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Abstract—An unsupervised learning algorithm that can obtain a probabilistic model of an object composed of a collection of parts (a

moving human body in our examples) automatically from unlabeled training data is presented. The training data include both useful

“foreground” features as well as features that arise from irrelevant background clutter—the correspondence between parts and detected

features is unknown. The joint probability density function of the parts is represented by a mixture of decomposable triangulated graphs

which allow for fast detection. To learn the model structure as well as model parameters, an EM-like algorithm is developed where the

labeling of the data (part assignments) is treated as hidden variables. The unsupervised learning technique is not limited to

decomposable triangulated graphs. The efficiency and effectiveness of our algorithm is demonstrated by applying it to generate models

of human motion automatically from unlabeled image sequences, and testing the learned models on a variety of sequences.

Index Terms—Unsupervised learning, human motion, decomposable triangulated graph, probabilistic models, greedy search,

EM algorithm, mixture models.

æ

1 INTRODUCTION

AUTOMATIC detection and tracking of people, and analysis

of their motion, actions, and activities, are important

areas in computer vision with potential applications to

medicine, entertainment, and security. To this end, a number

of models of human motion have been proposed in the

literature [14]. “Strong” models represent explicitly the
kinematics and dynamics of the human body [25], [24], [4],

[15], [16], [5], [31], while “weak” models represent its

phenomenological spatio-temporal appearance [23], [35],

[27], [26]. Strong models have the advantage of incorporat-

ing more information and, in principle, tolerate lower signal-

to-noise ratios and be allowed to reconstruct 3D body pose

and motion from 2D images. Weak models allow the

representation of motion patterns, where physical and
geometrical models are not easy to obtain (e.g., loose

clothing, bodies of unknown dimensions) and may therefore

be more practical for image-based tasks, such as detection

and recognition. Another potential advantage of weak

models is that they are, in principle, cheaper to reprogram

to represent different complex motions (whether human or

not) since a detailed analysis of the geometry and physics of

the moving object is not needed. It is therefore useful to
develop methods to train weak models from image

sequences with minimal user assistance.

We propose a method for learning weak models auto-

matically from image sequences; more specifically, we focus

here on probabilistic models proposed by Song et al. [27], [26].

The human motion is modeled by the joint probability density

function of the position and velocity of a collection of body

parts. The probabilistic conditional independence structure

of body parts, encoded by a decomposable triangulated

graph, is such that it allows efficient detection and labeling of

the body. Structure learning of graphical models has been

previously studied by a number of authors [7], [12], [20], [22],

[13]. The main contribution of this paper, apart from the

specifics of the application, is that our method is unsuper-

vised: it is based on unlabeled training data. The training

sequence contains a number of bottom-up features (Tomasi

and Kanade points [30] in our implementation) which are

unlabeled, i.e., we do not know which features are associated to

the body, which to background clutter, which features

correspond to which features across image frames, and

which features are the most informative for a given task. The

learning algorithm must therefore choose a number of useful

features as body parts, establish their correspondence across

frames, determine the underlying probabilistic indepen-

dence structure, and estimate the parameters of the prob-

ability density function. One added generalization of our

setting is that the features corresponding to body parts are not

required to be present in all frames (neither during learning

nor during detection and labeling).
In Section 2, we summarize the main facts about

decomposable triangulated probabilistic models and how

to use them to perform human motion detection and

labeling. In Section 3, we address the learning problem

when the training features are labeled, i.e., the parts of the

model and the correspondence between the parts and

observed features are known. In Section 4, we address the

learning problem when the training features are unlabeled.

In Section 5, we introduce the concept of mixtures of

decomposable triangulated models and extend the unsu-

pervised learning algorithm to the mixture model. In

Section 6, we present some experimental results.
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2 DECOMPOSABLE TRIANGULATED GRAPHS

We use decomposable triangulated graphs1 to model the
probabilistic conditional independence structure of body
parts. A decomposable triangulated graph [1] is a collection of
cliques2 of size three, where there is an elimination order of
vertices such that 1) when a vertex is deleted, it is only
contained in one triangle (we call it a free vertex) and 2) after
eliminating one free vertex and the two edges associated with
it, the remaining subgraph is again a collection of cliques of
size three until only one triangle is left.

2.1 Detection and Labeling

In [27], [26], decomposable triangulated graphs are used to
model the conditional independence of body parts, and
dynamic programming is used for efficient detection and
labeling. Fig. 1 shows two decomposable graphs of the whole
body used in [27], along with one order of successive
elimination of the cliques. For the sake of making this paper
self-contained, we summarize the main results in this section.

Let Sbody ¼ fS1; S2; . . . ; SMg be the set of M body parts.
For example, S1 denotes the left wrist, SM is the right foot,
etc., XSi , 1 � i �M, is the measurement for Si, the position
and velocity of body part Si in our application. We model
the pose and motion of the body by means of a probability
density function PSbody .

Let X ¼ ½X1; . . . ; XN � be a vector of measurements (each
Xi, i ¼ 1; . . . ; N is a vector describing position and velocity of
point i). For clarity of description, we first assume that there
are no missing body parts and no clutter. In this case,N ¼M.
Let L ¼ ½L1; . . . ; LN � be a vector of labels, where Li 2 Sbody is
the label ofXi.The best labeling of thescene is avectorL

�
, such

that the posterior probability of the labeling given the

observed data, P ðL�jXÞ, is maximized over all possible label

vectors L. By Bayes’ rule and equal priors assumption,3

we have

L
� ¼ arg max

L2L
P ðXjLÞ; ð1Þ

where L is the set of all possible labelings.
If the conditional independence of body parts Sbody can be

represented as a decomposable triangulated graph, the joint

probability density function PSbody can be decomposed into,

PSbodyðXS1
; XS2

; . . .XSM Þ

¼
YTÿ1

t¼1
PAtjBtCtðXAt

jXBt
;XCtÞ �PATBTCT ðXAT

;XBT
;XCT Þ;

ð2Þ

whereAi;Bi; Ci 2 Sbody, 1 � i � T ¼M ÿ 2, and ðA1; B1; C1Þ;
ðA2; B2; C2Þ; . . . ; ðAT ;BT ; CT Þ are the cliques. ðA1; A2; . . . ; AT Þ
gives one elimination order, and Bi and Ci, 1 � i � T are

the two vertices connected to Ai when it is deleted.

fA1; A2; . . . ; ATg [ fBT ;CTg is the set of body parts, i.e.,

fA1; A2; . . . ; AT ;BT ; CTg ¼ Sbody. A dynamic programming

algorithm [1], [27] can be used to compute the maximum

likelihood P ðXjLÞ,

max
L2L

P ðXjLÞ

¼ max
XS1

;XS2
;...;XSM

PSbodyðXS1
; XS2

; . . .XSM Þ

¼ max
XA1

;...;XAT
;XBT

;XCT

YTÿ1

t¼1
PAtjBtCtðXAt

jXBt
;XCtÞ

� PATBTCT ðXAT
;XBT

;XCT Þ ð3Þ
¼ max

XAT
;XBT

;XCT

ðPT ðXAT
;XBT

;XCT Þ

� max
XATÿ1

ðPTÿ1ðXATÿ1
jXBTÿ1

; XCTÿ1
Þ � � �

�max
XA2

ðP2ðXA2
jXB2

; XC2
Þ �max

XA1

P1ðXA1
jXB1

; XC1
ÞÞÞÞ: ð4Þ

The equal sign from (3) to (4) is a key step in achieving

computational efficiency: dynamic programming, which is

from the decomposable property of the graph [1], [27]. The

complexity of the dynamic programming algorithm is on

the order of M �N3. In [27], [26], the algorithms are

extended to handle occlusion (some body parts missing)

and clutter (some points not belonging to the body).
Detection consists of deciding whether a human body is

present. We propose two strategies [28], [27], [26]: one is to

threshold the best labeling found as above, the so-called

winner-take-all strategy, and the other is to sum over all the

hypothesis labelings, which can be computed efficiently

using another dynamic programming procedure with the

same computational complexities (using the “sum” opera-

tor instead of the “max” operator). For simplicity, we use

the first strategy in this paper.
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1. For general graphical models, the term decomposable and the term
triangulated have their own meanings (they are actually equivalent proper-
ties [21]). Here, we use the term decomposable triangulated specifically for the
graph type defined in this paragraph.

2. A clique is a maximal subset of vertices, any two of which are adjacent.

Fig. 1. Two decompositions of the human body into triangles [27]. “L”
and “R” in label names indicate left and right. H: head, N: neck,
S: shoulder, E: elbow, W: wrist, H: hip, K: knee, A: ankle, and F: foot. In
(a), the numbers inside triangles give one order in which the vertices can
be deleted. In (b), the numbers in brackets show one elimination order.

3. The equal priors assumption is reasonable when we have little
knowledge about the labelings. We use it mainly due to its computational
simplicity. There are also other ways to model the prior P ðLÞ. For instance,
if we have some prior knowledge on the number of background (clutter)
points, P ðLÞ can be more precisely estimated. In [32], the number of clutter
points is modeled with a Poisson distribution. However, it is hard to
include this kind of global term in the dynamic programming algorithm.



2.2 Decomposable Triangulated Graphs and
General Graphical Models

For general graphical models, the labeling problem is the
most-probable-configuration problem on the graph and can
be solved through max-propagation on junction trees [18],
[21], [28]. The dynamic programming algorithm [2] and the
max-propagation algorithm essentially have the same order
of complexity which is determined by the maximum clique
size of the graph.

The maximum clique size for a decomposable triangulated
graph is three. Since any graph with maximum clique size
equal to or less than three can be transformed into a
decomposable triangulated graph by adding edges, decom-
posable triangulated graphs are the most powerful, or for any
probability distribution, can provide the most accurate
approximation, among all the graphs with less or similar
computational cost. Another type of widely used graphs in
modeling conditional (in)dependence is trees [7], [22], [17],
whose maximum clique size is two. There exist efficient
algorithms [8] to obtain the maximum spanning tree. There-
fore, trees have computational advantages over decompo-
sable triangulated graphs. But, decomposable triangulated
graphs are more suitable for our application because they
have better graph connectivity in dealing with occlusion [28].
With a tree graph [11], if there is a single occlusion, the
detection result may be split into two or more separate
components, whereas with a triangulated graph, even if two
adjacent parts (vertices) are occluded, the detection may still
be connected.

3 SUPERVISED LEARNING OF THE GRAPH

STRUCTURE

In this section, we explore learning graph structure from
labeled data, i.e., with known correspondence between the
parts and the observed features (e.g., data from a motion
capture system [27]). This will be used as foundations for
dealing with unlabeled training data in Section 4. Unfortu-
nately, the problem of finding the optimal decomposable
triangulated graph is NP-hard.4 However, we can hope to
find efficiently approximate solutions that are close to the
optimal. To this end, we study a greedy algorithm based on
the optimization criterion presented in Section 3.1.

3.1 Optimization Criterion

Our goal is to find the decomposable triangulated graph
that can best describe the data. The notation for the set of
body parts and the decomposition of the joint probability
density function into decomposable triangulated graphs are
defined in Section 2.1 and (2).

Suppose X ¼ fX1
; X

2
; . . . ; X

Ng is a set of i.i.d samples
from a probability density function of M body parts, where
X
n ¼ ðXn

S1
; . . . ; Xn

SM
Þ, 1 � n � N , and Xn

Si
, 1 � i �M is the

measurements of body partSi. We call suchX
n

labeled data,5

since the correspondence between the body parts and
measurements is known. In a maximum-likelihood setting,
we want to find the decomposable triangulated graph G,
such that P ðGjXÞ is maximized over all possible such
graphs. P ðGjXÞ is the probability of graph G being the
“correct” one given the observed data X . By Bayes’ rule,
P ðGjXÞ ¼ P ðXjGÞP ðGÞ=P ðXÞ. Therefore, if we make the
simplifying assumption that the priors P ðGÞ are equal for
different decomposable triangulated graphs, then our goal is
to find the structure G which can maximize P ðXjGÞ. By (2),
P ðXjGÞ can be computed as follows [9], [7], [12], [20], [22]:

logP ðXjGÞ ¼
XN

n¼1
logP ðXnjGÞ

¼
XN

n¼1

�XTÿ1

t¼1
logP ðXn

At
jXn

Bt
;Xn

Ct
Þ

þ logP ðXn
AT
;Xn

BT
;Xn

CT
Þ
�

ð5Þ

ffi ÿN �
XTÿ1

t¼1

hðXAt
jXBt

;XCtÞ ÿN � hðXAT
;XBT

;XCT Þ ð6Þ

¼ ÿN �
XT
t¼1

hðXAt
jXBt

;XCtÞ ÿN � hðXBT
;XCT Þ; ð7Þ

where hð�Þ is differential entropy or conditional differential

entropy [9] (we consider continuous random variables here).

Equation (6) is an approximation which converges to

equality forN !1 due to the weak Law of Large Numbers.

We want to find the decomposition ðA1; B1; C1Þ; ðA2; B2; C2Þ;
. . . ; ðAT ;BT ; CT Þ such that logP ðXjGÞ can be maximized.

3.2 Greedy Search

The search for the optimal decomposable triangulated graph

is an NP-hard problem. This section develops a greedy

algorithm to grow the graph by the property of decomposable

graphs. We start from a single vertex, and add vertices one by

one each time maximizing (7). For each possible choice of CT
(the last vertex of the last triangle), find the BT which

maximizes ÿhðXBT
;XCT Þ, then get AT , the vertex (part) that

can maximize ÿhðXAT
jXBT

;XCT Þ. Add edges ðAT ;BT Þ and

ðAT ;CT Þ to the graph. The next vertex is added to the existing

graph by choosing the best child of all the edges (legal

parents) of the existing graph. This is repeated until all the

vertices are added to the graph. For each choice of CT , one

such graph can be grown, so there are M candidate graphs.

The final result is the graph with the highest logP ðXjGÞ
among the M graphs.

The above algorithm is efficient. The number of possible

choices for CT is M, the number of choices for BT is M ÿ 1;

for stage t, M ÿ 2 ¼ T � t � 1, the number of edges in the

graph obtained so far (legal parents) is 2 � ðT ÿ tÞ þ 1 and

the number of vertices to be added to the graph (legal

children) is t. Therefore, the total search cost is

M � ðM ÿ 1þ
P

tðð2 � ðT ÿ tÞ þ 1Þ � tÞÞ, which is on the

order of M4. There is, of course, no guarantee that the

global optimal solution will be found. The effectiveness of

the algorithm will be explored through experiments.
There are also other approximate ways to build the model.

For example, we can add edges to a maximum spanning tree
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4. From Section 2, we know that the search for the optimal decomposable
triangulated graph is equivalent to the search for the optimal graph with tree-
width not greater than three. It is proven that the latter problem is NP-hard
[6], [29]. Therefore, the search of the optimal decomposable triangulated
graph is NP-hard.

5. Note that X
n

in Section 3 is different from other sections. Here, X
n

is a
sample from a probability distribution of M body parts. It only includes
measurements of body parts with known correspondence. In other sections,
it denotes the observed measurements that include body parts and
background clutter.



(MST), but it has been shown to be inferior to the greedy
search for our application (see [28] and Fig. 3 for more details).

3.3 Computation of Differential Entropy-Translation
Invariance

In the greedy search algorithm in Section 3.2, we need to

compute hðXAt
jXBt

;XCtÞ ¼ hðXAt
;XBt

;XCtÞ ÿ hðXBt
;XCtÞ,

1 � t � T . Although our algorithm could work with any

choice of probability distribution, we chose to model the

joint density of body parts with a Gaussian distribution

since it is mathematically convenient and experiments

indicate that it is a reasonable assumption. Thus, the

differential entropy can be computed by 1
2 logð2�eÞnj�j,

where n is the dimension and � is the covariance matrix [9].

In our applications, position and velocity are used as

measurements for each body part, but humans can be

present at different locations in the scene. In order to make

the Gaussian assumption reasonable, translations need to be

removed from the positions. Therefore, we use a local

coordinate system [33] for each triangle ðAt;Bt; CtÞ, i.e., we

take one body part (for example At) as the origin, and use

relative positions for other body parts. More formally, let x

denote a vector of positions x ¼ ðxAt
; xBt

; xCt ; yAt
; yBt

; yCtÞ
T ,

where x and y denote horizontal and vertical positions,

respectively. Then, if we describe positions relative to At,

we obtain x0 ¼ ðxBt
ÿ xAt

; xCt ÿ xAt
; yBt
ÿ yAt

; yCt ÿ yAt
ÞT .

This can be written as x0 ¼Wx, where

W ¼ A 0
0 A

� �
;with A ¼ ÿ1 1 0

ÿ1 0 1

� �
: ð8Þ

The above discussion is on the dimensions representing

positions. For the dimensions representing velocities,

translation does not need to be removed, and the

corresponding “A” matrix (as in (8)) is an identity matrix.

In the greedy search algorithm, the differential entropies of

all the possible triplets are needed and different triplets

have different origins. We first estimate the mean � and

covariance � of X
n

(including all the body parts and

without removing translation), then take the dimensions

corresponding to the triangle and use equations

�0 ¼ 1

N

XN
n¼1

x0n ¼ 1

N

XN
n¼1

Wxn ¼W � 1

N

XN
n¼1

xn ¼W�

�0 ¼W�WT

to get the translation invariant mean �0 and covariance �0. A
similar procedure can be applied to pairs (for example, Bt

can be taken as origin for (Bt; Ct)) to achieve translation
invariance.

4 UNSUPERVISED LEARNING OF THE GRAPH

STRUCTURE

In this section, we present an algorithm to learn the

probabilistic independence structure of human motion

automatically from unlabeled training data. Our approach is

based on maximizing the likelihood of the data. Taking the

labeling (part assignments) as hidden variables, an EM-like

algorithm can be applied. In the following, we first derive the

algorithmassuming thatall the foreground partsareobserved

for each training sample, and then generalize the algorithm to

handle the case of missing body parts (occlusion).

4.1 Learning with All Foreground Parts Observed

This section develops an algorithm searching for the best

decomposable triangulated model from unlabeled data,

which is inspired by the idea of the expectation-maximization

(or EM, [10], [34]) algorithm. The algorithm we propose does

not guarantee the same convergence properties as EM

although it works well in practice. Assume that we have a

data set of N samples X ¼ fX1
; X

2
; . . . ; X

Ng. Each sample

X
n
, 1 � n � N , is a group of detected features containing the

target object. Assume now thatX
n

is unlabeled, which means

that the correspondence between the candidate features and

the parts of the object is unknown.

For convenience, we first assume that all the fore-

ground parts are observed for each sample. If the labeling

for each X
n

is taken as a hidden variable, then the idea of

the EM algorithm can be used to learn the probability

structure and parameters. Our method was inspired by

[32], but while they assumed a jointly Gaussian prob-

ability density function, here we learn the probabilistic

independence structure. Let hn denote the labeling for X
n
.

If X
n

contains nk features, then hn is an nk-dimensional

vector with each element taking a value from Sbody [ fBGg
(Sbody is the set of body parts and BG is the background

clutter label). The observations are X ¼ fX1
; X

2
; . . . ; X

Ng,
the hidden variables are H ¼ fhngNn¼1, and the parameters

to optimize are the probability (in)dependence structure

and parameters for the associated probability density

function. We use G to represent both the probability

structure and the parameters. If we assume that X
n

and

X
m

are independent when n 6¼ m and hn only depends on

X
n
, then the likelihood function to maximize is,

L ¼ logP ðX ; GÞ ¼
XN

n¼1
logP ðXnjGÞ þ logP ðGÞ

¼
XN

n¼1
log

X
hni 2Hn

P ðXn
; hn ¼ hni jGÞ þ logP ðGÞ; ð9Þ

where hni is the ith possible labeling for X
n
, and Hn is the

set of all such labelings. Optimization directly over (9) is

hard, but it can be solved iteratively using the idea of EM.

For each iteration t, we will optimize the function

QðGtjGtÿ1Þ ¼ E½logP ðX ;H; GtÞjX ; Gtÿ1�

¼
XN

n¼1
E½logP ðXn

; hn;GtÞjX
n
;Gtÿ1�

¼
XN

n¼1

X
hni 2Hn

P ðhn ¼ hni jX
n
;Gtÿ1Þ

� logP ðXn
; hn ¼ hni ; GtÞ

¼
XN

n¼1

X
hni 2Hn

Rn
i logP ðXn

; hn ¼ hni ; GtÞ; ð10Þ

SONG ET AL.: UNSUPERVISED LEARNING OF HUMAN MOTION 817



where Rn
i ¼ P ðhn ¼ hni jX

n
;Gtÿ1Þ is the probability of

hn ¼ hni given the observation X
n

and the decomposable
probability structure Gtÿ1. Rn

i can be computed as,

Rn
i ¼ P ðhni jX

n
;Gtÿ1Þ ¼ P ðX

n
; hni ; Gtÿ1Þ=

X
hni

P ðXn
; hni ; Gtÿ1Þ:

ð11Þ

For each iteration t,Rn
i is a fixed number for a hypothesis hni .

We use the same method as in Section 2.1 and [27], [26]

to compute P ðXn
; hni ; GÞ (G is Gt in (10) and Gtÿ1 in (11)).

Under the labeling hypothesis hn ¼ hni , X
n

is divided into

the foreground features X
n

fg, which are parts of the object,

and background (clutter) X
n

bg. If the foreground features

X
n

fg are independent of clutter X
n

bg, then,

P ðXn
; hni ; GÞ ¼P ðX

njhni ; GÞP ðhni ; GÞ
¼P ðXn

fgjhni ; GÞP ðX
n

bgjhni ; GÞP ðhni jGÞP ðGÞ:
ð12Þ

Substituting (12) into (10), we get,XN

n¼1

X
hni 2Hn

Rn
i logP ðXn

; hn ¼ hni ; GtÞ

¼
XN

n¼1

X
hni 2Hn

Rn
i ½logP ðXn

fgjhni ; GtÞ þ logP ðXn

bgjhni ; GtÞ

þ logP ðhni jGtÞ þ logP ðGtÞ�
¼
X

n

X
hni

Rn
i logP ðXn

fgjhni ; GtÞþX
n

X
hni

Rn
i logP ðXn

bgjhni ; GtÞþX
n

X
hni

Rn
i logP ðhni jGtÞ þ

X
n

X
hni

Rn
i logP ðGtÞ: ð13Þ

If we assume that the priors P ðhni jGtÞ are the same for

different hni , and P ðGtÞ are the same for different decom-

posable triangulated graphs, the last two terms of (13) do not

depend on Gt. If we assume independent uniform back-

ground noise6 as in [32], [27], [26], then the second term

P ðXn

bgjhni ; GtÞ ¼ ð1SÞ
nkÿM , where S is the volume of the space a

background feature lies in and is not a function ofGt. Hence,

we only need to optimize over the first term. Under

probability decomposition Gt, P ðX
n

fgjhni ; GtÞ can be com-

puted as in (2). Therefore, the maximization of (10) is

equivalent to maximizing,

QðGtjGtÿ1Þ �
XN

n¼1

X
hni

Rn
i log½P ðXn

fgjhni ; GtÞ� ð14Þ

¼
XN

n¼1

X
hni

Rn
i

�XT
t¼1

logP ðXni
At
jXni

Bt
;Xni

Ct
Þ

þ logP ðXni
BT
;Xni

CT
Þ
�
; ð15Þ

where Xni
At

is the measurements of body part At under

labeling hni for X
n
, etc. For most problems, the number of

possible labelings is very large (on the order of ðnkÞM ), and it is

computationally prohibitive to sum over all the possiblehni as

in (15). We take here the simplest approximation: if there is

one hypothesis labeling hn�i that is much better than other

hypotheses, i.e.,Rn�
i corresponding to hn�i is much larger than

other Rn
i s, then Rn�

i can be taken as 1 and other Rn
i s as 0.

Hence, (15) can be approximated as

QðGtjGtÿ1Þ �
XN

n¼1

�XT
t¼1

logP ðXni�
At
jXni�

Bt
;Xni�

Ct
Þ

þ logP ðXni�
BT
;Xni�

CT
Þ
�
;

ð16Þ

where Xni�
At
;Xni�

Bt
; and Xni�

Ct
are measurements correspond-

ing to the best labeling hn�i , which can be obtained through

the labeling algorithm presented in Section 2.1 using model

Gtÿ1. Comparing (16) with (5), we know for iteration t, if the

best hypothesis hn�i is used as the “true” labeling, then the

decomposable triangulated graph structure Gt can be

obtained through the algorithm described in Section 3.

One approximation we make here is that the best hypoth-

esis labeling hn�i for each X
n

is really dominant among all

the possible labelings so that hard assignment for labelings

can be used. This is similar to the situation of K-means

versus mixture of Gaussian for clustering problems [3].

Note that the best labeling is used to update the parameters

of the probability density function (mean and covariance

under Gaussian assumption). Therefore, in case of several

labelings with close likelihoods, as long as the measure-

ments associated with the body parts from these labelings

are similar, the above approximation is still a good one.

The whole algorithm can be summarized as follows:

given some random initial guess of the decomposable graph

structure G0 and its parameters, then for iteration t, (t is

from 1 until the algorithm converges),

E-like step: Use Gtÿ1 to find the best labeling hn�i for each

X
n
. Let X

n�
fg denote the corresponding foreground

measurements.

M-like step: update �t and covariance matrix �t with �t ¼
1
N

P
n X

n�
fg and �t ¼ 1

N

P
nðX

n�
fg ÿ �tÞðX

n�
fg ÿ �tÞ

T . Use �t

and �t to compute differential entropies and run the

graph growing algorithm described in Section 3 to get Gt.

Comparing with the standard EM technique, we made two

approximations in the above procedure. In the E-like step, we

use the best labeling instead of the weighted sum of all the

possible labelings. Thus, our algorithm is clearly not EM, but

rather another form of coordinate ascent. In the M-like step,

there isnoguarantee that thegreedygraphgrowingalgorithm
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6. Uniform background noise is assumed mainly for computational
simplicity. Uniform background noise is to assume that background
features can be present anywhere with equal probability. For natural
scenes, the independent assumption is not strictly true since closer features
could be more correlated than far way features, but from an engineering
point of view, our experience with experiments indicates that the
assumption works fine.



will find the optimal graph. In Section 6, we evaluate these

approximations with experiments on human motion.

4.2 Dealing with Missing Parts (Occlusion)

So far, we have assumed that all the parts are observed.

When some parts are missing, the measurements for the

missing body parts may be modeled as additional hidden

variables [32] and the EM-like algorithm can be modified to

handle the missing parts.

For each hypothesis labeling hn, let X
n

o denote the

measurements of the observed parts, X
n

m be the measure-

ments for the missing parts, and X
n

fg ¼ ½X
nT

o X
nT

m �
T be the

measurements of the whole object (to reduce clutter in the

notation, we assume that the dimensions can be sorted in

this way). The superscript T denotes transpose. For each

iteration t, we need to compute �t and �t to obtain the

differential entropies and then Gt with its parameters.

Taking hn and X
n

m as hidden variables, we can get,

�t ¼
1

N

X
n

EðXn

fgÞ ð17Þ

�t ¼
1

N

X
n

EðXn

fg ÿ �tÞðX
n

fg ÿ �tÞ
T

¼ 1

N

X
n

EðXn

fgX
nT

fg Þ ÿ �t�Tt ; ð18Þ

where EðXn

fgÞ ¼ ½X
n�T
o EðXnT

m Þ�
T , and

EðXn

fgX
nT

fg Þ ¼
X
n�
o X

n�T
o X

n�
o EðX

nT

m Þ
EðXn

mÞX
n�T
o EðXn

mX
nT

m Þ

" #
:

All the expectations Eð�Þ are conditional expectations with

respect to X
n
; hn ¼ hn�i and decomposable graph structure

Gtÿ1. Therefore, X
n�
o are the measurements of the observed

foreground parts under hn ¼ hn�i . Since Gtÿ1 is Gaussian

distributed, conditional expectation EðXn

mÞ and EðXn

mX
nT

m Þ
can be computed from observed parts X

n�
o and the mean

and covariance matrix of Gtÿ1.

5 MIXTURES OF DECOMPOSABLE TRIANGULATED

MODELS

5.1 Definition

In the previous sections, we model each triangle by a

Gaussian distribution; therefore, the joint probability

density function of all the parts is a Gaussian. To better

express the variability and/or different phases of human

motion, we extend the algorithms to mixtures of decom-

posable triangulated models, which are mixtures of

Gaussian, with each component model being a Gaussian

with conditional independence described by a decompo-

sable triangulated graph. Each component model is

relatively independent in the sense that different compo-

nents can have different sets of body parts. Intuitively, a

mixture model is a weighted sum of several individual

decomposable triangulated models.

More formally, a C-component mixture model can be

represented by G ¼ ½G1G2 � � �GC � and � ¼ ½�1�2 � � ��C �,
where Gj, j ¼ 1; . . . ; C is a decomposable triangulated

Gaussian model, and �j is the prior probability of Gj. Each

component model Gj has an independent set of body

parts—some features corresponding to foreground body

parts of one component model may be taken as background

by another component model.

For an unlabeled observation X, let c (taking a value

from 1 to C) represent the random variable assigning a

component model to X, and hj the random variable

denoting the labeling of X under component model Gj.

Since different component models may have different sets

of body parts, a labeling must be associated with a

particular component model. The probability of an un-

labeled observation X is,

P ðXÞ ¼
XC
j¼1

P ðXjc ¼ jÞP ðc ¼ jÞ

¼
XC
j¼1

X
hji2Hj

P ðX;hj ¼ hjijc ¼ jÞP ðc ¼ jÞ;
ð19Þ

where hji is the ith possible labeling of X under component

model j, andHj is the set of all such possible labelings. In the

above equation, P ðc ¼ jÞ ¼ �j is the prior probability of

component j and P ðX;hj ¼ hjijc ¼ jÞ can be computed in a

similar way to (12).

5.2 Learning Rules

For clarity, we first assume that all the foreground parts

are present for each component. Compared with the

algorithm in Section 4.1, the observations are the same:

X ¼ fX1
; X

2
; . . . ; X

Ng. But, we have one more set of

hidden variables C ¼ fcngNn¼1, where cn assigns a compo-

nent (from 1 to C) to X
n
, and H, the set of random

variables for labeling, becomes H ¼ fhngNn¼1, where

hn ¼ fhnj g
C
j¼1, and hnj is the labeling of X

n
under the

jth component model. The parameters to estimate are the

multiple components model G and the prior probabilities

�. By Bayes’ rule and (19), the likelihood function we

want to maximize is

L ¼ logP ðX ; G;�Þ ¼
XN
n¼1

logP ðXnjG;�Þ þ logP ðG;�Þ

¼
XN
n¼1

log
XC
j¼1

X
hnji2Hn

j

P ðXn
; hnj ¼ hnji; cn ¼ jjG;�Þ

þ logP ðG;�Þ;

ð20Þ
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where hnji is the ith possible labeling of X
n

under the

jth component model, and Hn
j is the set of all such possible

labelings. Optimization directly over (20) is hard, and it can

be solved iteratively. Let Gt ¼ ½G1
tG

2
t � � �GC

t � and �t ¼
½�1
t �

2
t � � ��Ct � denote the parameters at iteration t. Then, at

each iteration t, we will optimize the function

QðGt;�tjGtÿ1;�tÿ1Þ
¼ E½logP ðX ;H; C; Gt;�tÞjX ; Gtÿ1;�tÿ1� ð21Þ

¼
XN
n¼1

E½logP ðXn
; hn; cn;Gt;�tÞjX

n
;Gtÿ1;�tÿ1� ð22Þ

¼
XN
n¼1

XC
j¼1

X
hnji2Hn

j

P ðhnj ¼ hnji; cn ¼ jjX
n
;Gtÿ1;�tÿ1Þ

� logP ðXn
; hnj ¼ hnji; cn ¼ j; Gt;�tÞ ð23Þ

¼
XN
n¼1

XC
j¼1

X
hnji2Hn

j

P ðhnj ¼ hnjijcn ¼ j;X
n
;Gtÿ1;�tÿ1Þ

� P ðcn ¼ jjXn
;Gtÿ1;�tÿ1Þ

� logP ðXn
; hnj ¼ hnji; cn ¼ j; Gt;�tÞ: ð24Þ

The E½�� in (21) and (22) is the expectation of log

likelihood given the observed data and parameters from

iteration tÿ 1. Equation (23) is to compute the expectation

by summing over all the possible values of the hidden

variables. For convenience, we define Rn
ji ¼ P ðhnj ¼ hnjijcn ¼

j; X
n
;Gtÿ1;�tÿ1Þ, which is the probability of a labeling hnji

of X
n

given X
n

and X
n

belonging to component j, and

!nj ¼ P ðcn ¼ jjX
n
;Gtÿ1;�tÿ1Þ, which is the probability of

X
n

belonging to component j given X
n
. Assuming that all

the component models have the same number of body

parts and within one component model the prior prob-

abilities of all the possible labelings are uniformly dis-

tributed, we can obtain (see [28] for detailed derivation),

!nj ¼
�jtÿ1

P
hnji2Hn

j
P ðXn

fgðjiÞjhnji; G
j
tÿ1ÞPC

k¼1�
k
tÿ1

P
hn
ki
2Hn

k
P ðXn

fgðkiÞjhnki; Gk
tÿ1Þ

; ð25Þ

where X
n

fgðkiÞ, k ¼ 1; . . . ; C is the foreground measurements

of labeling hnki 2 Hn
k under component model k. Since each

Gk
tÿ1, k ¼ 1; . . . ; C is a decomposable triangulated Gaussian

model, the summation
P

hn
ki
2Hn

k
P ðXn

fgðkiÞjhnki; Gk
tÿ1Þ in (25) can

be computed efficiently by dynamic programming (use

“sum” operation instead of “max” operation, for more details

see [26]).

The computation of Rn
ji is the same as (11), but using

component model Gj
tÿ1. !nj and Rn

ji are computed using the

parameters from iteration tÿ 1, hence they are fixed

constants for function Q at iteration t.

Substituting !nj and Rn
ji into (24), we get,

QðGt;�tjGtÿ1;�tÿ1Þ

¼
XN
n¼1

XC
j¼1

X
hnji2Hn

j

Rn
ji � !nj � logP ðXn

; hnj ¼ hnji; cn ¼ j; Gt;�tÞ

¼
XN
n¼1

XC
j¼1

!nj
X
hnji2Hn

j

Rn
ji � logP ðXn

; hnj ¼ hnji; cn ¼ j; Gt;�tÞ

¼
XN
n¼1

XC
j¼1

!nj
X
hnji2Hn

j

Rn
ji � ½logP ðXnjhnj ¼ hnji; cn ¼ j;Gt;�tÞ

þ logP ðhnj ¼ hnjijcn ¼ j; Gt;�tÞ þ logP ðcn ¼ jjGt;�tÞ�

¼
XN
n¼1

XC
j¼1

!nj
X
hnji2Hn

j

Rn
ji � ½logP ðXn

fgðjiÞjhnj ¼ hnji; cn ¼ j; Gt;�tÞ

þ logP ðXn

bgðjiÞjhnj ¼ hnji; cn ¼ j; Gt;�tÞ
þ logP ðhnj ¼ hnjijcn ¼ j; Gt;�tÞ þ logP ðcn ¼ jjGt;�tÞ�

¼ Q1 þQ2 þQ3 þQ4;

ð26Þ

where

Q1 ¼
XN
n¼1

XC
j¼1

!nj
X
hn
ji
2Hn

j

Rn
ji � logP ðXn

fgðjiÞjhnj ¼hnji; cn ¼ j; Gt;�tÞ

¼
XC
j¼1

XN
n¼1

!nj
X
hnji2Hn

j

Rn
ji � logP ðXn

fgðjiÞjhnj ¼ hnji; G
j
tÞ

¼
XC
j¼1

Qj
1 ð27Þ

Q2 ¼
XN
n¼1

XC
j¼1

!nj
X
hn
ji
2Hn

j

Rn
ji

� logP ðXn

bgðjiÞjhnj ¼ hnji; cn ¼ j; Gt;�tÞ ð28Þ

Q3 ¼
XN
n¼1

XC
j¼1

!nj
X
hnji2Hn

j

Rn
ji � logP ðhnj ¼ hnjijcn ¼ j; Gt;�tÞ ð29Þ

Q4 ¼
XN
n¼1

XC
j¼1

!nj
X
hnji2Hn

j

Rn
ji � logP ðcn ¼ jjGt;�tÞ

¼
XC
j¼1

XN
n¼1

!nj
X
hnji2Hn

j

Rn
ji � logð�jtÞ

¼
XC
j¼1

�XN
n¼1

!nj

�
logð�jtÞ: ð30Þ

We want to find Gt and �t which can maximize

Q ¼ Q1 þQ2 þQ3 þQ4. Q2 and Q3 are not functions of Gt

and �t. Q1 is a function of Gt and Q4 is a function of �t.

From (27), the best Gj
t is the one which can maximize

Qj
1 ¼

XN
n¼1

!nj
X
hn
ji
2Hn

j

Rn
ji � logP ðXn

fgðjiÞjhnj ¼ hnji; G
j
tÞ ð31Þ

�
XN
n¼1

!nj logP ðXn�
fgðjiÞjG

j
tÞ; ð32Þ
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where X
n�
fgðjiÞ is the foreground configuration with the

highest Rn
ji, i.e., the best labeling of X

n
under model Gj

tÿ1.

The approximation from (31) to (32) is under the same

reasoning as from (15) to (16). Under Gaussian assumption,

the maximum likelihood parameter estimation of Gj
t can be

obtained by taking derivatives of (32) with respect to mean

and covariance matrix and equating to zero. Then, we have

the updated parameters,

�jt ¼
P

n !
n
j X

n�
fgðjiÞP

n !
n
j

; ð33Þ

�j
t ¼

P
n !

n
j X

n�
fgðjiÞðX

n�
fgðjiÞÞ

TP
n !

n
j

ÿ �jtð�
j
tÞ
T : ð34Þ

From �jt and �j
t , the decomposable triangulated structure

can be obtained by running the graph growing algorithm in

Section 3.
To optimize �t, we maximize Q4 under the constraintPC
j¼1 �

j
t ¼ 1. Using Lagrange multipliers, we get,

�jt ¼
P

n !
n
j

N
: ð35Þ

The whole algorithm can be summarized as follows:

First, we need to fix C, the number of component models in

the mixtures, and the number of body parts in each

component model. Then we generate random initializations

for each component model,G0 ¼ ½G1
0; . . . ; GC

0 �, and the initial

priors �0. At each iteration t (t from 1 till convergence),

E-like step: For each X
n
, find the best labeling X

n�
fgðjiÞ using

component model Gj
tÿ1, j ¼ 1; . . . ; C and compute !nj

by (25).

M-like step: Update �jt and �j
t as in (33) and (34). Run the

graph growing algorithm (Section 3) on each �j
t to obtain

updated Gj
t , j ¼ 1; . . . ; C. Update �t as in (35).

So far, we have assumed that all the foreground parts are

observed for each component model. In the case of some parts

missing (occlusion), the same techniques as in Section 4.2 are

applied.

5.3 Detection and Labeling Using Mixture Models

For an observation X, we can run the detection and
labelings algorithms summarized in Section 2.1 on each
component model Gj, j ¼ 1; . . . ; C, to get the best
labeling X

�
fgðjÞ and an estimation of PGjðXÞ (by either

the winner-take-all strategy or the sum-over-all-possible-
labeling strategy). Detection can be performed by
thresholding

PC
j¼1�

j � PGjðXÞ. The localization of the
human body can be determined by the best configura-
tion X

�
fgðjÞ with the highest �j � PGjðXÞ among all the

best configurations X
�
fgðjÞ, j ¼ 1; . . . ; C.

6 EXPERIMENTS

Experiments were performed on two types of data: labeled

motion capture data and unlabeled real image sequences.

The experiments on the labeled motion capture data were

used to test the greedy graph growing algorithm described

in Section 3. The experiments on the unlabeled real image

sequences were to evaluate the unsupervised learning

algorithms developed in Sections 4 and 5.

6.1 Experiments on Motion Capture Data

Our motion capture data (the same as in [27]) consist of the

3D positions of 14 markers fixed rigidly on a subject’s body.

These positions were tracked with 1mm accuracy as the

subject walked back and forth, and projected to 2D. We

used around 3,000 frames (50 seconds long) to build

models, and another 3,000 frames for testing.

Under the Gaussian assumption, we first estimated the

joint probability density function (mean and covariance) of

the data. From the estimated mean and covariance, we could

compute differential entropies for all the possible triplets and

pairsand further runthe greedy search algorithm (Section 3.2)

to find the approximate best triangulated model. In order to

benchmark the algorithm, we also obtained a maximum

spanning tree (MST) based on differential entropies [7], [22],

[17], and edges were added in a greedy fashion to transform

the MST into a decomposable triangulated graph [28]. Fig. 2

displays the models. Fig. 2a is the hand-constructed model

used in previous work [27] (Fig. 1a); Fig. 2b is the model

obtained from greedy search (Section 3.2); Fig. 2c is the

decomposable triangulated model grown from a maximum
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Fig. 2. Decomposable triangulated models for motion capture data. (a) Hand-constructed model [27]. (b) Model obtained from greedy search

(Section 3.2). (c) Decomposable triangulated model grown from a maximum spanning tree [7], [22], [17]. The solid lines are edges from the

maximum spanning tree and the dashed lines are added edges [28]. (d) A randomly generated decomposable triangulated model.



spanning tree. The solid lines are edges of the maximum

spanning tree and the dashed lines are added edges. Fig. 2d

shows a randomly generated decomposable triangulated

model, which is grown as follows: we start from a randomly

selected edge. At each following stage, a vertex is randomly

selected and an edge in the existing graph is randomly
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Fig. 3. Likelihood evaluation of graph growing algorithms. (a) On motion capture data. Log likelihood versus number of edges in the model. (b) On

synthetic data with decomposable triangulated independence. Dashed curve: likelihoods of the true models, solid curve: of models from greedy

search, and the solid line with error bars: of random triangulated models.

Fig. 4. Sample images extracted from our sequences. The text string in parenthesis indicates the image type.



selected as its parent edge and then the newly selected vertex

is connected with the two vertices of the edge.
Since the goal of model searching is to find the one with the

highest likelihood (Section 3.1), we first evaluate the models
by likelihoods. Fig. 3a shows the likelihood of the estimated
joint probability density function (pdf), for each one of the
approximate models as well as a number of randomly
generated models (mean and error bars). The horizontal axis
is the number of edges in the model, which is an indicator of
computational cost. The decomposable triangulated model
from the greedy search (Section 3.2) has the highest likelihood
of all the approximate models. The triangulated model grown
from maximum spanning tree is the second best. The hand-
constructed model is the third best. The maximum spanning
tree is worse than the above three triangulated models (not
surprisingly, since it has fewer parameters), but is superior to
the random triangulated models. The full Gaussian joint pdf

shown for comparison has the highest likelihood, but it
cannot be used in a computationally efficient manner.

A natural question to ask is: how close is the likelihood of
our greedy graph to the likelihood of the “optimal”
triangulated graph? We address this question with experi-
ments on synthetic datasets generated by models with
known decomposable triangulated independence. To ac-
complish this, we generate a random decomposable
triangulated model, then generate data according to this
model: 3,000 frames for learning and 3,000 frames for
testing. In order to make this a meaningful comparison, we
add the constraint that, on each triangle, the marginal
probability density of the generated data is the same as that
of the original motion capture data. Fig. 3b shows like-
lihoods using 50 synthetic data sets, which were generated
from 50 triangulated models. The likelihood of the greedy
algorithm (solid curve) matches the likelihood of the true
model (dashed curve) very well. The solid line with error
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TABLE 1
Types of Images Used in the Experiments

“L-R” denotes “from left to right,” and “R-L” means “from right to left.” The digits in the parenthesis are the number of sequences by the number of
frames in each sequence. For example, (3-4 x 80) means that there are three or four sequences, with around 80 frames for each sequence. The +/-
in the code-names denotes whether movement is R-L or L-R.

Fig. 5. Evaluation of the unsupervised learning algorithm: evolution of log-likelihoods from different random initializations. The indices along the

horizontal axis show the number of iterations completed. (a) Shows 12-part 3-component single-subject models. (b) Shows 12-part 3-component

multiple-people models.



bars are the likelihoods of random triangulated models. We
conclude that the greedy search algorithm (Section 3.2)
delivers quasioptimal solutions on this type of data. We will
therefore use this algorithm in the following experiments.

In this section, we used a criterion based on likelihood to
evaluate the greedy graph growing algorithm. However,
there are other more important factors such as ability of
dealing with occlusion and translation invariance that make
decomposable triangulated graphs an appropriate choice for
our application.

6.2 Experiments on Gray-Scale Image Sequences

In this section, we conduct experiments on gray-scale image
sequences. The image sequenceswere acquired usinga digital
camcorder at 30Hz frame rate. The images were converted
into gray-scale and the image resolution is 240 x 360. To apply
our algorithms, candidate features were obtained using a
Lucas-Tomasi-Kanade [30] feature selector/tracker on pairs
of frames. Features are selected at each frame, and are tracked
to the next frame to obtain positions and velocities [26].

The image sequences (see Figs. 4 and 8 for sample images)
used in the experiments are summarized in Table 1. The first
column of Table 1 gives the code-names of the sequences, e.g.,
(p1), (p2), and (b-), which will be used to represent the
sequences. In the description of the sequences, “L-R” denotes
“from left to right,” and “R-L” means “from right to left.” The
10 subjects of the (p1) sequences include six males and four
females from 20 to 50 years old. We assume that the distance
between the person and the camera is constant.

In the experiments, R-L walking motion models were
learned from (p1) sequences and tested on all types of
sequences to see if the learned model can detect R-L
walking and label the body parts correctly. Type (p1), (p2),
and (p3) sequences are considered as positive examples and
the others are negative examples. In the following, we first
evaluate the learning algorithms and then report the
detection and labeling results.

6.2.1 Evaluation of the Unsupervised Learning

Algorithm

There are two approximations in the unsupervised learning
algorithms (see the end of Section 4.1). Here, we evaluate the
algorithm by checking how the log-likelihoods evolve with
each iteration and if they converge. We learn two types of
models. The first one is a single-subject model: using nine
type (p1) sequences of one subject named LG. The other is a
multiple-people model learned from 12 type (p1) sequences
from four subjects (including subject LG).

Fig. 5 shows sometypical results of learning a 3-component
model, each component with 12 parts. Fig. 5a is of single-
subject models and Fig. 5b is of multiple-people models. We
used random initializations and the 10 curves in Fig. 5a or
Fig. 5b correspond to 10 such random initializations. If the
likelihood difference of two iterations is less than 0.1 percent,
thealgorithmterminates.FromFig.5,wecanseethatwhile log
likelihood is not strictly monotonic, but, in general, the log
likelihoods increase with each iteration and converge well.

6.2.2 Models Obtained

We tested the models using a small validation set and found
no big difference in terms of detection performance. Figs. 6a
and 6b show a single-subject model (corresponding to the

thick curve in Fig. 5a). Fig. 6a gives the mean positions and
mean velocities (shown in arrows) of the parts for each
component model. The prior probabilities are shown on top
of each plot. Fig. 6b depicts the learned decomposable
triangulated probabilistic structure for the three component
models in Fig. 6a, respectively. The letter labels show the body
parts correspondence. Figs. 6c and 6d are a multiple-people
model (corresponding to the thick curve in Fig. 5b) and follow
the same representation custom as in Figs. 6a and 6b.
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Fig. 6. Examples of 12-part 3-component models. (a) and (b) are a
single-subject model (corresponding to the thick curve in Fig. 5a), and
(c) and (d) are a multiple-people model (the thick curve in Fig. 5b). (a) (or
(c)) gives the mean positions and mean velocities (shown in arrows) of
the parts for each component model. The number �i, i ¼ 1; 2; 3, on top of
each plot is the prior probability for each component model. (b) (or (d)) is
the learned decomposable triangulated probabilistic structure for models
in (a) (or (c)). The letter labels show the body parts correspondence.



6.2.3 Detection and Labeling

We conduct detection and labeling (Section 5.3) experiments
using the models obtained. To quantify the detection
performance, we first get receiver operating characteristics
(ROC) curves from the likelihood of each sample (Section 5.3).
From an ROC curve, we can take the “equal error” detection
rate when Pdetection ¼ 1ÿ Pfalse alarm as an indicator of the
detection performance. The performance is measured on each
pair of frames independently. Fig. 7 summarizes such
detection rates of positive R-L walking sequences versus
different types of negative sequences. The horizontal axis of
Fig. 7 displays the different types of negative examples (as
described in Table 1). We get the detection rate of each
positive R-L walking sequence versus a certain type of
negative sequences, and the average detection rate is shown
either in star (*) or in circle (o). The error bars show the
maximum or minimum detection rate. The stars (*) with error
bars use the positive walking sequences of subject LG as
positive examples, and the circles (o) with error bars use the
positive sequences of other subjects not in the training set.
Fig. 7a is from the single-subject model as in Fig. 6a, and Fig. 7b
is from the multiple-people model as in Fig. 6c.

All the negative sequences ending with (+) have R-L
motion and (-) means that L-R motion is the major motion.
Detection is almost perfect when images from an L-R (-) type
of sequences are used as negative examples. Among the
R-L (+) types of sequences, the water moving R-L sequence
(with a lot of features) and the sequences of a person standing
still with camera panning are the hardest. From Fig. 7, we see
that the two models perform similarly, with overall detection
rates (out-of-training-set subjects) of 97.0 percent and
96.1 percent for the single-subject model and multiple-people
model, respectively.

We also experimented with a 12-part Gaussian model with
a single component. We find that the detection rates are
similar to the 3-component models when the negative
sequences offer easy discrimination, e.g., L-R (-), but the
detection rates are approximately 10 percent worse than
3-component models on hard discrimination tasks, e.g., water
running R-L (w+) sequences.

Fig. 8 shows results on some images using the 12-part

3-component multiple-people model (Fig. 6c). The text

string at the bottom right corner of each image indicates

which type of sequences the image is from. The small

black circles are candidate features obtained from the

Lucas-Tomasi-Kanade feature detector/tracker. The ar-

rows associated with circles indicate the velocities. The

horizontal lines at the bottom left of each image give the

log-likelihoods. The top three lines are the log-likelihoods

(PGjðXÞ) of the three component models, respectively. The

bottom line is the overall log-likelihood (
PC

j¼1�
j � PGjðXÞ)

(Section 5.3). The short vertical bar (at the bottom)

indicates the threshold for detection, under which we

get equal missed detection rate and false alarm rate for all

the available positive and negative examples. If a R-L

walking motion is detected according to the threshold,

then the best labeling from the component with the

highest log-likelihood is drawn in solid black dots, and

the letter beside each dot shows the correspondence with

the parts of the component model in Fig. 6c. The number

at the upper right corner shows the highest likelihood

component, with 1; 2; 3 corresponding to the three

components in Fig. 6c from left to right. For the samples

in Fig. 8, all the positive R-L walking are correctly

detected, and one negative example (from the water

running R-L sequence) is wrongly claimed as a person

R-L walking (a false alarm).

7 CONCLUSIONS AND DISCUSSIONS

We have described a method for learning a probabilistic
model of human motion in an unsupervised fashion from
unlabeled cluttered data. Our models are mixtures of
Gaussian with conditional independence described by a
decomposable triangulated graph. We explore the efficiency
and effectiveness of our algorithm by learning a model of
right-to-left walking and testing on walking sequences of a
number of people as well as a variety of nonwalking motions.
We find an average of 4 percent error rate on our examples.
This rate is measured on pairs of frames evaluated indepen-
dently, and it becomes virtually zero when 4-5 pairs of frames
(150-200 ms of video) are considered simultaneously [27],
[26]. This is very promising for building a real-life system, for
example, a pedestrian detector.

We find that our models generalize well across subjects
and not at all across types of motions. The model learned on
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Fig. 7. Detection rates versus types of negative examples. (a) is from the single-subject model (Fig. 6a) and (b) is from the multiple-people model
(Fig. 6c). Stars (*) with error bars use R-L walking sequences of subject LG as positive examples and circles (o) with error bars use R-L walking
sequences of other subjects. The stars (or circles) show the average detection rates and error bars give the maximum and minimum detection rates.



subject LG worked equally well in detecting all other
subjects and very poorly at subject discrimination. By
contrast, it was easy to discriminate walking from jogging
and biking in the same direction.

We used point features (from a corner detector) in our
experiments because they are easier to obtain compared to
body segments that may be hard to detect in case of severe
occlusion. Another reason is that psychophysics experi-
ments (Johansson’s experiments [19]) show that the human
visual system can perceive vivid human motion from
moving dots representing the motion of the main joints of
the human body. But, the algorithms can also be applied to
other types of features. A systematic study of the trade-off
between model complexity (number of components and
number of parts) and accuracy is still missing (we used
3-component 12-part models in this paper), as well as
experiments with different types of motions beyond walk-
ing. Decomposable triangulated graphs are used in our
application because intuitively they have better graph
connectivity in case of occlusion and, therefore, better ability

in achieving translation invariance (Sections 2.2 and 6.1).

However, while trees appear less promising than triangu-

lated graphs, we have not yet carried out experiments to

confirm our intuition. Since the unsupervised technique

described in this paper is not limited to decomposable

triangulated graphs, it would be equally interesting to

experiment with other types of graphical models.
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Fig. 8. Detection and labeling results on some images. If a R-L walking motion is detected according to the threshold, then the best labeling from the
component with the highest log-likelihood is drawn in solid black dots. The number at the upper right corner shows the highest likelihood component.
See text for detailed explanations of symbols.



REFERENCES

[1] Y. Amit and A. Kong, “Graphical Templates for Model Registra-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18,
pp. 225-236, 1996.

[2] U. Bertele and F. Brioschi, Nonserial Dynamic Programming.
Academic Press, 1971.

[3] C.M. Bishop, Neural Networks for Pattern Recognition. Clarendon
Press, 1995.

[4] A. Blake and M. Isard, “3D Position, Attitude and Shape Input
Using Video Tracking of Hands and Lips,” Proc. ACM Siggraph,
pp. 185-192, 1994.

[5] C. Bregler and J. Malik, “Tracking People with Twists and
Exponential Maps,” Proc. IEEE Computer Vision and Pattern
Recognition, pp. 8-15, 1998.

[6] D. Chickering, D. Geiger, and D. Heckerman, “Learning Bayesian
Networks Is NP-Hard,” technical report, Microsoft Research,
MSR-TR-94-17, 1994.

[7] C.K. Chow and C.N. Liu, “Approximating Discrete Probability
Distributions with Dependence Trees,” IEEE Trans. Information
Theory, vol. 14, pp. 462-467, 1968.

[8] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, An Introduction to
Algorithms. MIT Press, 1990.

[9] T.M. Cover and J.A. Thomas, Elements of Information Theory. John
Wiley and Sons, 1991.

[10] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” J. Royal Statistical Soc. B,
vol. 39, pp. 1-38, 1977.

[11] C. Fowlkes, “Labeling Human Motion Using Mixtures of Trees,”
Univ. of California at Berkeley, personal communication, 2001.

[12] N. Friedman and M. Goldszmidt, “Learning Bayesian Networks
from Data,” AAAI 1998 Tutorial, http://robotics.stanford.edu/
people/nir/tutorial/, 1998.

[13] N. Friedman and D. Koller, “Being Bayesian about Network
Structure,” Proc. 16th Conf. Uncertainty in Artificial Intelligence,
pp. 201-210, 2000.

[14] D. Gavrila, “The Visual Analysis of Human Movement: A
Survey,” Computer Vision and Image Understanding, vol. 73, pp. 82-
98, 1999.

[15] L. Goncalves, E. Di Bernardo, E. Ursella, and P. Perona,
“Monocular Tracking of the Human Arm in 3D,” Proc. Fifth Int’l
Conf. Computer Vision, pp. 764-770, June 1995.

[16] I. Haritaoglu, D. Harwood, and L. Davis, “Who, When, Where,
What: A Real Time System for Detecting and Tracking People,”
Proc. Third Face and Gesture Recognition Conf., pp. 222-227, 1998.

[17] S. Ioffe and D. Forsyth, “Human Tracking with Mixtures of
Trees,” Proc. Int’l Conf. Computer Vision, pp. 690-695, July 2001.

[18] F.V. Jensen, An Introduction to Bayesian Networks. Springer, 1996.
[19] G. Johansson, “Visual Perception of Biological Motion and a

Model for Its Analysis,” Perception and Psychophysics, vol. 14,
pp. 201-211, 1973.

[20] Learning in Graphical Models, M.I. Jordan, ed. MIT Press, 1999.
[21] M.I. Jordan, An Introduction to Graphical Models. to be published.
[22] M. Meila and M. I. Jordan, “Learning with Mixtures of Trees,”

J. Machine Learning Research, vol. 1, pp. 1-48, 2000.
[23] R. Polana and R.C. Nelson, “Detecting Activities,” Proc. DARPA

Image Understanding Workshop, pp. 569-574, 1993.
[24] J.M. Rehg and T. Kanade, “Visual Tracking of High DOF

Articulated Structures: An Application to Human Hand Track-
ing,” Proc. European Conf. Computer Vision, vol. 2, pp. 35-46, 1994.

[25] K. Rohr, “Incremental Recognition of Pedestrians from Image
Sequences,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, pp. 8-13, June 1993.

[26] Y. Song, X. Feng, and P. Perona, “Towards Detection of Human
Motion,” Proc. IEEE Computer Vision and Pattern Recognition, vol. 1,
pp. 810-817, June 2000.

[27] Y. Song, L. Goncalves, E. Di Bernardo, and P. Perona, “Monocular
Perception of Biological Motion in Johansson Displays,” Computer
Vision and Image Understanding, vol. 81, pp. 303-327, 2001.

[28] Y. Song, “A Probabilistic Approach to Human Motion Detection
and Labeling,” PhD thesis, Caltech, 2003.

[29] N. Srebro, “Maximum Likelihood Bounded Tree-Width Markov
Networks,” Proc. 16th Conf. Uncertainty in Artificial Intelligence,
pp. 504-511, 2001.

[30] C. Tomasi and T. Kanade, “Detection and Tracking of Point
Features,” Technical Report CMU-CS-91-132, Carnegie Mellon Univ.,
1991.

[31] S. Wachter and H.-H. Nagel, “Tracking Persons in Monocular
Image Sequences,” Computer Vision and Image Understanding,
vol. 74, pp. 174-192, 1999.

[32] M. Weber, M. Welling, and P. Perona, “Unsupervised Learning of
Models for Recognition,” Proc. European Conf. Computer Vision,
vol. 1, pp. 18-32, June/July 2000.

[33] M. Weber, “Unsupervised Learning of Models for Object
Recognition,” PhD thesis, Caltech, May 2000.

[34] M. Welling, “EM-Algorithm,” Class Notes at California Inst. of
Technology, 2000.

[35] Y. Yacoob and M.J. Black, “Parameterized Modeling and
Recognition of Activities,” Computer Vision and Image Under-
standing, vol. 73, pp. 232-247, 1999.

Yang Song received the BE (with honors) and
ME degrees from the Department of Automation
in Tsinghua University, China, in 1993 and 1996,
respectively, and the MS and PhD degrees in
electrical engineering from the California Insti-
tute of Technology, Pasadena, in 1998 and
2003, respectively. From 1992 to 1996, she
worked for the National Key Laboratory of
Pattern Recognition, Tsinghua University, Chi-
na, as a research assistant. She is currently a

research scientist at Fujifilm Software, Inc. in San Jose, California. Her
research interests include machine learning and pattern recognition,
computer vision, graphical models, signal and image processing, and
data analysis. She is a member of the IEEE and the IEEE Computer
Society.

Luis Goncalves received the BASc degree in
electrical engineering from the University of
Waterloo, Canada, in 1991. In 1992, he received
the MS degree in electrical engineering, and in
2000, the PhD degree in computation and neural
systems, both from the California Institute of
Technology, Pasadena. For the past two years,
he has held the position of research scientist at
Idealab, Pasadena, California, where he does
R&D work for start-up companies within Idealab.

His most recent accomplishment has been as the principal investigator
responsible for the robust, real-time, vision-based localization techni-
ques utilized in Evolution Robotics’ (an Idealab company) break-through
visual-SLAM technology. Previously to joining Idealab, he co-founded
Vederi Corp. and Realmoves Inc., companies which developed
technology for efficiently scanning panoramic views of the streets of
the entire urban US, and to synthesize realistic human character
animation in real-time, respectively. He is the author of three US patents
based on these three technologies. His research interests lie in the
areas of machine learning, robotic vision, human-machine interfaces,
human motion estimation and synthesis, and speech processing. He is a
member of the IEEE and the IEEE Computer Society.

Pietro Perona received the degree of Dottore in
ingegneria elettronica from the University of
Padova, Italy in 1985, and the PhD degree in
electrical engineering and computer science
from the University of California, Berkeley, in
1990. He is currently a professor of electrical
engineering and computation and neural sys-
tems, as well as the Director of the US National
Science Foundation Engineering Research Cen-
ter for Neuromorphic Systems Engineering

(CNSE) at the California Institute of Technology, Pasadena. His
research interests include both human and machine vision. His current
activity is focused on visual recognition and the perception of 3D shape.
He has also worked on the use of diffusive PDEs for image processing
(anisotropic diffusion) and filtering techniques for early vision and
modeling of human vision. He is a member of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

SONG ET AL.: UNSUPERVISED LEARNING OF HUMAN MOTION 827


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


