
consider a scenario where the moon has the mass and radius of
Earth, but tidal parameters 10 times that of Io. The factor of 10
is somewhat arbitrary and is taken simply to illustrate an
extreme case. However, we note that the model proposed by
Touma & Wisdom (1998) required Earth’s dissipation to be
about 25 times weaker in the past to match the moon’s current
position, so an order-of-magnitude amplification is at least
feasible.

In Figure 5, we plot the locus of parameters where

de

dt

de

dt
58

tides grav
( )=

for the three different cases described above. In general, tides
act over too long of a timescale to break the resonance.
However, where tides are artificially enhanced (the dotted line
in Figure 5), moons residing beyond r∼3−4 may be broken
out of the resonance before destruction. Accordingly, the
remote possibility exists that some habitable, Earth-like moons
have been saved from annihilation by the very oceans and
continents that make them habitable.6

4.2. Influence of a Circumplanetary Disk

Despite decades of work, the exact mechanisms governing
turbulence, migration, and planet formation within circum-
stellar disks remain elusive. Therefore, to claim a precise
understanding of the analogous disks encircling young planets
would be premature. However, the properties of moons around
our own gas giants, Jupiter and Saturn, have helped guide
sophisticated models of circumplanetary disks (Canup & Ward
2002, 2006; Martin & Lubow 2011). In particular, moons are
thought to undergo inward migration within such disks, a
process we have thus far neglected.

A theory was put forward in Canup & Ward (2006) to
explain the conspicuously uniform mass ratio (∼104) between
the masses of the planets Saturn, Jupiter, and Uranusand their
respective satellite systems. The theory relies on disk-driven

migration (of the Type I variety) carrying previous generations
of moons into the host planet, leaving only a surviving remnant
whose formation time was similar to their migration time. If
this picture is persistent across extrasolar giant planets, then the
possibility exists that no one particular moon will ever stick
around long enough for the evection resonance to remove it.
However, with data limited to our own solar system, it is not
yet clear whether significant migration of moons does indeed
occur during the epoch of planetary migration.
The treatment of migration within a circumplanetary context

possesses several key differences from that within circumstellar
disks. First, there are currently no observational constraints on
accretion rates within disks encircling planets. Indeed, once the
planet has acquired its gaseous envelope in a runaway fashion,
there is no strict requirement that the circumplanetary material
accrete at all. In Appendix B, we provide a brief calculation of
the steady-state disk mass arising from a maximum possible
accretion rate of about one Jupiter mass per million years. For
turbulence parameters typical of circumstellar disks, the total
disk mass could be smaller than that of Io, but conversely, if
turbulence were generated by the disk reaching a gravitation-
ally unstable state, then the disk could easily be orders of
magnitude more massive. Owing to such uncertainties, for the
sake of this work, we simply mention that significant inward
lunar migration would delay resonance crossing, with the
details left for case-by-case considerations.
If moon formation does indeed occur by way of a rapid

creation and destruction of moons as they sequentially cascade
into the host planet (Canup & Ward 2006), then the evection
resonance will only apply to the final generation of moons,
when its efficacy depends on how much more planetary
migration occurs after this point in time. Similar arguments
apply to disk-driven eccentricity damping. The evection
resonance will only proceed once disk-driven eccentricity
damping slows down, which ought to occur within a similar
epoch to when satellite loss ceases, and so we meet the same
conclusion, that only the final generation of moons is subject to
evection-induced moon loss.

5. DISCUSSION

In this paper, we have identified a mechanism by which
moons may be dynamically lost as their host planet undergoes
Type II migration to shorter-period orbits. Specifically, inward
migration increases the planetary orbital frequency until it
becomes commensurate with the J2-forced pericenter preces-
sion rate. Capture into this “evection” resonance, followed by
subsequent migration, drives the lunar orbit’s eccentricity
higher until the moon collides with the planet. We have shown
that this mechanism is generally constrained to remove moons
closer than about ∼10 planetary radii from their host planets.
More distant moons may enter the resonance, but in their case,
moonloss is unlikely to occur within the typical lifetime of a
protoplanetary disk.

5.1. Determining Migration Extent

It has long been suspected that giant planets must form
outside of the ice lines of their natal disks (Pollack et al. 1996),
but exactly where they form is still an open question. An
observational prediction of the mechanism proposed here is
that moons should be more abundant at small and large
planetocentric distances but rare at intermediate distances. The6 This is something of a fun speculation rather than a serious statement.
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unoccupied region may be used to constrain where migration
began, via Equation (48). Such an inference has important
implications for the formation pathway of giant planets. In
particular, core accretion is not thought to operate efficiently at
larger heliocentric distances(Pollack et al. 1996; Armi-
tage 2011). In these cooler regions (beyond about
20–40 AU), gravitational instability and disk fragmentation
have been tentatively proposed, but are generally disfavored.

Disk fragmentation is occasionally invoked to explain very
distant giant planets, such as those directly imaged in the
system HR 8799 (heliocentric distances 40 AU; Marois et al.
2008, 2010). We have shown that moons cannot be lost
adiabatically via the evection resonance when the planet
originates at such distant radii. However, upon migration from
∼10 AU, we do expect moons to be lost, depending on where
the planet ends its migration. Accordingly, we broadly expect
evection-induced moonloss to be more indicative of core
accretion than of fragmentation, but caution that planets formed
via the “hotstart” of disk fragmentation are likely to have more
enhanced radii than those arising from core accretion.

An important caveat is that we assume that the planet and its
moon form almost simultaneously. Were the moon to form
after significant planetary migration, the region over which
moons are lost could be significantly reduced. The extreme
case thereof would be moons gravitationally caught subsequent
to the disk-hosting phase, a scenario we neglect. Proposed
moon formation times are highly uncertain and mixed. For
example, Callisto has been proposed to have formed before
Jupiter’s hypothesized inward migration (Heller et al. 2015).
On the other hand, if moons are continuously being formed and
lost within circumplanetary disks, no one single moon might be
around long enough for loss via the evection resonance (Canup
& Ward 2006). Only once systems of exomoons are detected
can we thoroughly test the competing hypotheses regarding
moon formation, and so for now we state that formation
locations inferred from exolunar systems represent a lower
bound on the actual location where the planet itself formed.

In addition to determining the location at which a planet
formed, we may also be able to constrain how much the planet
has migrated outwardsince the epoch of Type II migration.
The three outer planets of our solar system are thought to have
undergone significant post-nebular migration by way of
planetesimal scattering (Tsiganis et al. 2005). Notwithstanding
any influence such scattering has on the moons, the observed
inner edge of an excluded region may constrain where the
planet resided at the end of Type II migration. A comparison to
its observed location may extract some information regarding
post-disk migration. It would be optimistic to expect
particularly precise estimates via this method, but the general
existence, or nonexistence, of significant outward migration
would help place the so-called Nicemodel of our solar system
into its Galactic context.

We have thus far neglected that, just as planets can move
around after diskdispersal, planetary tides can lead to
significant evolution of satellite orbits. Indeed, it has even
been proposed that the larger moons of planets within about
0.6 AU of their host stars may be entirely lost (e.g., Barnes &
O’Brien 2002). In principle, it is possible to utilize tidal theory
to infer where the moon once was around any given planet, but
uncertainties are limited by the theory governing planet–moon

tides, an active field of research even within our own solar
system’s satellites. With this in mind, we might suppose that
younger planets are better targets, as they will have experienced
less tidal evolution.
In general, backing out the journey taken by a planet and its

moon within their natal disk from the present lunar configura-
tion is unlikely to become immensely precise for any one
target. However, given a large enough sample of exomoon
systems, we may begin to determine trends, or populations of
planets with significantly different migrational histories that
have thus far gone unnoticed, providing yet more impetus to
continue searching for these objects.

5.2. Implications for Habitable Moons

Part of the motivation for this work was to determine
whether Type II migration of giant planets may significantly
reduce the number of moons occupying habitable zones. We
have shown that these worlds are indeed subject to destruction
through the evection resonance, but over a fairly restricted
parameter space. Nevertheless, the mechanism is capable of
reducing the population of habitable moons, except for the
somewhat unlikely case that the satellite is as dissipative as
Earth currently is, which is anomalously high even relative to
Earth’s geological history.
As an illustration of the potential for habitable moonloss,

consider the horizontal line labeled “1 AU” in Figure 4,
appropriate to a Jupiter-mass planet currently situated at 1 AU.
Moons might be lost outside of ∼6.3 planetary radii upon
migration from 5 AU. However, in order to lose moons
beyond about 8 planetary radii, migration must take place
within a disk lifetime, which corresponds to superadiabatic
motion for these parameters, making moonloss unlikely.
Accordingly, the moon-loss region is somewhat narrow in this
specific case, but other cases may have significantly greater
excluded regions.

5.3. Additional Considerations

The assumptions adopted in our work inevitably leave room
for future extensions to the framework. In particular, Jupiter’s
moons Io, Europa, and Ganymede are locked in a 1:2:4
meanmotion resonance, leaving open the question of how the
picture changes if there are multiple moons around the
migrating planet. Mean motion resonances are likely to quench
the evection resonance as the apsidal recession driven through
moon–moon interactions dominates over the evection-induced
precession (Murray & Dermott 1999; Morbidelli 2002).
However, the picture is less clear when the moons are not
locked in mutual resonances.
All discussion thus far has been with regard to destroying

moons. However, suppose that the moon is caught into
resonance, but the planet subsequently migrates only a small
distance. The lunar orbit will thus be left eccentric but not
planet-crossing. Further contraction of the planet after dissipa-
tion of the disk is analogous to inward migration within the
disk because it reduces the coefficient of the J2 term in the
Hamiltonian. Accordingly, the moon would be pushed to yet
higher eccentricities, potentially leading to a later collision with
the planet. Alternatively, if sufficient contraction has occurred,
the Roche limit may lie outside the planetary radius and, in lieu
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of a collision, tidal forces would rip the moon apart to form
a ring system. Indeed, tidal stripping from the icy, surface
layers of a past moon has been invoked to explain the rings
of Saturn (Canup & Ward 2006), though it is unclear
whether the evection resonance might have had a role in their
formation.

In this work, we have introduced a novel mechanism for the
removal of moons orbiting young, giant planets. Inward
migration is expected to be almost ubiquitous in the formation
of these planets, suggesting that the capture of moons into
evection resonance is potentially a common process. We
highlight that the resonance may be prevented by one of several
mechanisms. Sufficiently rapid planetary migration can prevent
capture, and migration of the moon itself to shorter-period
planetocentric orbits can delay or prevent resonance crossing.
Finally, the presence of other moons in the system, whether or
not they exist in meanmotion resonance, can sometimes
overpower evection. Such complications must be treated on a
case-by-case basis as future exolunar detections emerge.
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enlightening discussions with Dave Stevenson. We would also
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APPENDIX A
TIDAL EQUATIONS

In this section, we describe the equations used in determin-
ing tidal dissipation rates. Following Hut (1981), we adopt the
following equations describing the tidal evolution of satellite
spin rate (Ωs) and eccentricity:
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In the above equations, q M mp s= , where Mp is the mass of
the perturbing body (the planet) and ms is the mass of the body
upon which a tide is being raised (the satellite). Likewise, Rs

refers to the satellite’s physical radius, Qs is the tidal quality
parameter of the satellite, and ksis its tidal Love number. The
mass of the satellite ms is much smaller than the mass of the
planet Mp, such that q q q1 2( )+ » . The various functions fi
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The moment of inertia of the satellite I is not important here
because we suppose the satellite to be tidally locked ( 0sẆ = )
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as claimed in the main text. When the appropriate substitutions
are carried out, we arrive at Equation (57).

APPENDIX B
CIRCUMPLANETARY DISK MODEL

In what follows, we gain insight by considering a steady-
state disk model, constrained to drive an accretion rate Ṁ lower
than about one Jupiter mass every million years. If we adopt the
Shakura & Sunyaev (1973) parameterization for effective
viscosity, ignore any mass inflow, and impose zero-torque
inner boundary conditions (Armitage 2011), the steady-state
solution for surface density Σ reads
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where a is the planetocentric distance of the disk gas and h is
the pressure scale height of the circumplanetary disk. We may
now estimate the mass of the disk by integrating from the
planetary surface to some outer radius, aout, which we estimate
as the last noncrossing orbit inside the Hill radius (Martin &
Lubow 2011), i.e.,
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Using the above conditionsand taking the limit a Rout p , we
obtain a disk with mass given by
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where Ωout is the orbital angular velocity of gas at the outer
edge of the disk, which is related to the planet’s mean motion
via
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Finally, we prescribe an accretion rate of M1 J Myr−1, such
that M MJ acc˙ t~ with 1acct = Myr, leading to a disk mass
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Considering a planet at 1 AU around a Sun-like star, Tp=
1 yr, and so the disk mass we obtain is roughly

M

M
10

1
. 68disk

p

9 ( )
a

» -

If α∼10−3, then the inferred disk mass around a Jupiter-mass
planet is significantly smaller than Io. However, the source of α
is a mystery in these disks. Turbulence almost certainly
commences once gravitational instability sets in, but this
requires M h a Mdisk p( )~ , suggesting very small α∼10−8.

Such a diminutive α is not entirely unreasonable within the
gravitationally driven turbulence regime, provided that disks
have very long cooling times (Gammie 2001). However, we are
veering yet further into the unknown with these considerations,
and so we leave the details for future work.
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