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Wepresent an improvednumerical relativity (NR)calibrationof theneweffective-one-body (EOB)model for
coalescing nonprecessing spinning black hole binaries recently introduced by Damour and Nagar
[Phys. Rev. D 90, 044018 (2014)]. We do so by comparing the EOB predictions to both the phasing and the
energetics provided by two independent sets ofNR data coveringmass ratios 1 ≤ q ≤ 9.989 and dimensionless
spin range−0.95 ≤ χ ≤ þ0.994.Oneset of data is a subset of theSimulatingeXtremeSpacetimes (SXS)catalog
of public waveforms; the other set consists of new simulations obtained with the Llama code plus Cauchy
characteristic evolution.We present the first systematic computation of the gauge-invariant relation between the
bindingenergyand the total angularmomentum,EbðjÞ, for a large sample of, spin-aligned, SXSandLlamadata.
The dynamics of the EOB model presented here involves only two free functional parameters, one [ac6ðνÞ]
enteringthenonspinningsector,asa5PNeffectivecorrectionto theinteractionpotential,andone[c3ð ~a1; ~a2; νÞ� in
the spinning sector, as an effective next-to-next-to-next-to-leading order correction to the spin-orbit coupling.
Theseparameters aredetermined [togetherwitha third functionalparameterΔtNQCðχÞ entering thewaveform]by
comparing the EOB phasingwith the SXS phasing, the consistency of the energetics being checked afterwards.
The quality of the analytical model for gravitational wave data analysis purposes is assessed by computing the
EOB/NR faithfulness. Over the NR data sample and when varying the total mass between 20 and 200M⊙ the
EOB/NR unfaithfulness (integrated over the NR frequency range) is found to vary between 99.493% and
99.984% with a median value of 99.944%.
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I. INTRODUCTION

The purpose of this paper is to present an improved
version of the new spinning effective-one-body (EOB)
model introduced in Ref. [1], hereafter Paper I. [For earlier
spinning EOB models see [2–13]]. When the mass of the
binary varies between 20 and 200M⊙, our improved model
yields, when compared to a large sample of numerical
relativity (NR) waveform data, maximal unfaithfulnesses
(F̄≡ 1 − F, integrated over the NR frequency range)
ranging between 0.00016 and 0.00507, with median value
equal to 0.00056. The impatient data-analyst reader will
find this information in Figs. 9 and 21 and the text around.
The structural elements of our improved EOB model
behind such good faithfulnesses are (i) the incorporation
of the full 4PN-accurate analytical knowledge of the EOB
radial interaction; and (ii) the use of a recently proposed
improved ringdown description [14]. The use of the 4PN
information obliged us to update the calibration of both
the effective 5PN-coefficient ac6 entering the nonspinning
sector, and the effective next-to-next-to-next-to-leading
order spin-orbit coupling coefficient c3 of Paper I.
Here, we restrict attention to the nonprecessing case

where the spins are either aligned or antialigned with
respect to the orbital angular momentum. The EOB/NR

comparisons that are used to gain new information from
NR data so as to complete the EOB model are of two kinds:
(i) on the one hand, we compare the gravitational wave
(GW) phasing of the EOB model with 40 state-of-the-art
(publicly available [15]) NR waveforms produced by the
Caltech-Cornell-CITA Simulating eXtreme Spacetimes
(SXS) collaboration with the Spectral Einstein Code
(SpEC) code [16–25]; 11 configurations in this sample
involve nonspinning binaries, while in the remaining 29 at
least one black hole is spinning; (ii) on the other hand we
compare the EOB and NR energetics through the gauge-
invariant relation between energy and angular momentum.
To do so, we employ, in addition to the SXS data sets,
ten newly performed simulations obtained with the Llama
code, as a follow up of our previous work [26].
The paper is organized as follows: in Sec. II we briefly

review the origin of the NR data used in this paper, which
were obtained with very different codes. In Secs. III–IV
we focus on the improved calibration of the nonspinning
sector, its phasing and energetics, notably showing the
good agreement between energetics when F r� ¼ 0 for the
mass ratio range 1 ≤ q ≤ 9.989. In Secs. V-VIwe calibrate
the effective spin-orbit parameter c3 and we assess the
quality of this new spinning EOBmodel by computing both
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the EOB/NR unfaithfulness and the energetics. In Sec. VII
we present a preliminary comparison of our EOB model
with that of Buonanno’s group [11]. Finally, Sec. VIII
presents concluding remarks, future prospects as well as a
histogram summarizing the unfaithfulness calculations.
We use geometrized units with G ¼ c ¼ 1 and the

following notation: M¼m1þm2, μ¼m1m2=M, ν¼μ=M
with the convention that the mass ratio q≡m1=m2 ≥ 1.

II. NUMERICAL RELATIVITY DATA

A. Data from the SXS public catalog

We use a sample of 40 simulations from the SXS catalog.
We consider either nonspinning or spin-aligned configu-
rations, with mass ratios in the range 1 ≤ q ≤ 9.989
and dimensionless spin magnitude −0.95 ≤ χ ≤ þ0.994.
In several cases, just one of the two black holes is spinning.

TABLE I. EOB/NR phasing comparison. The columns report the number of the data sets; the name of the configuration in the SXS
catalog; the mass ratio q ¼ m1=m2; the symmetric mass ratio ν; the dimensionless spins χ1 and χ2; the phase difference ΔϕEOBNR ≡
ϕEOB − ϕNR computed at NR merger; the NR phase uncertainty at NR merger δϕNR

mrg (when available) measured taking the difference
between the two highest resolution levels (see text); the maximum value of the unfaithfulness F̄≡ 1 − F as per Eq. (22). TheΔϕEOBNR’s
in brackets for χ1 ¼ χ2 > þ0.85 were obtained using Eq. (21) for ΔtNQCðχÞ.
# Name N orbits q ν χ1 χ2 ΔϕEOBNR

mrg [rad] δϕNR
mrg [rad] maxðF̄Þ

1 SXS:BBH:none 14 1 0.25 0.0 0.0 −0.016 … 0.00087
2 SXS:BBH:0066 28 1 0.25 0.0 0.0 þ0.010 … 0.00068
3 SXS:BBH:0002 32.42 1 0.25 0.0 0.0 þ0.073 0.066 0.00101
4 SXS:BBH:0007 29.09 1.5 0.24 0 0 þ0.05 0.018 0.00201
5 SXS:BBH:0169 15.68 2 0.2̄ 0 0 −0.15 0.02 0.00045
6 SXS:BBH:0030 18.22 3 0.1875 0 0 −0.074 0.087 0.00035
7 SXS:BBH:0167 15.59 4 0.16 0 0 −0.059 0.52 0.00035
8 SXS:BBH:0056 28.81 5 0.138̄ 0 0 −0.089 0.44 0.00038
9 SXS:BBH:0166 21.56 6 0.1224 0 0 −0.198 … 0.00037
10 SXS:BBH:0063 25.83 8 0.0987 0 0 −0.453 1.01 0.00292
11 SXS:BBH:0185 24.91 9.98911 0.0827 0 0 −0.0051 0.376 0.00066

12 SXS:BBH:0004 30.19 1 0.25 −0.50 0.0 −0.017 0.068 0.00403
13 SXS:BBH:0005 30.19 1 0.25 þ0.50 0.0 þ0.08 0.28 0.00052
14 SXS:BBH:0156 12.42 1 0.25 −0.95 −0.95 þ0.32 2.17 0.00058
15 SXS:BBH:0159 12.67 1 0.25 −0.90 −0.90 þ0.06 0.38 0.00047
16 SXS:BBH:0154 13.24 1 0.25 −0.80 −0.80 þ0.11 … 0.00044
17 SXS:BBH:0151 14.48 1 0.25 −0.60 −0.60 −0.049 0.14 0.00042
18 SXS:BBH:0148 15.49 1 0.25 −0.44 −0.44 þ0.14 0.72 0.00043
19 SXS:BBH:0149 17.12 1 0.25 −0.20 −0.20 þ0.45 0.90 0.00085
20 SXS:BBH:0150 19.82 1 0.25 þ0.20 þ0.20 þ0.94 0.99 0.00275
21 SXS:BBH:0152 22.64 1 0.25 þ0.60 þ0.60 þ0.01 0.36 0.00068
22 SXS:BBH:0155 24.09 1 0.25 þ0.80 þ0.80 −0.39 0.26 0.00110
23 SXS:BBH:0153 24.49 1 0.25 þ0.85 þ0.85 þ0.06 … 0.00059
24 SXS:BBH:0160 24.83 1 0.25 þ0.90 þ0.90 þ0.41 (þ0.41) 0.80 0.00117
25 SXS:BBH:0157 25.15 1 0.25 þ0.95 þ0.95 þ0.37 (þ0.83) 1.18 0.00295
26 SXS:BBH:0158 25.27 1 0.25 þ0.97 þ0.97 þ0.37 (þ0.49) 1.26 0.00325
27 SXS:BBH:0172 25.35 1 0.25 þ0.98 þ0.98 þ0.99 (þ0.46) 2.02 0.00422
28 SXS:BBH:0177 25.40 1 0.25 þ0.99 þ0.99 þ0.22 (þ0.48) 0.40 0.00507
29 SXS:BBH:0178 25.43 1 0.25 þ0.994 þ0.994 þ0.24 (þ0.23) −0.53 0.00506
30 SXS:BBH:0013 23.75 1.5 0.24 þ0.5 0 þ0.31 … 0.00058
31 SXS:BBH:0014 22.63 1.5 0.24 −0.5 0 −0.15 0.15 0.00046
32 SXS:BBH:0162 18.61 2 0.2̄ þ0.6 0 −0.20 0.71 0.00027
33 SXS:BBH:0036 31.72 3 0.1875 −0.5 0 þ0.08 0.065 0.00040
34 SXS:BBH:0031 21.89 3 0.1875 þ0.5 0 þ0.12 0.034 0.00023
35 SXS:BBH:0047 22.72 3 0.1875 þ0.5 þ0.5 −0.034 … 0.00030
36 SXS:BBH:0046 14.39 3 0.1875 −0.5 −0.5 þ0.36 … 0.00054
37 SXS:BBH:0110 24.24 5 0.138̄ þ0.5 0 þ0.24 … 0.00016
38 SXS:BBH:0060 23.17 5 0.138̄ −0.5 0 þ0.21 0.8 0.00034
39 SXS:BBH:0064 19.16 8 0.0987 −0.5 0 þ0.026 0.8 0.00042
40 SXS:BBH:0065 33.97 8 0.0987 þ0.5 0 þ1.33 −3.0 0.00040
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The complete information about the data we used is listed
in Table I. For each run, when it is possible, we add an error
bar on phasing computed at the NRmerger. Here and below
the instant of “merger” is defined as the time of the location
of the peak of the modulus of the l ¼ m ¼ 2 waveform.
This error bar was estimated by computing the value at (the
highest-resolution) merger of the phase difference between
the highest (H) and second-highest (SH) resolutions avail-
able in the catalog, δNRϕðtÞ≡ ϕHðtÞ − ϕSHðtÞ. This differ-
ence is monotonically varying1 up to merger and, by
definition, taken to be zero at the start of the two
simulations. When only one resolution is available we
do not indicate any phasing uncertainty in Table I. In such
cases one can check the consistency by looking at data sets
with neighboring parameters. In SXS simulations, the data
are extracted at finite radius and then extrapolated to future
null infinity (e.g. [27,28]). This is done by means of a fit
using a polynomial in 1=r, where r is the extraction radius.
The user of the catalog is free to choose between different
orders of extrapolation (N ¼ 2, 3, 4) depending on the
application, with the warning that the “best” extrapolation
order to use depends on the simulation and that higher
extrapolation orders tend to do better during the inspiral
and worse during ringdown. We found experimentally that
extrapolation order N ¼ 3 is reliable for all data sets except
for SXS:BBH:0002, where we used N ¼ 2 to reduce
unphysical oscillations during the late inspiral. In addition
to the data of the catalog, we also use a ∼14 orbits q ¼ 1,

χ ¼ 0 waveform [19], that was used to calibrate earlier
EOB models [9,29].

B. Data from the Llama code

We use a sample of 10 configurations simulated with
the Llama code, five of them being computed with two
different resolutions. All but one of them have mass ratio
q ¼ 1. The dimensionless spin values that we consider are
χ ¼ ð�0.8;�0.6;�0.4;�0.2; 0Þ. The precise configura-
tions (and resolutions used) are listed in Table II. The
two nonspinning configurations were first presented in
Ref. [26]; the remaining, equal-mass, spinning configura-
tions were first presented in Ref. [30]. They were here
simulated at higher resolutions and with improved grid
setups to enhance accuracy. For all Llama data the wave-
forms at future null infinity are estimated by using Cauchy-
characteristic extraction (CCE) [31,32].
The Llama simulations are relatively short (between 4

and 8 orbits). We use them mainly for reaching one of the
main aims of this paper, namely to check to what extent
the EOB prediction for the energetics of the system [as
measured by the gauge-invariant relation EbðjÞ between the
dimensionless binding energy and the angular momentum]
is consistent with the corresponding NR quantity.
The longer SXS waveforms (between 12 and 32 orbits)

not only were used to check the phasing performance of
the EOB model, but also its energetics (modulo subtleties
related to junk radiation discussed below, which are
essentially absent when dealing with Llama data). The
joined use of Llama and SXS waveform data allowed us to
(i) reach a reliable NR calibration of the spinning EOB
model of Paper I; (ii) perform interesting cross checks on

TABLE II. BBH configurations, evolved using the Llama code, used to compute the gauge-invariant relation
between energy and angular momentum. From left to right: name of the run, number of orbits up to merger, mass
ratio q≡m1=m2, symmetric mass ratio ν, dimensionless spins of the two black holes, ðχ1; χ2Þ; the initial ADM
mass M0

ADM; initial total angular momentum J 0
ADM.

Name N orbits q ν χ1 χ2 M0
ADM J 0

ADM

q1_s0 8.09 1 0.25 0.0 0.0 0.99051968 0.99325600
q2_s0 6.70 2 0.2̄ 0.0 0.0 0.990898 0.85599600
q1_s-8D10_h96 3.83 1 0.25 −0.8 −0.8 0.989412 0.61736
q1_s-8D10_h1152 3.84 1 0.25 −0.8 −0.8 0.989412 0.61736
q1_s-6D12_h64 8.25 1 0.25 −0.6 −0.6 0.986161 0.7552392
q1_s-6D12_h512 8.23 1 0.25 −0.6 −0.6 0.986161 0.7552392
q1_s-4D10_h64 5.67 1 0.25 −0.4 −0.4 0.990138 0.791588
q1_s-2D10_h64 5.88 1 0.25 −0.2 −0.2 0.989941 0.877499
q1_s-2D10_h512 5.88 1 0.25 −0.2 −0.2 0.989941 0.877499
q1_s2D8_h64 4.93 1 0.25 þ0.2 þ0.2 0.987658 0.984992
q1_s2D8_h512 4.93 1 0.25 þ0.2 þ0.2 0.987658 0.984992
q1_s4D8_h64 5.67 1 0.25 þ0.4 þ0.4 0.987619 1.072176
q1_s6D8_h64 6.38 1 0.25 þ0.6 þ0.6 0.987649 1.160296
q1_s6D8_h512 6.48 1 0.25 þ0.6 þ0.6 0.987649 1.160296
q1_s8D8_h64 7.24 1 0.25 þ0.8 þ0.8 0.987744 1.249296

1δNRϕðtÞ is monotonically increasingwith t except for the data
sets SXS:BBH:0178 and SXS:BBH:0065 where it is monoton-
ically decreasing.
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energy and angular momentum at merger between NR data
obtained with completely different codes; and (iii) compute
the EbðjÞ energetics for a large sample of spin-aligned SXS
data [thereby improving on Ref. [11] where only two EbðjÞ
curves were computed].

III. IMPROVED CALIBRATION OF THE
NONSPINNING EOB MODEL

As mentioned in the Introduction, the spinning EOB
model considered in this paper is essentially the one
introduced in Paper I (to which we refer for our notation),
in particular the waveform up to merger is defined by
Eqs. (75)–(96) there. The only change in the theoretical
framework concerns the definition of the EOB radial
potential A. In the present work, we use the full 4PN-
accurate analytical knowledge of the EOB radial interaction
(see below). In addition we extended (without any addi-
tional theoretical modification) the application of the new
ringdown description of Ref. [14] to the full SXS data sets
of Table I. For the equal-mass, equal-spin configurations,
the ringdown description is exactly as described in
Ref. [14], including the use of the fitting coefficients listed
in Table II there. On the other hand, for the remaining
configurations in our Table I we do not make use of the
latter fit, but rather we apply the ringdown modelization
methodology of [14] separately to each data set. We
postpone to future work the construction of a global
analytical extrapolation of the latter, discrete, ring-
down data.
We use here the 5PNlog-accurate post-Newtonian expan-

sion of the orbital APN
orb function

APN
orbðucÞ ¼ 1 − 2uc þ 2νu3c þ νa4u4c þ ν½ac5ðνÞ

þ alog5 ln uc�u5c þ ν½ac6ðνÞ þ alog6 ln uc�u6c; ð1Þ

where

ν≡ μ

M
¼ m1m2

ðm1 þm2Þ2
¼ q

ð1þ qÞ2 ð2Þ

is the main deformation parameter of EOB theory,
which varies between ν ¼ 0, in the large-mass-ratio limit
(q ¼ m1=m2 ≫ 1) and ν ¼ 1=4 in the equal-mass case.
The dimensionless gravitational potential uc is defined as
uc ¼ M=rc in terms of the EOB centrifugal radius

rc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 þ 2Ma2

r
þ δa2ðrÞ

r
: ð3Þ

Here the (next-to-leading-order) correction of the Kerr
parameter, δa2ðrÞ [12], is defined in Eq. (59) of Paper I.
Contrary to Paper I, wherewe had phenomenologically fixed
the 4PN coefficient ac5ðνÞ to the (ν-independent) fiducial
value ac5 ¼ 23.5, we use here the exact, ν-dependent,

analytical expression of ac5ðνÞ obtained in Ref. [33] (see
also [34]). We recall that the orbital EOB radial potential Aorb

is defined by Padé resumming APN
orbðucÞ as

Aorbðuc; ν; ac6Þ ¼ P1
5½APN

orbðucÞ�: ð4Þ

In view of the change in the analytical expression ofAorb, our
first task will be to provide a new calibration of the single,
effective 5PN functional parameter ac6ðνÞ entering Aorb. We
perform this calibration by means of a sample of non-
spinning waveforms. (This nonspinning-calibrated orbital
potential will then be used as is in our spinning EOBmodel.)
We use as calibrating waveforms eight SXS simulations with
mass ratio q ¼ ð1; 1.5; 2; 3; 4; 5; 6; 8Þ (the q ¼ 9.989 one is
used just as a cross-check). For q ¼ 1 we use the same ∼14
orbits waveform that was used in the calibration procedure of
Ref. [29]. We tune a6ðνÞ so that the EOB and NR phasing
agree (after a suitable alignment) within the NR phasing
error at NRmerger. Following the footsteps of Ref. [29] (and
in particular the cross-check of the time-domain analysis
with the Qω analysis) we obtained

ac6ðνÞ ¼ 3097.3ν2 − 1330.6νþ 81.38: ð5Þ

Note that ac6ðνÞ varies between −57.69 for ν ¼ 0.25 (equal-
mass case) and −7.432 for q ¼ 9.989 (ν ≈ 0.0827).
Moreover the parameter ΔtNQC, given the time lag between
the peak of the pure orbital frequency Ωorb [see Eq. (100) of
Paper I] and the EOB/NR matching point on the time axis
(which is used to determine next-to-quasicircular (NQC)
corrections to the waveform) is fixed (as discussed in Sec. V
of Paper I) asΔtNQCðχ ¼ 0Þ ¼ 1M in the nonspinning case.2

Finally, as mentioned in the Introduction, we use the new
modelization of the ringdown introduced in Ref. [14]. In
this paper, we use the actual fitting coefficients as obtained
applying the procedure of Ref. [14] to each single waveform.
The performance of suitable “fits of fits” extending the
validity of the procedure of Ref. [14] outside the domain of
known waveforms will be discussed elsewhere.
Figure 1 (which plots the Regge-Wheeler-Zerilli nor-

malized waveform Ψ22 ≡ Rh22=
ffiffiffiffiffi
24

p
) illustrates the EOB/

NR phase agreement, for q ¼ 1 when using (i) the 14-orbit
(up to merger) calibration waveform (top panel); (ii) the
∼28-orbit SXS:BBH:0066 waveform of the catalog; and
(iii) the longest NR waveform available in the catalog,
SXS:BBH:0002, that corresponds to about 32 orbits up to
merger. We stress that the actual calibration of ac6ðνÞ made
use neither of SXS:BBH:0066 nor of SXS:BBH:0002,
which are used here just to provide an independent check of
the calibration procedure. The vertical lines in the plots
highlight the alignment time intervals, corresponding to
dimensionless GW frequencies ðMωL;MωRÞ. To check

2By contrast, in the case of high, positive spins, χ ≥ 0.85, it is
useful to allow ΔtNQC to depend on the spin (see below).
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consistency, we fixed MωR ¼ 0.045 for each data set.
Then, we use MωL ¼ 0.035 for the 14-orbit run, MωL ¼
0.023 for SXS:BBH:0066 and MωL ¼ 0.025 for SXS:
BBH:0002. In the latter case, the phase difference between
EOB and NR, accumulated up to NR merger, ΔϕEOBNR

mrg ≡
ϕEOB
mrg − ϕNR

mrg ¼ 0.073 rad is comparable to the NR uncer-
tainty at merger, ≈0.066 rad (see Table I). Similarly, when
using ac6ðνÞ as given by Eq. (5), one finds that the EOB/NR
phase difference is comparable to (though in some cases
slightly larger than) the NR uncertainty at merger for all
nine nonspinning data (compare columns seven and eight
in Table I).

IV. ENERGETICS OF NONSPINNING
COALESCENCES: THE CHOICE F r� ¼ 0

A. Energetics with (nonspinning) Llama data

Having used SXS phasing data to determine the relation
Eq. (5), let us now turn to discussing the energetics of the
model, motivating, in particular, the choice of a vanishing
radial component of radiation reaction that we made here.
The choice F r� ¼ 0, was introduced in Ref. [35] and used
in several previous EOB works [26,36,37]) as well as in
Paper I. As in previous works [26,37,38], the analysis of the
energetics is done via the gauge-invariant relation between
the dimensionless binding energy Eb and the dimensionless
total angular momentum, j, EbðjÞ. These quantities are
computed as

Eb ≡M0
ADM − ΔErad −M

μ
; ð6Þ

j≡ J 0
ADM − ΔJ rad

Mμ
: ð7Þ

Here ðM0
ADM;J

0
ADMÞ denote the total, initial Arnowitt-

Deser-Misner (ADM) mass energy and angular momentum
of the system (including the contribution of the individual
spins), ðΔErad;ΔJ radÞ denote the energy and angular
momentum radiated in GWs, while M ¼ m1 þm2 and
μ ¼ m1m2=M, where m1 and m2 are the NR measured
initial Christodoulou masses. We recall that, while ΔErad is
obtained by time-integrating the square of the news ( _h),
ΔJ rad is obtained by time-integrating a bilinear expression
in the news and the strain h. To obtain the strain we start
from the Fourier transform of ψ4 and use the method of
[39]. The EbðjÞ relation can be straightforwardly obtained
from the results of the BBH simulations obtained with the
Llama code [40,41], as we did in a previous study [26]
limited to nonspinning BBHs. On the other hand, when
using SXS data, several subtleties have to be properly
addressed in order to accurately estimate the EbðjÞ relation
(see the Appendix for details).
Figure 2 displays the EbðjÞ relation in the q ¼ 1,

nonspinning case. It shows the triple comparison between

FIG. 1. EOB=NRl ¼ m ¼ 2 waveform comparison: q ¼ 1,
χ1 ¼ χ2 ¼ 0 and ac6ð0.25Þ ≈ −57.688 from Eq. (5). The calibra-
tion was done using the 14-orbit simulation, following the same
procedure as in Ref. [29] (that was also using the same data set).
The resulting EOB waveform is then checked for consistency
against waveforms SXS:BBH:0066 (∼28 orbits, middle panel)
and SXS:BBH:0002 (∼32 orbits, bottom panel), that is the
longest NR waveform currently available. The EOB/NR modulus
and phase agreement is excellent all through inspiral, plunge,
merger and ringdown.
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the NR curve and (i) the PN-expanded EbðjÞ relation;
(ii) the EOB model with ac6 given by Eq. (5) and with the
choice F r� ¼ 0; (iii) exactly the same EOB model [in
particular, with the value of ac6 given by Eq. (5)] but with
the (nonresummed), 2.5PN accurate, expression of F r� of
Ref. [42]. Note that the latter expression was already used
in previous EOB work [29], though its effect on EbðjÞ is
investigated here for the first time.
The general structure of the PN-expanded Ebðj; χ1; χ2Þ

relation is (in the spinning case)

EPN
b ¼

X10

n¼2

cnðν; χÞ
ln ; ð8Þ

where l ¼ j − ðm1

m2
χ1 þ m2

m1
χ2Þ denotes the dimensionless

orbital angular momentum, l ¼ L=ðμMÞ and the coeffi-
cients cnðν; χÞ depend at most quadratically on the dimen-
sionless spins χ1 ≡ S1=m2

1, χ2 ≡ S2=m2
2. The accuracy we

use in EPN
b is 4PN in the nonspinning sector [43]; NNLO

for the spin-orbit and NLO for the spin-spin part (see
e.g. [44]).
As shown in Fig. 2 [see especially the bottom panel,

which displays ΔEEOBNR
b ðjÞ≡ EEOB

b ðjÞ − ENR
b ðjÞ] the use

of a vanishing radial radiation reaction leads, from an
effective point of view, to a better agreement between the

EOB energetics and the NR one up to merger.3 The NR and
EOB merger points are indicated, respectively, by a filled
circle (NR), by a filled square (EOB, F r� ¼ 0) and by an
empty square (EOB, F r� ≠ 0). By contrast, the PN curve
shows the largest deviation from NR results, especially at
low j’s. Finally, Fig. 3 shows that the same conclusions
hold true also for the q ¼ 2 Llama data.
As discussed in Refs. [35,45], there exists a coordinate

gauge whereF r� ¼ 0. Further work [42] has shown that the
requirement of the vanishing of the Schott contribution
JSchott to the angular momentum required a specific, non-
zero value ofF r� (which was then used in Ref. [29] because
the vanishing of JSchott seemed a priori required by the
definition of the azimuthal component Fφ of the radiation
reaction within the EOB formalism). However, because of
the various approximations made in defining Fφ in the
EOB formalism, it is not actually required to choose the
F r� that is implied by a vanishing JSchott. Our present work
experimentally shows that the condition F r� ¼ 0 is a
simple and effective way to accomplish a (rather surpris-
ingly) good agreement between the numerical and EOB
EbðjÞ curves. We leave to future work a theoretical study of
why such a condition, in conjunction with the current
approximate value of FEOB

φ , happens to lead to rather
small values of both JSchott and ESchott

b (as shown in
Figs. 2–3 above).

FIG. 2. Energetics for q ¼ 1, nonspinning binary: comparison
between NR Llama data, the 4PN, Taylor-expanded, curve and
two EOB curves, one with and the other without a radial part of
the radiation reaction F r� . The (effective) choice F r� ¼ 0 dis-
plays the smallest (∼10−4) discrepancy with NR data up to
merger (indicated by colored markers). The inset focuses on the
initial transient driven by junk radiation.

FIG. 3. Energetics comparison, as in Fig. 2, but for q ¼ 2,
nonspinning, Llama NR data. The F r� ¼ 0 curve displays the
smallest discrepancy with NR data up to merger (indicated by
colored markers).

3We found that a different calibration of ac6 is unable to
displace the F r� ≠ 0 curve on top of the NR one.
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B. Energetics with (nonspinning) SXS data

We found that a similar excellent agreement among
energetics holds, up to merger for all nonspinning SXS
configurations at our disposal, which cover the mass-ratio
range 1 ≤ q ≤ 9.989. (For a previous comparison of non-
spinning merger characteristics see Ref. [46]).
So far, the only published computation of the energetics

from SXS data was presented in Ref. [11]. It was limited to
two, quasiextremal, spinning configurations with spin
either aligned or antialigned with the orbital angular
momentum, with χ1 ¼ χ2 ¼ −0.95 and χ1 ¼ χ2 ¼ þ0.98.
We present here the first systematic computation of

EbðjÞ curves from SXS data covering a large sample of
nonprecessing, spinning (and nonspinning) configurations.
We computed EbðjÞ curves from the nonspinning binaries
in Table I applying the same standard procedure we used
for Llama data. Note, however, that, while the time
integration of energy and angular momentum losses from
Llama data could be meaningfully performed starting at the
beginning of the simulation, in the case of SXS data, we
found it necessary to correct the time integration of the
early “junk-radiation” losses by adding a vectorial shift
ðΔj0;ΔE0

bÞ in the ðj; EbÞ plane. This shift was essentially
determined so as to minimize the EOB/NR difference
ΔEEOBNR

b ðjÞ during the early inspiral. All technical details
of our computation are explained in the Appendix [see in

particular Table III, that lists the values of the vectorial
shifts ðΔj0;ΔE0

bÞ we used].
The main results of our SXS-data analysis are (i) for

q ¼ 1 and q ¼ 2, the energetics computed from SXS data
confirms the results based on Llama data given above in
Figs. 2–3; (ii) for the other values of q, 3 ≤ q ≤ 9.989, not
covered by Llama data, we again find an excellent con-
sistency between the energetics of our EOB model and
the SXS NR one; (iii) it is in particular remarkable that
the binding energy and angular momentum at merger
ðEmrg

b ; jmrg
b Þ provided by our EOB model are in accurate

agreement with the NR one.4 These results are exemplified
in Figs. 4, 5 and 6.
For illustrative purposes, Fig. 4 explicitly shows the q ¼

8 case, data set SXS:BBH:0063. The bottom panel shows
the EOB-NR difference. The vectorial shift in the ðj; EbÞ
plane used here is Δj0¼−4×10−3, ΔE0

b¼−7.7709×10−4

[so that EbðjÞ≡ Eraw
b ðj − Δj0Þ þ ΔE0

b]. As discussed in
detail in the Appendix these (quite small) shifts are
determined through the following two-step procedure.
Step 1: Δj0 is determined first, by requiring that the
difference between the EOB and NR dimensionless orbital

TABLE III. The shift vector ðΔj0;ΔE0
bÞ that is applied to the raw EbðjÞ curves computed for an illustrative subset

of the configuration listed in Table I. The numbers listed refer to curves where the final state ðjf;MfÞ was already
imposed on the raw data, except for those data sets marked with an asterisk, �.

Name q χ1 χ2 ΔE0
b Δj0

SXS:BBH:0066 1 0 0 −5.583e-03 −2.13e-02
SXS:BBH:0169 2 0 0 þ1.224e-05 −5.0e-04
SXS:BBH:0030 3 0 0 −1.669-03 −9.0-03
SXS:BBH:0167 4 0 0 þ1.917e-04 þ7.0e-04
SXS:BBH:0056 5 0 0 −2.571-03 −1.25-02
SXS:BBH:0166 6 0 0 þ1.942e-04 þ7.0e-04
SXS:BBH:0063 8 0 0 −7.7709e-04 −4.0-03
SXS:BBH:0185 9.989 0 0 þ4.053e-04 −2.4-03
SXS:BBH:0156 1 −0.95 −0.95 −9.496e-05 −6.0-03
SXS:BBH:0154 � 1 −0.80 −0.80 −3.018e-04 −0.9-03
SXS:BBH:0151 � 1 −0.60 −0.60 −6.507e-05 −5.7e-04
SXS:BBH:0149 1 −0.20 −0.20 −4.460e-04 −3.8-03
SXS:BBH:0150 1 þ0.20 þ0.20 −4.200e-04 −2.8-03
SXS:BBH:0152 � 1 þ0.60 þ0.60 −7.393e-05 −0.7-03
SXS:BBH:0155 � 1 þ0.80 þ0.80 −2.536e-04 −0.5-03
SXS:BBH:0172 1 þ0.98 þ0.98 −3.640-03 −1.05-02
SXS:BBH:0178 1 þ0.994 þ0.994 −2.657-03 −8.8-03
SXS:BBH:0162 2 þ0.60 0 −5.240e-04 −2.3-03
SXS:BBH:0036 3 −0.50 0 −2.434-03 −5.5-03
SXS:BBH:0031 3 þ0.50 0 −2.326-03 −7.1-03
SXS:BBH:0064 8 −0.50 0 −4.604-03 −5.5-03
SXS:BBH:0065 8 þ0.50 0 −4.792-03 −6.8-03

4As mentioned above, we recall that the instant of the merger is
defined, both in EOB and NR, as the time when the modulus of
the l ¼ m ¼ 2 waveform reaches its maximum.
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frequencies (defined as Ω̂ ¼ ∂Eb=∂j) ΔΩ̂EOBNRðjÞ ¼
Ω̂EOBðjÞ − Ω̂NRðjÞ oscillates around zero on the largest
possible j interval. With a so-chosen Δj0, one finds that
ΔΩ̂EOBNR oscillates between �5 × 10−5 over the interval
3.6≲ j≲ 4.2. Step 2: the constant ΔE0

b is then determined
by minimizing the difference ΔEEOBNR

b ðjÞ≡ EEOB
b ðjÞ−

Eraw
b ðj − Δj0Þ, which is essentially constant on a large j

interval, during the early inspiral. After adding these small
shifts to the raw data, one finds that ΔEEOBNR

b ðjÞ is of the
order of �10−5 for 3.5≲ j≲ 4.2.
The shaded area in the bottom panel of Fig. 4 indicates

the numerical uncertainty, as estimated by taking the
difference between the (raw) EbðjÞ curves obtained from
the highest (Lev5) and second-highest (Lev4) resolution
data present in the SXS catalog. In order to get a
conservative uncertainty estimate, we do not apply any
vectorial shift to the raw data. Let us emphasize the
remarkable agreement between EOB and NR energetics
at merger. The difference at the NR merger point is of order
4 × 10−4, which is barely visible in the top panel of Fig. 4
(and it is approximately twice the estimated uncer-
tainty there).
For the other nonspinning configurations in Table I,

one obtains curves quite analogous to the q ¼ 8 case.
The relevant information is displayed in Fig. 5 that collects
the ΔEEOBNR

b ðjÞ≡ EEOB
b ðjÞ − ENR

b ðjÞ differences for all

nonspinning data but one (the q ¼ 1.5 one). Note that the
end points indicated by square markers in Fig. 5, record the
values of the function ΔEEOBNR

b ðjÞ at the corresponding
EOB merger values of j, jEOBmrg . On the other hand, the stars
on the x-axis of the figure mark the corresponding NR
merger values of j, jNRmrg.
For q ¼ 1, we use here the SXS:BBH:0066 data set with

∼28 orbits. The vectorial shifts ðΔj0b;ΔE0
bÞ we use are

listed in Table III in the Appendix. For all configurations,
one finds that the EOB/NR agreement is of the order 10−5

at the beginning of the inspiral and grows only up to a few
parts in 10−4 around merger. These differences are com-
parable to (though slightly larger than) the corresponding
error bars computed, as above, taking the difference
between the two highest resolutions available.
In Fig. 6 we complement the above results by focusing

on the EOB/NR comparison for merger characteristics,
ðjmrg; EmrgÞ as a function of ν. The figure shows that the
EOB/NR disagreement increases with ν: from a difference
of 3.07 × 10−4 for Emrg

b and 1.7 × 10−4 for jmrg for q ¼
9.989 (ν ¼ 0.0827) the EOB model ends up slightly
overestimating the NR values in the equal-mass case,
ν → 0.25. In particular, for ν ¼ 0.25 we see that the
EOB prediction for Emrg

b is larger than the NR one by
4.9 × 10−3 and that the EOB prediction for jmrg is larger
than the NR one by 3.1 × 10−2. [These differences are
larger than those apparent in the corresponding end points
of Fig. 5 because we are now computing EEOB

b ðjEOBmrg Þ −
ENR
b ðjNRmrgÞ while the vertical displacement of the end points

of Fig. 5 corresponded to EEOB
b ðjEOBmrg Þ − ENR

b ðjEOBmrg Þ]. In the
same figure we also display Llama merger data, denoted by

FIG. 4. Comparison between EOB and SXS energetics for the
q ¼ 8 case. The shaded area indicates numerical uncertainty
measured taking the difference between the highest and second
highest resolution data. Note that the EOB merger state (red,
filled square marker) and the NR merger state (black filled, circle)
are barely distinguishable in the upper panel.

FIG. 5. EOB/NR differences between EbðjÞ curves for all but
one (q ¼ 1.5) nonspinning SXS data of Table I. The difference is
compatible with NR uncertainties up to merger (∼10−4; see Fig. 4
for the illustrative q ¼ 8 case).
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asterisks. We find that Llama and SXS data are fully
consistent within the 10−4 level. Finally, the ν dependence
of the SXS NR Emrg

b can be fitted by means of a second
order polynomial, while jmrgðνÞ is well fitted by a straight
line, namely

Emrg
b;SXS ¼ −0.062951 − 0.176949ν − 0.216264ν2; ð9Þ

jmrg
SXS ¼ 3.406583 − 2.421052ν: ð10Þ

V. NR CALIBRATION OF THE EOB
SPIN-ORBIT COUPLING

Let us now turn to discussing the numerical completion
of the EOB spinning model. As mentioned above, the
spinning sector of the model we use here is exactly the
same as described in Paper I. In the latter work it was
shown that it was possible to obtain a good EOB/NR
phasing agreement by tuning a single effective functional
parameter c3ðχÞ that was entering the spin-orbit coupling at
next-to-next-to-next leading order.5 The best values of the
parameter c3, for various spin values, are listed in Table I
of Paper I. Since the orbital Aorb function has changed, in
the present work, because of (i) the use of the complete
analytical 4PN information and (ii) the consequently
modified functional dependence of a6cðνÞ given by

Eq. (5), we now need to look for a new determination
of c3ðχÞ. In doing so, we also consider here more NR
simulations than in Paper I, notably taking into account
all available nonprecessing data in the SXS catalog. The
spinning SXS configurations we use are listed in Table I:
the mass ratio varies in the range 1 ≤ q ≤ 8 and there are
several configurations where only one of the two black
holes is spinning. A priori, one expects the NNNLO
effective parameter c3 to be a function of both the mass
ratio and the spins of the binary. The determination of c3 is
done in two steps. In a first step, we separately considered
each binary configuration and determined a preliminary
best value of c3 by minimizing the EOB/NR phase differ-
ence, after alignment in the inspiral phase, so to be
compatible with (and typically smaller than) the NR
uncertainty. This procedure is rather straightforward, as
it is just a one parameter search. In a second step, we looked
for a global, analytical representation that approximately
reproduces the latter preliminary best values of c3 as a
function of symmetric mass ratio and spins. We found that
one can represent, with sufficient accuracy, the values
(determined by minimizing the EOB/NR phase difference
as explained above) of c3 for the entire sample of
configurations listed in Table I, by means of the following
simple functional relation:

c3ð ~a1; ~a2; νÞ ¼ p0

1þ n1ð ~a1 þ ~a2Þ þ n2ð ~a1 þ ~a2Þ2
1þ d1ð ~a2 þ ~a2Þ

þ ðp1νþ p2ν
2 þ p2ν

3Þð ~a1 þ ~a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p

þ p4ð ~a1 − ~a2Þν2; ð11Þ

where

p0 ¼ 44.786477; ð12Þ

n1 ¼ −1.879350; ð13Þ

n2 ¼ 0.894242; ð14Þ

d1 ¼ −0.797702; ð15Þ

p1 ¼ 1222.36; ð16Þ

p2 ¼ −12764.4; ð17Þ

p3 ¼ 36689.6; ð18Þ

p4 ¼ −358.086; ð19Þ

and where we found it convenient to introduce the spin
quantities ~a1;2 ≡ X1;2χ1;2, with X1;2 ≡m1;2=M, and
M ¼ m1 þm2. With our convention that m1 > m2, in
terms of the symmetric mass ratio ν we have

FIG. 6. Binding energy and angular momentum at merger (i.e.
at the maximum of jh22j) for nonspinning binaries versus the
symmetric mass ratio ν. The plot shows (i) the highly accurate
numerical agreement between SXS and Llama final configura-
tions for q ¼ 1 and q ¼ 2; (ii) the good numerical consistency
between EOB predictions and actual NR states.

5The analysis of Paper I was limited to the equal-mass, equal-
spin case.
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X1 ¼
1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
Þ; ð20Þ

and X2 ¼ 1 − X1. The terms in Eq. (11) that vanish in the
equal-mass, equal-spin case were chosen, for simplicity, to
be linear in the spins. Similarly, the polynomial dependence
in ν was found necessary to properly fit the values of c3
yielding a good NR/EOB phasing agreement for q ¼ 8,
ðχ1; χ2Þ ¼ ðþ0.5; 0Þ, SXS:BBH:0065 configuration. In
the equal-mass, equal-spin (aligned, or antialigned with
the orbital angular momentum) case, one finds that the
dependence of c3 on the spin is nearly linear (see Fig. 7).
Finally, let us mention that, as already discussed in Paper

I (see Table I there) we found it necessary to flex the simple
choice ΔtNQC ¼ 1M, uniformly used in the nonspinning
case, so as to allow it to depend on spin for large, positive,
spins. Actually, the only available simulations where we
found the need of flexing ΔtNQC are the six equal-mass,
equal-spin configurations with χ¼ χ1¼ χ2> χ0¼þ0.85. In
practice, for spins χ ¼ fþ0.90;þ0.95;þ0.97;þ0.98;
þ0.99;þ0.994g we found as good choices ΔtNQC ¼
f0.2;−1.2;−1.7;−2.0;−3.0;−3.2g, respectively. In the
EOB numerical evolution we use a time-resolution
ΔtEOB ¼ 0.1M, and ΔtNQC is chosen as an integer multiple
of ΔtEOB. The values of ΔtNQC listed above are accurately
fitted by using a (1,1) Padé approximant:

ΔtNQCðχÞ ¼
1þ n1ðχ − χ0Þ
1þ d1ðχ − χ0Þ

ð21Þ

with n1 ¼ −16.06288 and d1 ¼ −4.04266 and χ0 ¼ 0.85.

The quality of the fit yielded by Eq. (11) (together with
the discrete values of ΔtNQC listed above) is quantitatively
assessed by measuring the EOB-NR phase difference at NR
merger after having aligned (in time and phase) the EOB
waveforms to the NR waveform during the early inspiral.
Such differences are listed asΔϕEOBNR

mrg in Table I. The same
table also clearly illustrates the compatibility of the EOB
model with the numerical phase uncertainties δϕNR

mrg at
merger all over the waveform sample considered. The use,
in addition to Eq. (11), of the fit (21) slightly worsens
ΔϕEOBNR

mrg as indicated by the values in parentheses in
Table I. Anyway, both values are approximately within
(half of) the numerical error bar.
Let us emphasize that the EOB/NR agreement remains

excellent for the near-extremal spinning cases χ1 ¼ χ2 ¼
þ0.98 and χ1 ¼ χ2 ¼ þ0.994. Figure 8 shows the EOB/
NR comparison obtained by performing the usual time-
domain comparison when aligning the waveforms on the
frequency interval ðMωL;MωRÞ corresponding to the time-
interval indicated by the two vertical dashed lines in the
plot. Analogous (or better) plots are found for all other
configurations. As an indicator of this good EOB/NR
agreement we just give in Table I the values of the phase
difference at merger.
To further demonstrate the high quality of the EOB

model presented here, and to give a clearer physical
meaning to the phase differences quoted above, we also
measured the agreement between the EOB waveforms and
all the available NR ones by computing the EOB/NR
unfaithfulness (as a function of the total mass M)

F̄ðMÞ≡ 1 −max
t0;ϕ0

hhEOB22 ; hNR22 i
∥hEOB22 ∥∥hNR22 ∥

; ð22Þ

where t0 and ϕ0 are the initial time and phase, ∥h∥≡ffiffiffiffiffiffiffiffiffiffiffiffihh; hip
, and the inner product between two waveforms is

defined as hh1; h2i≡ 4ℜ
R
∞
fNRminðMÞ

~h1ðfÞ ~h�2ðfÞ=SnðfÞdf,
where SnðfÞ is the zero-detuned, high-power noise spectral
density of advanced LIGO [47] and fNRminðMÞ ¼ f̂NRmin=M is
the starting frequency of the NR waveform (after the junk
radiation initial transient). Both EOB and NR waveforms
are tapered in the time domain so as to reduce high-
frequency oscillations in the corresponding Fourier trans-
forms. The procedure of tapering the waveforms is the same
followed by Ref. [11], that introduced a different EOB
model calibrated to NR, called SEOBNRv2, and performed
the same unfaithfulness analysis we are doing here.
Figure 9 shows the so-computed unfaithfulness as a
function of the total mass of the binary for all configura-
tions we considered. The maximum of F̄ðMÞ is also listed,
for convenience, in the last column of Table I. One sees that
for most of all considered configurations the value of F̄
always stays one order of magnitude below the reference
value of 1% (actually, most configurations range between

FIG. 7. Quasilinear behavior of the NNNLO effective spin-orbit
coefficient c3ðâ1; â2; νÞ, Equation (11), in the equal-mass
(ν ¼ 0.25), equal-spin â1 ¼ â2 ¼ χ case. The tuning of this
single dynamical parameter allows one to get an excellent
EOB/NR phasing agreement throughout inspiral, plunge, merger
and ringdown.

NAGAR, DAMOUR, REISSWIG, and POLLNEY PHYSICAL REVIEW D 93, 044046 (2016)

044046-10



0.1% and 0.01%) as the total mass of the binary ranges
from 20 to 200M⊙. Such a waveform quality implies a
negligible loss in event rate due to the modeling uncertainty
within the frequency range f ≥ fNRminðMÞ. Note, however,
that the NR waveforms do not cover the entire frequency
band of the detector when M ≲ 100M⊙. For example, the
longest NR waveform available, SXS:BBH:0002, has
fNRminðMÞ ≈ 900ðM⊙=MÞ Hz, so that it starts at a frequency
≤ 10 Hz when M ≥ 90M⊙ (and ≤ 20 Hz when
M ≥ 45M⊙). The corresponding value of the unfaithful-
ness for M ¼ 90M⊙ is F̄ ¼ 8.54 × 10−4. For the highest
spinning waveform, SXS:BBH:0178, we have fNRminðMÞ ≈
1300ðM⊙=MÞ Hz so that we need M ≥ 130M⊙ to reach
fNRmin ¼ 10 Hz. However, several recent works have shown

that the EOB formalism provided the best available
description of GW phasing even during early inspiral
[48–50]. In absence of longer NR waveforms able to cover
the entire frequency range of the detector for M ≥ 20M⊙,
the values of F̄ðMÞ displayed in Fig. 9 do not have a direct
data-analysis meaning over the full plotted mass range
20M⊙ ≤ M ≤ 200M⊙. We, however, expect, notably in
view of Ref. [49], that the values of F̄ will not significantly
degrade when using longer NR waveforms.
Figure 9 highlights in color the same particular con-

figurations that were highlighted in Fig. 1 of Ref. [11], so as
to prompt an easy and direct comparison. In addition, Fig. 9
also shows, in purple, the configuration ðþ0.994;þ0.994Þ
that was not available when Ref. [11] was written. Note
that the worst global unfaithfulness, of the order of
max F̄ ≈ 0.005, corresponds to the two quasextremal spin-
ning cases χ1 ¼ χ2 ¼ ðþ0.99;þ0.994Þ; see Table I. A
direct comparison with Fig. 1 of Ref. [11] allows us to
make the following observations: (i) the configuration
ðq; χ1; χ2Þ ¼ ð1;þ0.6;þ0.6Þ, SXS:BBH:0152, delivers,
within our EOB model, F̄ðMÞ < 10−3, all over the total
mass range considered. The corresponding curve in Fig. 1
of Ref. [11] was starting around F̄≃ 4.5 × 10−3 for
M ¼ 20M⊙, then increasing up to F̄≃ 10−2 for M ≃
50M⊙ before decreasing again down to 2.5 × 10−3 for
M ¼ 200M⊙. Similarly, the other rather extreme case
ðq; χ1; χ2Þ ¼ ð8;þ0.5; 0.0Þ, SXS:BBH:0065, yields here
an unfaithfulness of order 4 × 10−4 at M ¼ 20M⊙, that

FIG. 8. Illustrative EOBNR time-domain phasing comparison
for quasiextremally spinning binaries: ðq; χ1; χ2Þ ¼ ð1;þ0.98;
þ0.98Þ, data set SXS:BBH:0172 (top panel), and ðq; χ1; χ2Þ ¼
ð1;þ0.994;þ0.994Þ, data set SXS:BBH:0178 (bottom panel). In
both cases, the EOBNR difference at merger (dashed vertical
line) is within the corresponding NR uncertainty, that is ∼2 rad
for χ ¼ þ0.98 and ∼0.53 rad for χ ¼ þ0.994 (see Table I).

FIG. 9. Unfaithfulness of the l ¼ m ¼ 2 EOB waveforms with
respect to the NR ones for all BBH data sets of Table I. The
largest values of F̄ corresponds to the quasiextremal spinning
configurations SXS:BBH:0177 and SXS:BBH:0178 in Table I.
The labels of the configurations use the notation ðq; χ1; χ2Þ; they
are highlighted in color so as to ease a direct comparison with
Fig. 1 of Ref. [11].
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then decreases by a factor 2 for larger total mass. By
contrast, it is interesting to note that the EOB/NR unfaith-
fulness computed for the same configuration using
SEOBNRv2 increases with M from ≈0.3% to ≈1% (see
Fig. 1 of Ref. [11]).
Note that the numerical phase uncertainty on this data set

is as large as −3 rad at merger, so that c3 was (conserva-
tively) calibrated so as to yield a 1.3 rad EOB/NR phase
difference at merger (see Fig. 10). We advocate new
simulations with reduced error bars for this configuration
to firm up (and possibly improve) the current EOB
calibration.
Globally, the results collected in Fig. 9 show that

our model quantitatively improves upon existing results.
We shall discuss more of these and other aspects of our
unfaithfulness comparison in the Conclusions (see in
particular Fig. 21 and related discussion there).

VI. ENERGETICS FOR
SPINNING COALESCENCES

A. Energetics of spinning Llama data

Let us finally discuss the energetics of spinning coales-
cences yielded by our newly calibrated EOB model.
We start doing this with Llama data and wewill cross-check
our results with SXS data in the next section. Figure 11
contrasts the NR and EOB EbðjÞ curves with χ1 ¼ χ2 ¼
ð�0.2;�0.4;�0.6Þ, with the EOB/NR difference ΔEbðjÞ
shown in each bottom subpanel. As before, the EOB (red)
and NR (black) mergers are indicated by markers. One sees
that the differences are of the order of 10−4 (or less) during

the inspiral, to grow up to approximately the 10−3 level
around merger. One also notices that the disagreement
between NR and EOB merger quantities depends on the
configuration. In several representative cases we have
indicated in Fig. 11 an estimate of the NR uncertainty on
the energetics. The latter estimate was obtained by first
taking the difference between the EbðjÞ curves computed
from the highest (Δx ¼ 0.512) and second highest
(Δx ¼ 0.64) resolution at our disposal and then
Richardson extrapolating it assuming some convergence
order. The three colored areas around the difference in the
bottom panels of Fig. 11 display three different estimates of
these NR uncertainties, as obtained by (i) conservatively
assuming second order convergence (lighter area);
(ii) assuming fourth order convergence; and (iii) assuming
eighth order convergence. The most conservative estimate
(light grey) may eventually dominate the error budget in the
limit of infinite resolution because of the presence of second-
order finite difference operators in the numerical infra-
structure. This gives bounds of the order �10−3 around
merger. Such a 10−3 level is compatible with the EOB/NR
differences atmerger thatwe find for all other configurations.
Other sources of uncertainty on the NR data such as (i) the
conversion from Ψ4

lm to hlm [39]; (ii) the CCE error due to
the choice of the finite-radius worldtube where the CCE is
started [27,51]; or (iii) the effect of higher multipoles, that
contribute at the 10−4 level are subdominant with respect to
the resolution uncertainty.

1. High spins: χ 1 ¼ χ 2 ¼ �0.8 (Llama data)

The higher spin values χ ≡ χ1 ¼ χ2 ¼ �0.8 deserve a
separate discussion. First of all, inspecting the EbðjÞ curves
one sees that, contrary to the previous cases, the junk
radiation transient is such that the “raw” NR curves
(depicted as black, dashed lines in Fig. 12) stand visibly
below the EOB prediction (for both signs of spin); see
insets of the figure. This phenomenon is analogous (though
smaller in magnitude) to what we found in nonspinning
SpEC data. As mentioned above, it suggests that the NR
EbðjÞ curve should be corrected by an additional shift
vector ðΔj0;ΔE0

bÞ so to have consistency with the EOB
prediction at large values of j. The phenomenon found here
with Llama data is probably due to the fact that the higher
multipoles (l ≥ 4) of the junk radiation are not resolved
with sufficient accuracy at the spatial resolution we can
afford (see below). The error bars, computed as above
(though only for one configuration) are also rather large and
essentially constant over the entire j range. Assuming the
conservative second-order convergence order, one sees that
the observed energy difference is mostly compatible with
the error bar, remaining rather flat up to j ≈ 2. We then
apply the same technique discussed above to determine
ðΔj0;ΔE0

bÞ, i.e., we inspect the EOB/NR differences
ΔΩ̂EOBNRðjÞ and ΔEEOBNR

b ðjÞ and determine the vectorial

FIG. 10. EOBNR time-domain phasing comparison for SXS:
BBH:0065 configuration, q ¼ 8, ðχ1; χ2Þ ¼ ðþ0.5; 0Þ. The
EOBNR difference at merger (dashed vertical line) is compatible
with the corresponding NR uncertainty ∼ − 3 rad (see Table I).
The eccentricity (∼10−3) modulation in the phase difference is
rather visible.
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shift so as to have them as flat and as small as possible in
the first part of the inspiral (see the Appendix for a fuller
discussion). We choose here ðΔj0;ΔE0

bÞ ¼ ð−1.3 × 10−3;
7.8 × 10−4Þ for χ ¼ −0.8 and ðΔj0;ΔE0

bÞ ¼ ð−1.3 × 10−2;
7 × 10−4Þ for χ ¼ þ0.8. Figure 13 (that refers to the
χ ¼ þ0.8 case) illustrates the effect that a good choice
of Δj0 has in centering around a zero averaged value the
(eccentricity driven) oscillation in ΔΩ̂EOBNRðjÞ. Figure 12
(bottom panels) shows how the use of the vectorial shifts
substantially reduces the difference ΔEEOBNR

b , making it
compatible with the fourth-order extrapolation error bar.
Let us finally comment on the possible origin of the

excessive initial drop in the EbðjÞ curve (visible in the
insets of Fig. 12) yielded by the junk-radiation transient.
We think it has to do with the under-resolution of the junk-
radiation high multipoles (4 < l ≤ 8) for the following
reason: we noted that the energy loss during the junk
transient yielded by the modes with 5 ≤ l ≤ 8 is approx-
imately as large as that for 2 ≤ l ≤ 4 for χ1 ¼ χ2 ¼ �0.8;
on the contrary, for the other configurations one always
observes a sort of convergence of the junk radiation losses,

with the higher multipoles contributing vertical drops that
are progressively smaller than those due to the leading
order modes. This makes us suspect that if it were possible
to improve the accuracy of the higher-modes junk radiation
one would be able to find the same straightforward (i.e.,
without shifts) EOB/NR consistency as for the case
−0.6 ≤ χ ≤ þ0.6. A more refined analysis of these issues
(either employing higher resolution and/or starting the
system at larger separations, so as to reduce the magnitude
of the junk) is left to future work.
For the moment, to gain more confidence in our

analytical model, as well as to gauge the evidence of
systematic uncertainties in the NR data, we turn to
explore the energetics of spinning binaries computed using
SXS data.

B. Energetics of SXS spinning data

1. Equal-mass, spinning binaries: −0.8 ≤ χ ≤ þ0.8

One of the crucial outcomes of the Llama/EOB com-
parison seen above is that, even when the separations are

FIG. 11. Energy versus angular momentum curves for spinning equal-mass binaries with spin χ either aligned or antiligned to the
orbital angular momentum, as obtained from Llama data. Good mutual consistency EOB/NR is found. The shaded area indicates an
error bar estimate obtained by Richardson extrapolating three resolutions.
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relatively small, the NR energetics, represented by EbðjÞ,
quickly settles down to the EOB one after the initial junk
radiation transient. This was clearly the case for −0.6 ≤
χ ≤ þ0.6. For χ ¼ �0.8, we recovered approximately the
same behavior after properly fixing a suitable vector shift
ðΔj0;ΔE0

bÞ. Such a “convergence” of the NR EbðjÞ curve
to the EOB one after the initial transition would, a priori, be

expected to emerge even more clearly from any of the SXS
data set at our disposal, since the initial separation between
the black holes is much larger, so that the EOB curve
should give an even better approximation to the NR one.
However, in practice, as detailed in the Appendix, the SXS
junk radiation is often rather large and tends to produce
unphysical effects in the EbðjÞ curve. In some cases, the
“raw” EbðjÞ NR curve is shifted in a region of the ðj; EbÞ
plane which is clearly incompatible with the EOB pre-
diction even in the early inspiral (see in particular Fig. 25 in
the Appendix). As above, the problem is overcome by
introducing a suitable shift vector ðΔj0;ΔE0

bÞ. More
technical details, as well as the values of the shifts, are
given in the Appendix.
Figure 14 illustrates the EbðjÞ comparison between the

EOB predictions and the SXS data. The figure displays
just the restricted sample of SXS configurations that
overlaps with the Llama ones considered above, i.e.
χ ¼ ð�0.8;�0.6;�0.2Þ. One sees that the result is com-
patible with the previous one, though improved in the
following aspects: (i) the NR curves extend from larger
values of j up to the final state corresponding to the mass
and angular momentum of the final black hole. The final
state, as read from the metadata.txt file in the SXS
catalog, is also indicated by the grey square marker in the
plots; (ii) due to the improved accuracy of NR data, the
differences between EOB and NR merger states (indicated

FIG. 12. Same as Fig. 11 (still for Llama data), but for the cases
χ ¼ �0.8. The black curves are obtained after shifting the raw
data (dashed line) with the vector ðΔj0;ΔE0

bÞ so as to recover a
good EOB/NR consistency for large values of j. The Taylor-
expanded PN curve is also added for comparison. The insets
zoom on the initial (junk-related) drop in the EbðjÞ curve.

FIG. 13. Comparison between the analytical and numerical
dimensionless orbital frequencies Ω̂ for the (Llama) case χ1 ¼
χ2 ¼ þ0.80 in Fig. 12. The bottom panel shows how the
difference ΔΩ̂EOBNRðjÞ ¼ Ω̂EOBðjÞ − Ω̂NRðjÞ can be made to
oscillate around zero by a proper choice of the angular momen-
tum shift Δj0.
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by markers in the plots) are visibly smaller (and more
homogeneous) than with Llama data. Compare in particular
the case�0.2. Generally speaking, the EOB and NR curves
are seen to progressively separate as the spin becomes
negative and large. Still, the final merger states are closer
when the spin is negative than when the spin is positive.
Such differences are typically larger than the numerical
error, when available (shaded region in the plot): this
suggests that the performance of the EOB model should
be improved close to merger when the BHs are spinning.
The insets in the panels of Fig. 14 are close-ups of the

initial junk-radiation-transient parts. Note that the magni-
tude of the junk radiation transient [and thus of the shift
ðΔj0;ΔE0

bÞ that has to be applied] is very different depend-
ing on the configuration. The cases χ ¼ �0.2 are particu-
larly remarkable. For them, rather large vectorial shifts need
to be applied to reconcile the NR curve with both the EOB
at low frequencies and the final state.
The difference between Llama and SXS merger states is

rather small in absolute value (∼10−4), and compatible with
the expected level of conservation of energy and angular
momentum in the Llama code (see Table 2 of Ref. [51]).

Note that the energy conservation in SXS data is on average
more accurate by 2 orders of magnitude (see Table II of
Ref. [22]). The compatibility among NR merger data is
highlighted in Fig. 15: the figure plots the functions
Emrg
b ðχÞ and jmrgðχÞ (including also extremal spin values,

see below); Llama and SXS data are hardly distinguishable
on this scale. The SXS NR merger states Emrg

b ðχÞ and
jmrgðχÞ shown in the picture can be accurately fitted with
quadratic polynomials in χ,

Emrg
b;SXSðχÞ ¼ −0.035546χ2 − 0.070311χ − 0.119444; ð23Þ

jmrg
SXSðχÞ ¼ −0.180948χ2 þ 1.068176χ þ 2.805593: ð24Þ

The figure also summarizes the performance of the EOB
model at merger (the corresponding points are indicated by
red, empty squares), highlighting that the EOB/NR agree-
ment between merger states, which is best when χ ¼ 0,
slightly worsens when χ < 0 and worsens more markedly
when χ > 0, and especially when χ → 1. Such a disagree-
ment calls for improvements in the analytical EOB model
that will be undertaken in future studies. We recall however

FIG. 14. Energy versus angular momentum curves for equal-mass binaries with spin χ either aligned or antialigned to the orbital
angular momentum as obtained from SXS data set. This cross-checks the above comparison with Llama data.
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that, despite such discrepancies in the energetics, the
phasing provided by the EOB model discussed here is
in excellent agreement with NR data, as illustrated by the
dephasing and unfaithfulness data of Table I.

2. Extremal spins and comparison with the results
of Taracchini et al. [11]

Let us finally analyze in detail some (equal-mass, equal-
spins) quasiextremally spinning binaries that are present
in the SXS catalog, χ ¼ −0.95, χ ¼ þ0.98 and χ ¼
þ0.994, the highest spin value simulated so far. We recall
that before the SXS catalog became public, data with χ ¼
−0.95 and χ ¼ þ0.98were used by Taracchini et al. [11] to
test the phasing and energetics of their EOBNR model. We
note that the EOB model of Ref. [11] differs in many
aspects from the one we are presenting here. Since we have
presented a new computation of EbðjÞ taking advantage of
an improved understanding of various subtleties, we think
it is pedagogically useful to compare and contrast our new
NR-based results with both the EOB and the NR curves of
Ref. [11]. The latter data were kindly given to us by
Taracchini and Buonanno. The result of our comparison is
illustrated in Fig. 16. Each top panel of Fig. 16 contrasts
four curves: (i) our newly computed NR curve, using a
suitable vectorial shift (black); (ii) our new EOB curve (red,
dashed); (iii) the EOB curve of Ref. [11] (light blue);
(iv) the NR curve of Ref. [11] (dot-dashed, magenta). In
addition, in the bottom panel of Fig. 16, we show the
corresponding differences together with the NR numerical
uncertainties, depicted as a shaded grey region. Such NR
uncertainties were computed by the following procedure:
(i) for the two highest resolutions available, we determined

the corresponding EbðjÞ curves and the related vectorial
shifts ðΔj0;ΔE0

bÞ; (ii) we took the difference between the
so computed highest and second highest resolution data,
ΔENRNR

b ; (iii) the shaded region corresponds to �ΔENRNR
b .

FIG. 15. Equal-mass, equal-spin case. Comparison between
EOB and NR merger quantities, binding energy (top) and angular
momentum (bottom).

FIG. 16. Energetics in the extremally spinning case: compari-
son with the EOB and NR data of Ref. [11]. Markers indicate the
merger for each data set (except the NR data of Ref. [11]): NR
(red); EOB model of Ref. [11] (light-blue); our EOB model (red).
The shaded area gives an estimate of the numerical uncertainty.
Both EOB models are consistent among themselves and with the
NR curves computed in this paper. For χ ¼ þ0.98 our EOB
model is closer to NR than the EOB model of [11], while the
reverse is true for χ ¼ −0.95.
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The uncertainty we obtain in this way looks rather small: it
is ∼10−6 for large values of j, to grow up to a mere ∼10−4
towards merger.
A careful inspection of this figure tells us that:
(i) The energetics yielded by our EOB model is

consistent with extremally spinning NR data,
and exhibits the continuation of the trend we found
above for jχj ≤ 0.8. For both spins, our EOB curves
are slightly above the NR ones close to EOB
merger.

(ii) Regarding the comparison with the EOB model of
Ref. [11] we note first that the two EOB’s are
perfectly consistent among themselves (and with
the NR data) during most of the early inspiral.
The two EOB models start differing among
themselves (and with NR) when getting close
to merger. For χ ¼ −0.95 the EOB model of
Ref. [11] gives a better approximation to the final
state than our model; on the contrary, for χ ¼
þ0.98 our model performs quantitatively better
near merger. Note that, in spite of these
differences in energetics, the waveforms delivered
by both EOB models agree well with NR data
within the NR uncertainty [11].

(iii) On the same plot, we superpose the NR EbðjÞ curves
presented in Ref. [11] (dashed lines; red). The curves
exhibit significant differences with both EOB mod-
els already in the early inspiral. Moreover their end
point (after merger and ringdown) differs from the
actual final mass and angular momentum of the BH
(as extracted from the SXS file metadata.txt
and displayed in the figure). By contrast we note that
we determined the additional, needed, final shifts
taking care that this last point (computed with high
accuracy) approximately (10−4 level) coincides with
the final point of the EbðjÞ curve. No details were
given in Ref. [11] on how their EbðjÞ curve was
computed.

(iv) As a side remark, we note that the red and light-blue
curves in each inset of Fig. 16 differ at the ∼10−5
level. Since both curves were obtained subtracting
the corresponding EOB to the same NR curve, this
10−5 level essentially quantifies the analytical differ-
ence, in the early inspiral, between the conservative
dynamics of our EOB model and that of
SEOBNRv2.

To conclude, Fig. 17 illustrates the EOB/NR compari-
son for the highest value of the spin available,
χ ¼ þ0.994. The numerical uncertainty, computed as
outlined above, is again rather small, as it does not
exceed the 10−4 level towards merger. The performance
of the EOB in this case is essentially analogous to the
χ ¼ þ0.98 case illustrated above, though with a slightly
larger displacement between the EOB and NR merger
states.

3. Unequal-mass, spinning binaries

We conclude this survey of EOB/NR energetics com-
parison by also discussing explicitly a few representative
configurations with both unequal masses and unequal
spins. The comparison is illustrated in Fig. 18, which
collects six representative configurations, notably the high-
mass-ratio ones ð8;�0.50; 0Þ. We show here explicitly
those cases where only one of the two black holes is
spinning, since in these cases we have enough resolutions
to compute error bars. The two cases ð3;−0.50;−0.50Þ and
ð3;þ0.50;þ0.50Þ yield equivalent results. The numerical
uncertainties, computed as in the previous section, are
represented by light-gray shaded areas: notably, these error
bars are compatible with the extremally spinning cases
discussed above, i.e. about 2 × 10−4 towards merger (we
expect to get similar results also for the other configura-
tions). Generally speaking, we see here the same features
we were finding in the equal-mass, equal-spin cases shown
in Figs. 14, 16 and 17. In particular, one sees that (i) when
the BH spin is positive, the EOB model predicts values of
the merger states that are slightly smaller than what they
should be. This occurs independently of the mass ratio.
Similarly, (ii), when the BH spin is negative, the EOB
predicts values that are slightly, but significantly, higher
than the NR prediction. If both black holes are spinning,
these effects remain qualitatively the same, though

FIG. 17. EOB/NR comparison for q ¼ 1, χ1 ¼ χ2 ¼ þ0.994
(bottom), the highest spin simulated so far. The NR uncertainty
(shaded region) is obtained by taking the difference between the
data at the two highest resolutions after determining the corre-
sponding vectorial shifts ðΔj0;ΔE0

bÞ.
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quantitatively are slightly magnified. In other words, the
EbðjÞ analysis seems to indicate that the current EOB
model is slightly overestimating the magnitude of the spin-
orbit interaction. Note however that the EbðjÞ diagnostics is
here magnifying a difference that corresponds to a very
small part (near merger) of the time-domain waveform. Let
us only note here that this shows the usefulness of the EbðjÞ
diagnostics for understanding subtle physical effects in the
spin-orbit interaction that cannot be appreciated by just
inspecting the phasing.

VII. PRELIMINARY COMPARISON OF THE TWO
EXISTING SPINNING EOB MODELS

Let us finally highlight some differences between the
analytic structure of our EOB model and that of Ref. [11]
by comparing some crucial quantities that enter the con-
struction of the models.
As a first example, we focus on the q ¼ 1, nonspinning

case. Figure 19 compares three AðrÞ curves: our NR tuned
AorbðrÞ curve, with ac6 given by Eq. (5); the AðrÞ of
Ref. [11], calibrated to the same sample of nonspinning
NR waveform data we used here; and the Schwarzschild

AðrÞ. The markers on the plot indicate the location of the
(adiabatic) “light-ring,” defined as the peak of the effective
“photon-potential” AðrÞ=r2 (corresponding to r ¼ 3M for
the Schwarzschild metric). Let us first note a qualitative
difference: our choice of resumming the Taylor-expanded A
function with a Padé (1,5) approximant entails that our
function AorbðrÞ vanishes at r ¼ 0. This is qualitatively
different from ATarðrÞ, whose (non Padé) resummation is
chosen so as to impose the existence of a horizon at a
nonzero value of r. As a consequence, our radial potential is
more repulsive than ATarðrÞ when r≲ 2.
From the quantitative point of view, let us note that our

AorbðrÞ and ATarðrÞ are rather close up to the light-ring of
ATarðrÞ. Their difference (up to their light-ring location,
blue dot) ranges between −3 × 10−3 and approximately
7 × 10−3 at the light-ring point. Although such differences
look small, let us emphasize that, as discussed in Ref. [29],
these differences are large enough to make the two
potentials belong to different “equivalence classes,” i.e.
to yield significantly different conservative dynamics.
Indeed, Ref. [29] found that one needed differences smaller
than the 10−4 level to lead to indistinguishable dynamics.

FIG. 18. Energetics comparison for a selected sample of unequal-mass, unequal-spin binaries. The EOB/NR compatibility is
essentially comparable to the equal-mass results shown in Figs. 14, 16, 17.
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As a second example of comparison between our EOB
dynamics and that of Ref. [11] we compare in Fig. 20 the
dimensionless effective potential Ĥeffðr;l; χÞ (including
spin-orbit and spin-spin interactions, but with pr� ¼ 0), for
χ ¼ χ1 ¼ χ2 ¼ þ0.98 and two representative values of the
dimensionless orbital angular momentum l. For the value
l ¼ 2.40, both effective potentials exhibit a local mini-
mum, corresponding to a stable circular orbit. On the other
hand, for l ¼ 1.81 (which corresponds to the merger
location of the blue curve in Fig. 19) the model of
Taracchini et al. no longer allows for a stable circular
orbit, while ours still does. In other words, our dynamics is
still inspiralling, while that of Ref. [11] is already “plung-
ing.” Note that for χ ¼ χ1 ¼ χ2 ¼ þ0.98 we have seen
above that our energetics is closer to the NR one. It should,
however, be kept in mind that we are here comparing two
conservative dynamics while the real EOB dynamics is also
(especially near merger) strongly modified by radiation
reaction effects.

VIII. CONCLUSIONS

In this paperwe have presented a newNRcompletion of the
spinning, nonprecessing, EOB model introduced in Ref. [1].
Our new EOB model uses only two flexibility6 param-

eters, one for the nonspinning sector ac6ðνÞ, and one for the

spinning sector c3ð ~a1; ~a2; νÞ. We have calibrated the func-
tions ac6ðνÞ and c3ð ~a1; ~a2; νÞ by comparing EOB predic-
tions to a large sample (∼50) of NR data waveforms
computed with two different numerical codes (Llama and
SpEC). This calibration is done (for every step) through a
simple one-parameter search by requiring that the EOB/NR
time-domain phase difference (after alignment) stays
within NR uncertainty up to merger. This is achieved in
two steps: the function ac6ðνÞ is determined first by using
nonspinning data; then the single remaining flexibility
parameter c3ðν; ~a1; ~a2Þ is determined by using spin-
ning data.
The EOB/NR comparison is done both for phasing and

energetics [gauge-invariant relation EbðjÞ between binding
energy and angular momentum].
Our main results are the following:
(i) The l ¼ m ¼ 2 GW phasing performance of our

new spinning EOB model (measured both by the
time-domain EOB/NR phase difference and through
faithfulness computations) is at least as good as
that of the most recent version of the spinning
EOBNR model developed by the group of Buo-
nanno [10,11,48]. To quantitatively assess the qual-
ity of our unfaithfulness results, we display in
Fig. 21 a histogram of the maximized-over-mass
values of the unfaithfulness,7 F̄max ≡maxMðF̄ðMÞÞ,
over the entire sample of SXS waveforms we use.

FIG. 19. Comparison between EOB radial potentials AðrÞ: the
Schwarzschild case is contrasted with the q ¼ 1, nonspinning
function of Taracchini et al. [11] and the Padé-resummed, NR
completed one of this paper, Eq. (4), with ac6ðνÞ given by Eq. (5).
The marker indicates the location of the “light-ring,” i.e. the peak
of the effective “photon-potential” AðrÞ=r2 (located at r ¼ 3M
for Schwarzschild).

FIG. 20. Comparison between effective Hamiltonians
Ĥeffðr;l; χÞ obtained by using our EOB spinning model and
the one of Ref. [11] for χ ¼ þ0.98 and for two values of the
dimensionless orbital angular momentum l. The value l ¼ 1.81
corresponds to the merger location of the blue curve in Fig. 19.
For l ¼ 1.81 our effective potential is such that the system is still
inspiralling.

6Let us recall that the idea of using the “flexibility” of the EOB
formalism to determine effective values of yet uncomputed
higher-order analytical functional parameters [such as a6ðνÞ]
by fitting EOB predictions to NR data was introduced, and first
implemented, in Ref. [52].

7We recall that those unfaithfulnesses are only integrated over
the NR frequency range.
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Note that the histogram is skewed towards very
small values of F̄max, with a median value equal to
0.00056105 (see vertical line on the figure). It is
interesting to note that F̄max ≲ 0.003 for all data
except for the case ðq; χ1; χ2Þ ¼ ð1;−0.50; 0Þ and
the near-extremal spin q ¼ 1 data sets with
χ ¼ χ1 ¼ χ2 ¼ ðþ0.98;þ0.99;þ0.994Þ. For the
latter data sets, note that χ ¼ þ0.99 and χ ¼
þ0.994Þ both yield F̄max ≈ 0.005, while χ ¼ 0.98
yields F̄max ≈ 0.0042.
When comparing the mass dependence of F̄ in our

Fig. 9 with the corresponding quantity displayed in
Fig. 1 of Ref. [11] one notices the following facts:
(i) our F̄ðMÞ is, for all values except a few, maximal
around M ¼ 20M⊙ and then monotonically de-
creases as M increases. By contrast, the mass
dependence of the F̄ðMÞ of Ref. [11] is quite
different: either it increases monotonically from
20M⊙ to 200M⊙ or it has a local maximum. We
attribute the mass behavior of our F̄ðMÞ to the new,
more accurate attachment of the ringdown part [14]
which we have implemented in our model. (ii) In
Fig. 1 of [11] we spot two outliers with F̄max ≈ 0.01:
one is SXS:BBH:0065, with q ¼ 8 ðχ1; χ2Þ ¼
ðþ0.5; 0Þ; the other outlier of Ref. [11] is SXS:
BBH:0152, with q ¼ 1, χ1 ¼ χ2 ¼ þ0.6. We stress
that our corresponding values F̄ðMÞ remain below
10−3, as displayed in Fig. 9.

(ii) We have presented the first systematic, accurate
computation of EbðjÞ curves from SXS and Llama

data of nonprecessing, spinning (or nonspinning)
configurations. Our results significantly improve
previous attempts to do so and give us a reliable
target for EOB calibration, that complements the
usual phasing analysis.
For the nonspinning sector of the model, the

inspection of the NR EbðjÞ curves led us to decide
that the choice F r� ¼ 0 (which was already used in
early EOB works [35,36]) leads to a good EOB/NR
agreement between the corresponding energetics, at
the 10−4 level up to merger. We hope to further study
(both analytically and numerically) the role of the
radial part of radiation reaction, and its influence on
Schott terms. The results presented in Figs. 4 and 5
have shown the potential of SXS data for very
accurate investigations of energetics in coalescing
black hole binaries.
The EbðjÞ NR curves were computed using two

different sets of numerical data, one by the Llama
code and the other by the SpEC code. We solved
several subtle issues related to the computation of
EbðjÞ from SXS data. In particular, for the cases of
extremal spins χ1 ¼ χ2 ¼ −0.95 and χ1 ¼ χ2 ¼
þ0.98, we showed that the corresponding NR curves
presented in Ref. [11] were inconsistent both with
the NR final state (as provided in the SXS files itself)
and with early inspiral EOB predictions. This
allowed us to meaningfully compare, for the first
time, extremal-spin NR data both to our EOB
model and to the one of Ref. [11]. The main
outcomes of this comparison are (i) for χ ¼ þ0.98,
the energetics predicted by our model is closer than
that of the model of Ref. [11], to the NR one,
during the late inspiral and near merger; (ii) for
χ ¼ −0.95, the opposite is true, with the model of
Ref. [11] being closer than ours to the NR values
near merger.

(iii) The EOB model we are presenting here is analyti-
cally simpler than the one of Ref. [11], while it
performs at a comparable accuracy (which is demon-
strably better in some situations, e.g. the case of
SXS:BBH:0152 data). The structural simplicity of
our spinning EOB model is such that it is easy to
recalibrate it if the needs occurs, e.g. in the case
that further linear-in-ν corrections to the gyro-
gravitomagnetic ratios ðGS;GS� Þ, as defined in
Paper I, are introduced. Different analytical expres-
sions would imply a different determination of the
function c3ð ~a; ~a; νÞ. In addition, it is straightforward
to incorporate tidal effects in the model simply by
augmenting the pure orbital A function with the tidal
potential recently determined in Ref. [37] so as to
build a BNS (or BHNS) spinning EOB model.
The performance of such a tidal, spinning, EOB
model, as well as its eventual calibration, will have

FIG. 21. Maximum value of the EOBNR unfaithfulness F̄
(listed in Table I) for all SXS data set considered. The vertical line
indicates the median of the histogram, corresponding to
0.00056105.
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to be carefully assessed against state-of-the-art NR
simulations of spinning NS binaries [53].

(iv) The preliminary comparison given here between the
performances of our model and the EOB model of
Ref. [11] was purely based on information that was
either given to us or that was extracted from the
literature. We also emphasized some of the structural
differences between these two spinning EOB mod-
els: (i) In Fig. 19 we contrasted the two different
EOB AðrÞ radial potentials for q ¼ 1 nonspinning
black holes; and (ii) in Fig. 20 we contrasted the
two effective Hamiltonians ĤeffðrÞ for q ¼ 1 and
χ ¼ þ0.98. The differences are non–negligible and
are probably partly responsible of the different
performances of the two EOB models versus the
NR EbðjÞ curve for χ ¼ þ0.98. We hope that it will
be possible to perform soon a more detailed com-
parison between the two spinning EOB models,
notably by directly comparing waveforms. We think
that a synergetic effort dedicated to transferring the
best features of each EOB model into a new model
for spinning binaries will be crucial for the forth-
coming gravitational wave astronomy.
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APPENDIX: COMPUTING EbðjÞ
USING SXS WAVEFORMS

In this appendix we discuss in detail the procedure we
adopt to compute the function EbðjÞ using SXS NR data.
First, in Sec. 1 we contrast SXS with Llama data and
highlight some (minor) unsatisfactory features of the SXS

waveforms. The actual EbðjÞ computation is detailed in
Sec. A 2 below.

1. Unphysical effects in the q ¼ 1,
SXS multipolar waveforms

For an equal-mass binary, with equal (aligned or anti-
aligned) spins, the fact that the system is symmetric by
exchange of the two black holes ensures that all multipoles
with m ¼ odd have to vanish. We verified that this is
essentially the case for all Llama simulations at our
disposal: in the time plots of these multipoles, only
uncorrelated noise is found. On the contrary, a careful
inspection of SXS data led us to the discovery that the
m ¼ odd multipoles have amplitudes, which are small but
which are not just uncorrelated noise. Rather they quali-
tatively show some sort of chirping structure present in the
actual physical modes with m ¼ even. This is illustrated in
Fig. 22 for the case q ¼ 1, χ1 ¼ χ2 ¼ þ0.6, corresponding
to data set SXS:BBH:0152 of the SXS catalog. The figure
contrasts the SpEC modes (top panel) with the correspond-
ing Llama modes (bottom panel). One immediately sees the
striking qualitative difference between the two independent
simulations of the same physical system. Though, the
amplitude of these modes is so small that it does not have
any practical influence on the EbðjÞ computation,8 it is
interesting to briefly point out the impact of two physical
effects on shaping the multipolar structure of the modes:
(i) the motion of the center of mass (CoM) of the system
and (ii) the (tiny) asymmetry of the (nominally symmetric)
initial binary configuration.
The effect of the motion of the CoM due to residual

linear momentum in the initial data has been investigated in
some very recent work [54,55]. Notably, Ref. [55] intro-
duced a method to eliminate such residual momentum from
the initial data, so that future SXS waveforms will be
amended of such systematic uncertainty. However, as
emphasized by Boyle [54], the waveforms currently present
in the SXS catalog are not expressed in the CoM frame (as
are the EOB ones) and this introduces systematic uncer-
tainties that should be removed. As a matter of fact,
Ref. [54] (that appeared while this paper was under
evaluation) proposed a way to remove the effect of the
CoM drift from the waveforms. We asked Boyle to kindly
apply his removal procedure to the SXS:BBH:0152 con-
figuration we are discussing here. His result is shown (with
his permission) in Fig. 23. One sees that the secular growth
of the mode amplitudes is visibly reduced (though it is not

8We have analyzed what happens if the m ¼ odd modes are
put to zero. We find that the resulting small difference (mainly
coming from the m ¼ odd junk radiation) can be absorbed by
modifying the vectorial shift ðΔj0;ΔE0

bÞ mentioned in the main
text and discussed below. In practice, all our EðjÞ curves are
computed using the full multipolar information at our disposal
including multipoles up to l ¼ m ¼ 8.
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completely removed, especially towards merger). This is
particularly visible for the (2,1) mode, where the trend
visible in Fig. 22 is replaced by randomlike oscillations.
Globally, the amplitude of the modes is rather constant,
with less structure than before, and visually more consistent
with the outcome of the Llama simulation. Improvements
in the determination of the CoM frame of a NR simulation
may flatten the m ¼ odd modes even further.

Let us now turn to estimating the effect on the
m ¼ odd multipoles due to the tiny asymmetry present
in the NR initial data. Inspecting the file metadata.txt
of data set SXS:BBH:0152, one finds that initial
masses and initial spins are actually slightly different;
i.e., one has m1 ¼ 0.499999998745987, m2 ¼
0.499999997467155 and χ1 ¼ 0.599963311735964,
χ2 ¼ 0.599963312827750. These values of the initial
masses yield ν ¼ 0.25 at machine precision, though
X1 − X2 ¼ ðm1 −m2Þ=M ¼ 1.278831984752316 × 10−9.
We then estimated the impact of these tiny asymmetries by
running an EOB simulation with precisely these spin
parameters and this value of X1 − X2 entering the sub-
dominant odd-parity modes. The multipolar amplitudes of
the EOB waveform computed with these choices are
exhibited in Fig. 24: one sees that during inspiral, where
the analytical (EOB, resummed) waveform is highly
reliable, the amplitude of subdominant modes is from 1
(for the ψ21 mode) to approximately 2 (for the ψ43 mode)
orders of magnitude smaller than the corresponding SXS
multipoles in the CoM frame. In Fig. 24 we also added the
SXS (2,1) mode, in the CoM frame, to ease the comparison.
This finding suggests that the magnitude of the subdomi-
nant multipolar amplitudes we see in Fig. 23 is only
partially due to the asymmetry in the initial data and that
other effects are present. In any case, since the analysis we
did here confirms that the effects of the asymmetries are
practically negligible, we are entitled to ignore them and
consider exactly symmetric initial data for the EOB
evolutions.
Finally, let us note in passing that jψEOB

21 j ≈ jψEOB
33 j up to

merger, likewise the corresponding SXS multipoles in the

FIG. 22. Analysis of the subdominant multipoles of q ¼ 1 SXS
waveforms (top panel). The figure compares the amplitudes of
various subdominant multipoles to the l ¼ m ¼ 2 one. The
multipolar amplitudes with m ¼ odd grow in time likewise the
dominant one. This effect (that is found in all q ¼ 1 data) is
(partly) related to the motion of the center of mass and to residual
tiny asymmetries in the initial data, as discussed in the text. It is,
however, absent in the corresponding Llama waveform data
(bottom panel).

FIG. 23. The same SXS multipolar waveform of Fig. 22 after
Boyle removed the drift of the CoM using the procedure of
Ref. [54]. The subdominant multipolar amplitudes look flatter
than in Fig. 22 and qualitatively closer to the Llama ones.
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CoM frame in Fig. 23. This result contrasts with the top
panel of Fig. 22, where the (2,1) and (3,3) modes were not
coinciding, and gives further evidence of the need of
removing the effects of the CoM motion from the SXS
waveforms. Although the numerical effects we are pointing
out here are small and practically negligible for the equal-
mass configurations, they may not be as small in other
situations [e.g., as pointed out in Ref. [54] for the SXS:
BBH:0004 data set, ðq; χ1; χ2Þ ¼ ð1;−0.50; 0Þ]. In princi-
ple, we think that a careful analysis of the (hopefully very
small) impact of the CoM drifts on all the EOB/NR
comparisons discussed in this paper, both for phasing
and energetics, will be needed in the future.

2. Computation of EbðjÞ from SXS waveform data

Let us now turn to explaining how EbðjÞ curves are
computed in practice. First of all, we need to identify the
initial state of the system, i.e. the initial ðJ0ADM;M0

ADMÞ. For
each simulation, this information is provided in the file
metadata.txt that is found in any of the Lev*
directories that can be downloaded at http://
www.black-holes.org/waveforms/ for any given
configuration. Then, the next step is to take all multipoles
up to l ¼ 8 and use them to compute the fluxes of energy
and angular momentum as functions of time. In inspecting
them, one quickly realizes that all simulations basically
split into two equivalence classes depending on the proper-
ties of the initial transient in the fluxes driven by the junk
radiation: In class (A), one sees a huge burst of energy and
angular momentum radiated during approximately the first

150M of evolution. This behavior is displayed in the top
panel of Fig. 25, that refers to the χ1 ¼ χ2 ¼ þ0.98 case.
Once the total losses at time t are obtained (by integrating
the fluxes up to time t), the presence of such a big burst of
radiation results in a huge shift in the ðj; EbÞ plane away
from ðJ0ADM;M0

ADMÞ. This raw curve is represented as a
gray, dashed line in Fig. 25. The location of the merger is
indicated by a filled, grey circle. The unphysical nature of
the initial, junk-related, shift is indicated by the fact that the

FIG. 24. Investigating the effect of tiny asymmetry in the initial
data at the level of EOB waveform. The (2,1) mode of Fig. 23 is
also included for visual comparison. The asymmetry in the initial
data is not sufficient to fully explain the magnitude of the
subdominant modes in the data of Fig. 23.

FIG. 25. Computation of EbðjÞ for χ1 ¼ χ2 ¼ þ0.98. The huge
burst of junk radiation (top panel) introduces a huge, unphysical,
vectorial shift of the raw curve (grey, dashed), whose end point is
strongly displaced from the actual final state ðjf;MfÞ (grey
square on the plot) given in the metadata.txt file of the SXS
catalog. The solid curve is obtained by applying a shift vector
ðΔj0;ΔE0

bÞ to the raw curve so that the final point of the shifted
EbðjÞ coincides with ðjf;MfÞ. The filled circles mark the merger
location. See text for further details.
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last point of the EbðjÞ curve, which should coincide, to a
good approximation, with the mass and angular momentum
of the final black hole ðjf;MfÞ, significantly differs
from them.
The value of ðjf;MfÞ is among the data given in the SXS

catalog, and is notably included in the metadata.txt
file. In Fig. 25, the actual ðjf;MfÞ is represented by a filled,
grey square on the plot, while the end point of the raw
EbðjÞ curve (indicated by an empty square) is noticeably
displaced from ðjf;MfÞ due to the effect of the junk
radiation. Such displacement should be corrected, as we
shall discuss below. In the second class of data, that we call

(B), such an unphysical initial burst of GW radiation is
much smaller and the raw computation of the EbðjÞ curve
gives a result that, without any additional shift, is visually
consistent with the known final NR state. This is illustrated

FIG. 26. Different phenomenology for χ1 ¼ χ2 ¼ þ0.60. The
initial burst of radiation is much more moderate than the χ ¼
þ0.98 case so that the direct, raw computation of EbðjÞ looks
already visually consistent with the final state and the EOB curve.
Additional fine-tuning of ðΔj0;ΔE0

bÞ is still allowed and it is then
performed to further minimize the EOB/NR difference (within
the NR uncertainty) for large values of j. See text for details.

FIG. 27. Choosing Δj0 by inspecting the EOB/NR differences
between dimensionless orbital frequencies Ω̂ for two representative
data sets. The bottom subpanel of each configuration illustrates how
ΔΩ̂EOBNR is flattened (and the eccentricity-driven oscillation aver-
ages zero) on a large j interval once a good choice of Δj0 is made.
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for the case χ1 ¼ χ2 ¼ þ0.60 in Fig. 26. Still (as high-
lighted in the inset of the figure) the NR curve, when
zooming on the difference in the early part (see inset),
exhibits a significant early deviation from the EOB,
contrary to what was happening for the χ1¼ χ2¼þ0.60
case with Llama data, a simulation starting at a smaller
value of j.
Finally, in both cases, (A) or (B), we need to apply a shift

vector (Δj0;ΔE0
bÞ, which will be larger in case (A). In a first

step [which is mostly useful for case (A)] we apply a first
shift ðΔjf;ΔEf

bÞ allowing the final point of the EbðjÞ curve
to essentially (within ≲10−4) coincide with ðjf;MfÞ. In a
second step, we refine the determination of the vectorial shift
by performing a second, smaller shift (Δj0;ΔE0

bÞ.
The second shift vector, simply denoted ðΔj0;ΔE0

bÞ, is
determined as follows. First of all we look at the dimen-
sionless“orbital frequency” Ω̂≡MΩ, that is defined (both
in the EOB model and NR) as Ω̂ ¼ ∂Eb=∂j. This quantity
is, by construction, independent of the constant ΔE0

b but
depends on Δj0. We then compute the difference
ΔΩ̂EOBNRðjÞ≡ Ω̂EOBðjÞ − Ω̂NRðjÞ and plot it versus j.
The shift Δj0 is chosen so that ΔΩ̂ðjÞ is “flattened” as
much as possible on the largest possible j interval.
In practice, we choose Δj0 such that the oscillating
(because of residual, tiny, eccentricity effects in the NR
waveform) ΔΩ̂ðjÞ averages to zero. Figure 27 shows the
oscillating ΔΩ̂ðjÞ for two, fiducial, configurations chosen
randomly in the data sample: ðq; χ1; χ2Þ ¼ ð2; 0.6; 0Þ or

ðq; χ1; χ2Þ ¼ ð3;−0.50; 0Þ. In both cases, the raw ΔΩ̂ (blue
line) shows a trend that can be flattened by just choosing
properly the constantΔj0 (red curve). Once this is done, we
inspect the differenceΔEEOBNR

b ¼ EEOB
b − ENR

b and we find
it remains practically constant on a large j interval. We then
choose ΔE0

b so that the ΔEEOBNR
b is found to oscillate

around zero. This algorithm for determining the shift vector
ðΔj0;ΔE0

bÞ can be applied to all SXS spin-aligned con-
figurations at our disposal. Note that the shifts that are so
determined are, in most cases, tiny but relevant on this
scale. In some cases [see e.g. case ðq; χ1; χ2Þ ¼ ð8;−0.5; 0Þ
in Fig. 14] the combination of the two shifts leads to an end
point for the shifted EbðjÞ NR curve that is close to, but
visibly displaced with respect to the ðjf;MfÞ provided in
the metadata.txt. Note however that in this case the
total angular momentum changes sign during the inspiral
which may be connected to subtleties in the computation of
EbðjÞ. We leave to future work a deeper investigation of
this and similar cases.
For completeness, we list in Table III the shift vectors

ðΔj0;ΔE0
bÞ that are used to improve the compatibility

between ðΔj0;ΔE0
bÞ the NR EbðjÞ and the EOB one. The

numbers listed in the table always indicate the crucial
“second-shift” vector mentioned above [i.e., are applied to
curves already shifted by ðΔjf;ΔEf

bÞ so as the final point of
EbðjÞ approximately coincides with ðjf;MfÞ], except for
those data sets marked by an asterisk, where ðΔj0;ΔE0

bÞ is
applied directly to the raw data.

[1] T. Damour and A. Nagar, Phys. Rev. D 90, 044018 (2014).
[2] T. Damour, Phys. Rev. D 64, 124013 (2001).
[3] A. Buonanno, Y. Chen, and T. Damour, Phys. Rev. D 74,

104005 (2006).
[4] T. Damour, P. Jaranowski, and G. Schaefer, Phys. Rev. D 78,

024009 (2008).
[5] E. Barausse and A. Buonanno, Phys. Rev. D 81, 084024

(2010).
[6] Y. Pan, A. Buonanno, L. T. Buchman, T. Chu, L. E. Kidder,

H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 81, 084041
(2010).

[7] A. Nagar, Phys. Rev. D 84, 084028 (2011).
[8] E. Barausse and A. Buonanno, Phys. Rev. D 84, 104027

(2011).
[9] Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E.

Kidder, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 84,
124052 (2011).

[10] A. Taracchini, Y. Pan, A. Buonanno, E. Barausse, M. Boyle,
T. Chu, G. Lovelace, H. P. Pfeiffer, and M. A. Scheel, Phys.
Rev. D 86, 024011 (2012).

[11] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle
et al., Phys. Rev. D 89, 061502 (2014).

[12] S. Balmelli and P. Jetzer, Phys. Rev. D 87, 124036 (2013).
[13] S. Balmelli and P. Jetzer, Phys. Rev. D 91, 064011 (2015).
[14] T. Damour and A. Nagar, Phys. Rev. D 90, 024054 (2014).
[15] http://www.black‑holes.org/waveforms.
[16] T. Chu, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 80,

124051 (2009).
[17] G. Lovelace, M. Scheel, and B. Szilagyi, Phys. Rev. D 83,

024010 (2011).
[18] G. Lovelace, M. Boyle, M. A. Scheel, and B. Szilagyi,

Classical Quantum Gravity 29, 045003 (2012).
[19] L. T. Buchman, H. P. Pfeiffer, M. A. Scheel, and B. Szilagyi,

Phys. Rev. D 86, 084033 (2012).
[20] A. H. Mroue and H. P. Pfeiffer, arXiv:1210.2958.
[21] A. H. Mroue, M. A. Scheel, B. Szilagyi, H. P. Pfeiffer, M.

Boyle et al., Phys. Rev. Lett. 111, 241104 (2013).
[22] D. A. Hemberger, G. Lovelace, T. J. Loredo, L. E. Kidder,

M. A. Scheel, B. Szilágyi, N.W. Taylor, and S. A. Teukolsky,
Phys. Rev. D 88, 064014 (2013).

ENERGETICS AND PHASING OF NONPRECESSING … PHYSICAL REVIEW D 93, 044046 (2016)

044046-25

http://dx.doi.org/10.1103/PhysRevD.90.044018
http://dx.doi.org/10.1103/PhysRevD.64.124013
http://dx.doi.org/10.1103/PhysRevD.74.104005
http://dx.doi.org/10.1103/PhysRevD.74.104005
http://dx.doi.org/10.1103/PhysRevD.78.024009
http://dx.doi.org/10.1103/PhysRevD.78.024009
http://dx.doi.org/10.1103/PhysRevD.81.084024
http://dx.doi.org/10.1103/PhysRevD.81.084024
http://dx.doi.org/10.1103/PhysRevD.81.084041
http://dx.doi.org/10.1103/PhysRevD.81.084041
http://dx.doi.org/10.1103/PhysRevD.84.084028
http://dx.doi.org/10.1103/PhysRevD.84.104027
http://dx.doi.org/10.1103/PhysRevD.84.104027
http://dx.doi.org/10.1103/PhysRevD.84.124052
http://dx.doi.org/10.1103/PhysRevD.84.124052
http://dx.doi.org/10.1103/PhysRevD.86.024011
http://dx.doi.org/10.1103/PhysRevD.86.024011
http://dx.doi.org/10.1103/PhysRevD.89.061502
http://dx.doi.org/10.1103/PhysRevD.87.124036
http://dx.doi.org/10.1103/PhysRevD.91.064011
http://dx.doi.org/10.1103/PhysRevD.90.024054
http://www.black-holes.org/waveforms
http://www.black-holes.org/waveforms
http://www.black-holes.org/waveforms
http://dx.doi.org/10.1103/PhysRevD.80.124051
http://dx.doi.org/10.1103/PhysRevD.80.124051
http://dx.doi.org/10.1103/PhysRevD.83.024010
http://dx.doi.org/10.1103/PhysRevD.83.024010
http://dx.doi.org/10.1088/0264-9381/29/4/045003
http://dx.doi.org/10.1103/PhysRevD.86.084033
http://arXiv.org/abs/1210.2958
http://dx.doi.org/10.1103/PhysRevLett.111.241104
http://dx.doi.org/10.1103/PhysRevD.88.064014


[23] G. Lovelace, M. A. Scheel, R. Owen, M. Giesler, R. Katebi
et al., Classical Quantum Gravity 32, 065007 (2015).

[24] M. A. Scheel, M. Giesler, D. A. Hemberger, G. Lovelace, K.
Kuper, M. Boyle, B. Szilágyi, and L. E. Kidder, Classical
Quantum Gravity 32, 105009 (2015).

[25] J. Blackman, S. E. Field, C. R. Galley, B. Szilágyi, M. A.
Scheel, M. Tiglio, and D. A. Hemberger, Phys. Rev. Lett.
115, 121102 (2015).

[26] T. Damour, A. Nagar, D. Pollney, and C. Reisswig, Phys.
Rev. Lett. 108, 131101 (2012).

[27] N.W. Taylor, M. Boyle, C. Reisswig, M. A. Scheel, T. Chu,
L. E. Kidder, and Béla Szilágyi, Phys. Rev. D 88, 124010
(2013).

[28] M. Boyle and A. H. Mroue, Phys. Rev. D 80, 124045
(2009).

[29] T. Damour, A. Nagar, and S. Bernuzzi, Phys. Rev. D 87,
084035 (2013).

[30] D. Pollney and C. Reisswig, Astrophys. J. 732, L13 (2011).
[31] C. Reisswig, N. T. Bishop, D. Pollney, and B. Szilágyi,

Phys. Rev. Lett. 103, 221101 (2009).
[32] N. T. Bishop, R. Gomez, L. Lehner, and J. Winicour, Phys.

Rev. D 54, 6153 (1996).
[33] D. Bini and T. Damour, Phys. Rev. D 87, 121501 (2013).
[34] T. Damour, P. Jaranowski, and G. Schfer, Phys. Rev. D 91,

084024 (2015).
[35] A. Buonanno and T. Damour, Phys. Rev. D 62, 064015

(2000).
[36] T. Damour and A. Nagar, Phys. Rev. D 79, 081503 (2009).
[37] S. Bernuzzi, A. Nagar, T. Dietrich, and T. Damour, Phys.

Rev. Lett. 114, 161103 (2015).
[38] S. Bernuzzi, A. Nagar, M. Thierfelder, and B. Brugmann,

Phys. Rev. D 86, 044030 (2012).
[39] C. Reisswig and D. Pollney, Classical Quantum Gravity 28,

195015 (2011).

[40] D. Pollney, C. Reisswig, E. Schnetter, N. Dorband, and P/
Diener, Phys. Rev. D 83, 044045 (2011).

[41] C. Reisswig, R. Haas, C. D. Ott, E. Abdikamalov, P. Mösta,
D. Pollney, and E. Schnetter, Phys. Rev. D 87, 064023
(2013).

[42] D. Bini and T. Damour, Phys. Rev. D 86, 124012
(2012).

[43] T. Damour, P. Jaranowski, and G. Schaefer, Phys. Rev. D 89,
064058 (2014).

[44] M. Levi and J. Steinhoff, J. Cosmol. Astropart. Phys. 12
(2014) 003.

[45] B. R. Iyer and C. Will, Phys. Rev. D 52, 6882 (1995).
[46] T. Damour, A. Nagar, and L. Villain, Phys. Rev. D 89,

024031 (2014).
[47] D. Shoemaker, https://dcc.ligo.org/cgi‑bin/DocDB/

ShowDocument?docid=2974.
[48] Y. Pan, A. Buonanno, A. Taracchini, M. Boyle, L. E.

Kidder, A. H. Mroué, H. P. Pfeiffer, M. A. Scheel, B.
Szilágyi, and A. Zenginoglu, Phys. Rev. D 89, 061501
(2014).

[49] B. Szilgyi, J. Blackman, A. Buonanno, A. Taracchini, H. P.
Pfeiffer, M. A. Scheel, T. Chu, L. E. Kidder, and Y. Pan,
Phys. Rev. Lett. 115, 031102 (2015).

[50] S. Husa, S. Khan, M. Hannam, M. Prrer, F. Ohme, X. J.
Forteza, and A. Boh, Phys. Rev. D 93, 044006 (2016).

[51] C. Reisswig, N. T. Bishop, D. Pollney, and B. Szilágyi,
Classical Quantum Gravity 27, 075014 (2010).

[52] T. Damour, E. Gourgoulhon, and P. Grandclement, Phys.
Rev. D 66, 024007 (2002).

[53] S. Bernuzzi, T. Dietrich, W. Tichy, and B. Bruegmann, Phys.
Rev. D 89, 104021 (2014).

[54] M. Boyle, arXiv:1509.00862.
[55] S. Ossokine, F. Foucart, H. P. Pfeiffer, M. Boyle, and B.

Szilgyi, arXiv:1506.01689.

NAGAR, DAMOUR, REISSWIG, and POLLNEY PHYSICAL REVIEW D 93, 044046 (2016)

044046-26

http://dx.doi.org/10.1088/0264-9381/32/6/065007
http://dx.doi.org/10.1088/0264-9381/32/10/105009
http://dx.doi.org/10.1088/0264-9381/32/10/105009
http://dx.doi.org/10.1103/PhysRevLett.115.121102
http://dx.doi.org/10.1103/PhysRevLett.115.121102
http://dx.doi.org/10.1103/PhysRevLett.108.131101
http://dx.doi.org/10.1103/PhysRevLett.108.131101
http://dx.doi.org/10.1103/PhysRevD.88.124010
http://dx.doi.org/10.1103/PhysRevD.88.124010
http://dx.doi.org/10.1103/PhysRevD.80.124045
http://dx.doi.org/10.1103/PhysRevD.80.124045
http://dx.doi.org/10.1103/PhysRevD.87.084035
http://dx.doi.org/10.1103/PhysRevD.87.084035
http://dx.doi.org/10.1088/2041-8205/732/1/L13
http://dx.doi.org/10.1103/PhysRevLett.103.221101
http://dx.doi.org/10.1103/PhysRevD.54.6153
http://dx.doi.org/10.1103/PhysRevD.54.6153
http://dx.doi.org/10.1103/PhysRevD.87.121501
http://dx.doi.org/10.1103/PhysRevD.91.084024
http://dx.doi.org/10.1103/PhysRevD.91.084024
http://dx.doi.org/10.1103/PhysRevD.62.064015
http://dx.doi.org/10.1103/PhysRevD.62.064015
http://dx.doi.org/10.1103/PhysRevD.79.081503
http://dx.doi.org/10.1103/PhysRevLett.114.161103
http://dx.doi.org/10.1103/PhysRevLett.114.161103
http://dx.doi.org/10.1103/PhysRevD.86.044030
http://dx.doi.org/10.1088/0264-9381/28/19/195015
http://dx.doi.org/10.1088/0264-9381/28/19/195015
http://dx.doi.org/10.1103/PhysRevD.83.044045
http://dx.doi.org/10.1103/PhysRevD.87.064023
http://dx.doi.org/10.1103/PhysRevD.87.064023
http://dx.doi.org/10.1103/PhysRevD.86.124012
http://dx.doi.org/10.1103/PhysRevD.86.124012
http://dx.doi.org/10.1103/PhysRevD.89.064058
http://dx.doi.org/10.1103/PhysRevD.89.064058
http://dx.doi.org/10.1088/1475-7516/2014/12/003
http://dx.doi.org/10.1088/1475-7516/2014/12/003
http://dx.doi.org/10.1103/PhysRevD.52.6882
http://dx.doi.org/10.1103/PhysRevD.89.024031
http://dx.doi.org/10.1103/PhysRevD.89.024031
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
http://dx.doi.org/10.1103/PhysRevD.89.061501
http://dx.doi.org/10.1103/PhysRevD.89.061501
http://dx.doi.org/10.1103/PhysRevLett.115.031102
http://dx.doi.org/10.1103/PhysRevD.93.044006
http://dx.doi.org/10.1088/0264-9381/27/7/075014
http://dx.doi.org/10.1103/PhysRevD.66.024007
http://dx.doi.org/10.1103/PhysRevD.66.024007
http://dx.doi.org/10.1103/PhysRevD.89.104021
http://dx.doi.org/10.1103/PhysRevD.89.104021
http://arXiv.org/abs/1509.00862
http://arXiv.org/abs/1506.01689

