CaltechAUTHORS
  A Caltech Library Service

Astrophysical Implications of the Binary Black Hole Merger GW150914

Abbott, B. P. and Abbott, R. and Abernathy, M. R. and Adhikari, R. X. and Anderson, S. B. and Arai, K. and Araya, M. C. and Barayoga, J. C. and Barish, B. C. and Berger, B. K. and Billingsley, G. and Blackburn, J. K. and Bork, R. and Brooks, A. F. and Cahillane, C. and Callister, T. and Cepeda, C. and Chakraborty, R. and Chalermsongsak, T. and Couvares, P. and Coyne, D. C. and Dergachev, V. and Drever, R. W. P. and Ehrens, P. and Etzel, T. and Gossan, S. E. and Gushwa, K. E. and Gustafson, E. K. and Hall, E. D. and Heptonstall, A. W. and Hodge, K. A. and Isi, M. and Kanner, J. B. and Kells, W. and Kondrashov, V. and Korth, W. Z. and Kozak, D. and Lazzarini, A. and Li, T. G. F. and Mageswaran, M. and Maros, E. and Martynov, D. V. and Marx, J. N. and McIntyre, G. and Meshkov, S. and Pedraza, M. and Perreca, A. and Price , L. R. and Quintero, E. A. and Reitze, D. H. and Robertson, N. A. and Rollins, J. G. and Sachdev, S. and Sanchez, E. J. and Schmidt, P. and Shao, Z. and Singer, A. and Smith, N. D. and Smith, R. J. E. and Taylor, R. and Thirugnanasambandam, M. P. and Torrie, C. I. and Vajente, G. and Vass, S. and Wallace, L. and Weinstein, A. J. and Williams, R. D. and Wipf, C. C. and Yamamoto, H. and Zhang, L. and Zweizig, J. and Chen, Y. and Engels, W. and Ott, C. D. and Thorne, K. S. (2016) Astrophysical Implications of the Binary Black Hole Merger GW150914. Astrophysical Journal Letters, 818 (2). Art. No. L22. ISSN 2041-8205. http://resolver.caltech.edu/CaltechAUTHORS:20160315-110429411

[img] PDF - Published Version
See Usage Policy.

633Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20160315-110429411

Abstract

The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" BHs (≳25 M_☉) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳1 Gpc^(−3) yr^(−1)) from both types of formation models. The low measured redshift (z ≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.3847/2041-8205/818/2/L22DOIArticle
http://iopscience.iop.org/article/10.3847/2041-8205/818/2/L22PublisherArticle
http://arxiv.org/abs/1602.03846arXivDiscussion Paper
ORCID:
AuthorORCID
Adhikari, R. X.0000-0002-5731-5076
Billingsley, G.0000-0002-4141-2744
Callister, T.0000-0001-9892-177X
Isi, M.0000-0001-8830-8672
Kanner, J. B.0000-0001-8115-0577
Korth, W. Z.0000-0003-3527-1348
Kozak, D.0000-0003-3118-8950
Weinstein, A. J.0000-0002-0928-6784
Williams, R. D.0000-0002-9145-8580
Zweizig, J.0000-0002-1521-3397
Ott, C. D.0000-0003-4993-2055
Additional Information:© 2016 American Astronomical Society. Received 2016 January 29; accepted 2016 February 3; published 2016 February 11. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economía y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educació Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Union, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Brazilian Ministry of Science, Technology, and Innovation, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources.
Group:LIGO, TAPIR
Funders:
Funding AgencyGrant Number
NSFUNSPECIFIED
Science and Technology Facilities Council (STFC)UNSPECIFIED
Max Planck SocietyUNSPECIFIED
State of Niedersachsen/GermanyGEO600
Australian Research CouncilUNSPECIFIED
Istituto Nazionale di Fisica Nucleare (INFN)UNSPECIFIED
Centre National de la Recherche Scientifique (CNRS)UNSPECIFIED
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)UNSPECIFIED
Council of Scientific and Industrial Research of IndiaUNSPECIFIED
Department of Science and Technology of IndiaUNSPECIFIED
Science and Engineering Research Board (SERB)UNSPECIFIED
Ministry of Human Resource Development, IndiaUNSPECIFIED
Ministerio de Economía y Competitividad (MINECO)UNSPECIFIED
Conselleria d’Economia i CompetitivitatUNSPECIFIED
National Science Centre of PolandUNSPECIFIED
European UnionUNSPECIFIED
Royal SocietyUNSPECIFIED
Scottish Funding CouncilUNSPECIFIED
Scottish Universities Physics AllianceUNSPECIFIED
Lyon Institute of Origins (LIO)UNSPECIFIED
National Research Foundation of KoreaUNSPECIFIED
Industry CanadaUNSPECIFIED
Natural Sciences and Engineering Research Council of Canada (NSERC)UNSPECIFIED
Ministério da Ciência, Tecnologia e InovaçãoUNSPECIFIED
Leverhulme TrustUNSPECIFIED
Research CorporationUNSPECIFIED
Ministry of Science and Technology (Taipei)UNSPECIFIED
Kavli FoundationUNSPECIFIED
Conselleria d’Educació Cultura i Universitats of the Govern de les Illes BalearsUNSPECIFIED
Ontario Ministry of Economic Development and InnovationUNSPECIFIED
Subject Keywords:gravitational waves; stars: black holes; stars: massive
Record Number:CaltechAUTHORS:20160315-110429411
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20160315-110429411
Official Citation:B. P. Abbott et al 2016 ApJ 818 L22
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:65360
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:15 Mar 2016 23:20
Last Modified:17 Nov 2017 00:11

Repository Staff Only: item control page