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ABSTRACT
The high-mass X-ray binary and accreting X-ray pulsar IGR J16393−4643 was observed byNuSTAR in the

3–79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled
the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3+1.1

−1.3 keV. This allowed
us to measure the magnetic field strength of the neutron star for the first time:B = (2.5± 0.1)× 1012 G. The
known pulsation period is now observed at 904.0±0.1 s. Since 2006, the neutron star has undergone a long-
term spin-up trend at a rate ofṖ = −2× 10−8 s s−1 (−0.6 s per year, or a frequency derivative of ˙ν = 3× 10−14

Hz s−1). In the power density spectrum, a break appears at the pulsefrequency which separates the zero slope
at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron
star could be due to the accretion of a quasi-spherical wind,or it could be caused by the transient appearance
of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is
around 2× 108 cm.
Subject headings: accretion, accretion disks ; gamma-rays: general ; stars: neutron ; X-rays: binaries ; X-rays:

individual (IGR J16393−4643)

1. INTRODUCTION

During a survey of the Galactic Plane, theASCA space tele-
scope detected a new X-ray source, AX J163904−4642, in
the direction of the Norma spiral arm tangent (Sugizaki et al.
2001). The source was initially classified as a microquasar
(Combi et al. 2004) given the absorbed power-law shape of
the ASCA-derived spectrum, and given that its X-ray posi-
tion coincides with counterpart candidates from the radio and
infrared bands, as well as with the unidentified gamma-ray
source 3EG J1639−4702 (Hartman et al. 1999). Surveying
the same region a few years later, theINTEGRAL space tele-
scope detected IGR J16393−4643 which was shown to be the
hard X-ray counterpart to theASCA source (Bird et al. 2004;
Malizia et al. 2004).

A follow-up observation of IGR J16393−4643 with
XMM-Newton revealed several interesting clues about the
source’s nature (Bodaghee et al. 2006). First, the refined
position from XMM-Newton excluded all previous multi-
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wavelength counterpart candidates (other than theASCA
source) that were the basis for the microquasar interpre-
tation, and pointed instead to a faint object from the
Two Microns All-Sky Survey (Cutri et al. 2003) named
2MASS J16390535−4642137. Thus, the association of
IGR J16393−4643 with 3EG J1639−4702 was attributed to
a chance alignment of unrelated objects. Second, the spec-
tral properties were typical of a wind-accreting pulsar (e.g.,
Nagase 1989); i.e., a large absorbing column, a hard X-ray
continuum with an exponential cutoff around 20 keV, and iron
fluorescence lines. Third, a timing analysis of theXMM-
Newton andINTEGRAL data led to the discovery of a coherent
pulsation period of 911 s indicative of a slowly rotating, mag-
netized neutron star. This pulsation period was confirmed in
observations taken withRXTE (Thompson et al. 2006),Chan-
dra (Fornasini et al. 2014), andSuzaku (Islam et al. 2015).

These results suggest that IGR J16393−4643 is an obscured
high-mass X-ray binary (HMXB) in which a compact ob-
ject (in this case, a spinning neutron star) accretes the wind
shed by a massive donor star (White et al. 1983; Nagase 1989;
Bildsten et al. 1997). This view is supported by the subse-
quent detection of a 4.2-d orbital period inRXTE andSwift
data (Corbet et al. 2010; Corbet & Krimm 2013; Coley et al.
2015) which places IGR J16393−4643 within the wind-fed
HMXB systems in the pulse-vs.-orbital period diagram of
Corbet (1986).

However, the exact spectral class of this donor
star is uncertain. The optical/infrared spectrum of
2MASS J16390535−4642137 indicates a spectral class
of BIV-V (Chaty et al. 2008), whereas analysis of theKs-
band spectrum of the same object suggests a late-type KM
star in a symbiotic binary system (Nespoli et al. 2010). To
help clarify this issue, we performed aChandra observation
of IGR J16393−4643 that provided an X-ray position with
sub-arcsecond accuracy (Bodaghee et al. 2012). TheChan-
dra position is R.A. (J2000)= 16h 39m 05s.47 and Decl.=
−46◦ 42′ 13′′.0 with an error radius of 0′′.6 (90% confidence).

http://arxiv.org/abs/1603.05580v1
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Figure 1. Images of IGR J16393−4643 gathered withNuSTAR FPMA (left) and FPMB (right) in the 3–79 keV energy band. The images are presented in J2000.0
equatorial coordinates, they are scaled logarithmically,and extraction regions for the source (50′′-radius) and background (100′′-radius) are indicated.

Table 1
Journal of observations of IGR J16393−4643.

telescope observation ID pointing R.A. (J2000) pointing decl. (J2000) start date (UTC) end date (UTC) effective exposure (ks)

NuSTAR 30001008002 249.8301 −46.6567 2014-06-26 02:21:07 2014-06-27 05:31:07 50.579
Swift 00080170004 249.6784 −46.6450 2014-06-27 04:40:07 2014-06-27 05:27:01 2.804

This error circle excludes the 2MASS star and suggests a
faint, blended, and likely distant B star that appears in the
mid-infrared at wavelengths longer than 5µm. Indeed, an
orbital-period analysis suggests that the donor star is a B
giant with a mass greater than 7M⊙ (Coley et al. 2015).

In 2014 June, theNuclear Spectroscope Telescope Ar-
ray (NuSTAR: Harrison et al. 2013) observed the field of
IGR J16393−4643 as part of its survey of the Norma Arm
region (Bodaghee et al. 2014; Fornasini et al. 2014).NuSTAR
provides exceptional angular (18′′ full-width-half-maximum,
58′′ half-power diameter) and spectral resolution (400 eV)
around 10 keV. In this paper, we present results from these
NuSTAR observations of IGR J16393−4643 in addition to a
simultaneous snapshot observation taken withSwift. Section 2
describes the analysis of the X-ray data with results from tim-
ing and spectral analyses shown in Section 3. Insights into the
nature of IGR J16393−4643 are discussed in Section 4.

2. OBSERVATIONS & DATA ANALYSIS

Table 1 lists details of the observations of
IGR J16393−4643 included in this analysis. All data
were analyzed using HEASoft 6.16. TheNuSTAR data
consist of the two focal plane modules A and B (FPMA
and FPMB) where each module has a field-of-view (FoV)
of 13′ × 13′. Raw event lists from observation ID (ObsID)

30001008002 were reprocessed withnupipeline, which
is part of theNuSTAR Data Analysis Software13 (NuSTAR-
DAS 1.4.1), while employing the most recent calibration
database files available at the time (CALDB: 2014 August
14).

Figure 1 presents the cleaned images for each module in
the 3–79 keV energy band. From the cleaned event lists of
each module, we extracted source spectra and light curves us-
ing a 50′′-radius circle centered on theChandra position for
IGR J16393−4643. Around 70% of the source photon energy
is enclosed within this radius (Madsen et al. 2015). Given the
size of this extraction region, and given that theChandra posi-
tion is within 3′′ of the brightest pixel in the image from each
NuSTAR focal plane module, we chose not to correct these
images for the known systematic offset of coordinates.

The bright background feature affecting both modules
(Figure 1) is due to unfocused stray-light photons from
GX 340+0, an unrelated object situated just outside the FoV.
Since the source extraction regions have some fraction of their
area contaminated by stray-light photons, we selected back-
ground extraction regions (100′′-radius circles) that encom-
passed a similar fraction of stray-light photons. Exposuredif-
ferences due to vignetting were accounted for in the response

13 http://heasarc.gsfc.nasa.gov/docs/nustar/analysis/nustardasswguidev1.7.pdf



NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393−4643 3

Figure 2. Source and background light curves fromNuSTAR (3–79 keV) for
IGR J16393−4643 where each bin lasts 100 s. The top panel presents the
source light curve combining count rates from FPMA and FPMB that are then
background-subtracted. In the middle panel, the summed (FPMA and FPMB)
background count rate is shown scaled to the size of the source region. For
comparison, the average background rate (×10) is indicated by the dashed
line in the top panel. The bottom panel features the hardnessratio whereS
andH represent count rates in 3–10 keV and 10–79 keV, respectively.

matrices and spectra. The effective exposure time at the posi-
tion of IGR J16393−4643 is 50.579ks.

During theNuSTAR observation,Swift-XRT (Burrows et al.
2005) also observed the source yielding an effective expo-
sure time of 2.804 ks (ObsID 00080170004). We extracted
a spectrum in the 0.5–10keV energy range that extends the
source continuum below the 3-keV limit ofNuSTAR thereby
enabling the column density to be constrained. The combined
Swift-NuSTAR spectra were fit inXspec 12.8.2 (Arnaud
1996) where we assumed Wilms et al. (2000) abundances and
Verner et al. (1996) photo-ionization cross-sections.

3. RESULTS

3.1. Timing Analysis

Figure 2 presents the source and background light curves
binned at 100 s in the 3–79 keV energy range combining
counts fromNuSTAR FPMA and FPMB. The hardness ratio
is defined asH−S

H+S whereS andH represent count rates in 3–
10 keV (“soft”) and 10–79 keV (“hard”), respectively. A di-
viding value of 10 keV allocates a roughly even number of
source counts between soft and hard energy bands.

The known pulsation is detected at a period of 904.0±0.1
s in the source (+ background) light curve with 0.1-s resolu-
tion. The best-fitting period is obtained from the fast algo-
rithm for Lomb-Scargle periodograms (Lomb 1976; Scargle
1982) developed by Press & Rybicki (1989), while the error
on the pulse period is derived from the analysis methods of
Horne & Baliunas (1986) and Leahy (1987) which yield con-
sistent uncertainties. Figure 3 displays the periodogram and
Figure 4 shows the phase-folded light curve.

As illustrated in Figure 4, the pulse profile begins with
a spike in count rates at phase 0.2–0.3, followed by a
dip at phase 0.35, and then a broad secondary peak at

Figure 3. Periodicity search (χ2 distribution) on theNuSTAR light curve (3–
79 keV) of IGR J16393−4643 centered at 904 s (vertical line), with 20 bins
per pulse period, and a resolution of 0.1 s.

phase 0.4–0.85. This bimodal pulse profile is similar
to the pulse profiles recorded for this source byINTE-
GRAL (20–40keV: Bodaghee et al. 2006) andXMM-Newton
(0.3–10keV: Bodaghee et al. 2006) as well as withRXTE
(3–24keV: Thompson et al. 2006) andSuzaku (0.3–50keV:
Islam et al. 2015).

The pulse fraction (≡ Imax−Imin
Imax+Imin

) of 38%±1% is consis-
tent with previous measurements byINTEGRAL (57% ±
24%: Bodaghee et al. 2006),XMM-Newton (38% ± 5%:
Bodaghee et al. 2006), andSuzaku-XIS (33%: Islam et al.
2015), but it is higher than the fraction measured withRXTE
(21% ± 1%: Thompson et al. 2006). The pulse fraction
increases with energy (e.g., Lutovinov & Tsygankov 2009)
reaching 60% for theNuSTAR 10–79-keV energy band, which
is consistent with the pulse fraction fromSuzaku-PIN (65% in
12–50keV: Islam et al. 2015).

In Figure 6, the evolution of the pulsation period is shown
as measured by different authors. A least-squares fit to the
data results in a slope oḟP = −2× 10−8 s s−1, which implies
that the neutron star is undergoing a long-term spin-up trend
at a rate of around−0.6 s per year. This is twice the value of
Ṗ reported by Thompson et al. (2006) usingRXTE data. The
frequency derivative is ˙ν = 3×10−14 s−2. There could be some
stochastic variation around the average spin-up value, as seen
e.g. in Vela X-1 (Tsunemi 1989; Ikhsanov et al. 2014), but the
measurements are too sparse to make a definitive claim.

Figure 7 presents the power density spectrum (PDS) of
IGR J16393−4643 after subtracting the average pulsed pe-
riodic component from the light curve. A broken power
law model applied to the PDS yields a break frequency of
0.00108(21) Hz withΓ1 = −0.53±0.13 andΓ2 = −2.08±0.16.
The spectral break is necessary given that its inclusion sig-
nificantly improves the fit quality (χ2/dof = 22.8/23, where
dof is the degrees of freedom, compared toχ2/dof= 94.6/25
without the break). In contrast to the recent spin-up detection
in 2RXP J130159.6−635806 (Krivonos et al. 2015), where
the break in the power spectrum was shifted with respect to
the pulsation period, in our case we observe pulsations di-
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Figure 4. Pulse profile showing two phases of the 904-s pulse period in the
3–79 keV energy band beginning at MJD 56834.209667(1). Photons within
the intervals labeled “peak” and “valley” were selected forthe phase-resolved
spectra.

rectly at the break of the power spectrum.
A phase lag was suggested by Islam et al. (2015) when

they compared the low-energy and high-energy pulse profiles
from Suzaku. The minimum of the pulse profile in the low-
energyNuSTAR data (3–10 keV) trails the minimum in the
high-energyNuSTAR data (10–79 keV) by 0.1 in phase (∼ 90
s); i.e., consistent with theSuzaku results (Islam et al. 2015).
However, unlike in theSuzaku data, the pulse profiles in the
NuSTAR data present two maxima and a dip that are synchro-
nized across energy bands (Figure 5).

3.2. Spectral Analysis

The spectral data fromNuSTAR FPMA and FPMB were
rebinned so that each energy bin had a significance of at
least 4σ. The data were fit simultaneously with an absorbed
power law where the instrumental constant was fixed at 1 for
FPMA and was allowed to vary for FPMB. In all cases, the
instrumental constant that was free to vary remained consis-
tent with 1. The column density was fixed to 2× 1023 cm−2

(Bodaghee et al. 2006). This yielded a poor fit with a reduced
χ2
ν/dof = 7.8/949 and residuals below 5 keV and above 30

keV. A bremsstrahlung model did not improve the fit by much
(χ2
ν/dof = 5.8/949).
A thermal blackbody (kT = 4.27±0.04 keV) or a power

law with an exponential cutoff (Γ = −0.70±0.06 andEcut =

6.5±0.2 keV) offered better fits to the spectral data (χ2
ν/dof =

1.63/949 andχ2
ν/dof = 1.32/948, respectively). Some resid-

uals remain near 6.4 keV where an iron Kα line is known
from XMM-Newton observations (Bodaghee et al. 2006); the
addition of a model component for this line leads to a negli-
gible improvement in the fit quality, and so it is not required
by the data. The non-detection of this feature is likely due to
the lower spectral resolution ofNuSTAR at this energy com-
pared withXMM-Newton. WhereNuSTAR excels is above 10
keV, and the spectrum shows residuals around 30 keV which
suggests a cyclotron resonant scattering feature (CRSF).

To test the significance of this candidate cyclotron line, the

Figure 5. Same as Figure 4 for the 3–6 keV, 6–10 keV, 10–20 keV, and 20–79
keV energy bands with 90 bins per period. In all cases, phase 0corresponds
to MJD 56834.209667(1).

NuSTAR spectral data were rebinned so that each energy bin
had a significance of least 9σ. We began with the multi-
component continuum model from the broadband spectral fits
(see below) with the column density fixed to its best-fitting
value (NH = 4 × 1023 cm−2). Adding a cyclotron line to the
model reduced theχ2 of the fit by 30. In order to estimate the
significance of the cyclotron line, we relied on the Bayesian
posterior predictive probability value (“ppp-value”) as de-
scribed in Protassov et al. (2002). See Bellm et al. (2014)
and Bhalerao et al. (2015) for recent applications of this tech-
nique. We determined the reference distribution empirically
using a Monte Carlo method where we simulated 1000 trials
with theXspec tool simftest, allowing the centroid en-
ergy and width of the cyclotron line to vary within their 90%
confidence regions. It is important to note thatsimftest
was used only to simulate the data within a reasonable range
of parameter uncertainties and not to perform an F-test. From
our simulations, we calculated the change in chi-squared val-
ues for the model that includes the cyclotron feature, and for
the model without the cyclotron feature (the “null hypothe-
sis”). These simulations returned a maximum change inχ2

of 14. The probability of finding the observed change inχ2

by chance is 2× 10−6 which corresponds to 4.8σ significance
(4.3σ after accounting for trials).

Swift spectral data, where each bin contained a minimum of
5 source counts, were then jointly fit with theNuSTAR data.
Using single-component models for the continuum led to fits
of insufficient quality and unconstrained spectral parameters.
The best fit was obtained with a two-component continuum
model incorporating both a soft thermal component (a radial
blackbody orbbodyrad) and a hard non-thermal component
(a power law with an exponential cutoff orcutoffpl). Pho-
toelectric absorption from molecular hydrogen (tbabs) and
a cyclotron absorption line (cyclabs) were included (see
also Schönherr et al. 2007, for a more elaborate model).

The fit quality is excellent as attested by the reducedχ2
ν/dof

of 0.99/970 and by the lack of significant residuals as shown
in Figure 8. Table 2 lists the spectral parameters of this model.
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Figure 6. Evolution of the pulsation period of IGR J16393−4643 as reported
in the literature. A least-squares fit to the data points gives a slope ofṖ =
−2× 10−8 s s−1 (solid line).

The broadband X-ray flux is about twice as high as was seen
previously withSuzaku (Islam et al. 2015) andXMM-Newton
(Bodaghee et al. 2006). The effective exposure time is around
51 ks.

To test for variations in the spectral parameters with respect
to the pulse profile, we extractedNuSTAR spectra correspond-
ing to the maxima (or “peak”) and minima (or “valley”) of the
pulse profile. For the peak spectrum, we selected events cor-
responding to phases 0.6–0.85 (for a count rate of 1.22±0.01
cps in 3–79 keV), whereas events with phases 0–0.15 and
0.9–1 were chosen for the valley spectrum (a count rate of
0.65±0.01 cps). For reference, the “full” or time-averaged
source count rate is 1.05±0.01 cps.

Each of these phase-resolvedNuSTAR spectra covers one-
quarter of the full pulse cycle for a total exposure time of
∼13 ks per spectrum. Each spectrum was rebinned to have
a minimum significance of 6σ per bin, and was then jointly
fit with the Swift spectrum using the multi-component model
described above while holding the column density to its opti-
mal value from the time-averaged spectrum (NH = 4.2× 1023

cm−2). A few of the spectral parameters could not be eas-
ily constrained and so the following results should be con-
sidered with that caveat in mind. The cyclotron line ener-
gies from both spectra were statistically consistent with each
other: Ecyc = 29.4±1.5 keV for the peak spectrum, and
Ecyc = 29.6±1.6 keV for the valley spectrum. The only sig-
nificant differences were the normalization and flux values
which were twice as high in the peak spectrum, i.e. consis-
tent with the difference in count rates. An instrumental cross-
calibration constant near 0.5 for the valley spectrum is ex-
pected since theNuSTAR count rate is nearly half its average
value while theSwift spectrum does not change.

4. DISCUSSION

The X-ray band spectrum generated from jointSwift
and NuSTAR observations offers the sharpest view yet
of the broadband spectral energy distribution (SED) of

Figure 7. Power density spectrum of IGR J16393−4643 after subtraction of
the average pulsed periodic component. The expected level of white noise
has been subtracted and the spectrum is rms-normalized. Thedashed vertical
line indicates the pulsation frequency while the dotted vertical line shows the
break frequency of a broken power law fit to the data (solid lines).

IGR J16393−4643, especially above∼10 keV. Thermal black-
body photons with a temperature of 1.41±0.12 keV origi-
nating near the surface of the neutron star are re-emitted at
higher energies by inverse-Compton scattering off the sur-
rounding electron plasma, and their SED assumes the form
a hard power law (Γ = −1.8+0.6

−0.4) with an exponential cutoff at
5.0+0.6
−0.4 keV. Indeed, a thermal Comptonization model also fits

the data providing this physical description of the observed
phenomena (e.g., Becker & Wolff 2005).

We discovered a cyclotron resonant scattering feature in the
NuSTAR spectrum of IGR J16393−4643 lending further evi-
dence that the compact object in this system is a strongly mag-
netized neutron star. The centroid energy isEcyc = 29.3+1.1

−1.3
keV, and it does not change appreciably across the pulse pro-
file (but see, e.g., Coburn et al. 2002). This implies a neutron
star magnetic field strength of (2.5 ± 0.1) × 1012 G, which
could be up to 40% larger when gravitational redshift is con-
sidered. ThisEcyc value is equal to that of X Per and is within
the range of observed line energies in accreting X-ray pulsars
(e.g., Caballero & Wilms 2012; Walter et al. 2015, and refer-
ences therein).

The X-ray photons arise at the accretion poles (e.g.,
Burnard et al. 1991; Becker & Wolff 2005) given that the
emission follows a coherent pulsation period seen in theNuS-
TAR data of IGR J16393−4643, as well as in previous obser-
vations. Since the discovery of the pulse period in 2006, each
of the five subsequent observations shows IGR J16393−4643
spinning at a higher frequency than during the preceding ob-
servation. The change in frequency is ˙ν = 3 × 10−14 Hz s−1

which converts to a long-term spin-up trend of−0.6 s per year
on a pulsation period of 904.0±0.1 s in the most recent data
(this work). Considering that our period derivative is twice
the value found by Thompson et al. (2006), and considering
that the period measurement of Islam et al. (2015) is not well
fit by the least-squares approximation, this indicates thatν̇ is
generally increasing but not at a constant rate.
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Figure 8. Background-subtracted spectra of IGR J16393−4643 collected
with Swift (black),NuSTAR-FPMA (blue), andNuSTAR-FPMB (red). Spec-
tral bins for Swift contain a minimum of 5 source counts, while those of
NuSTAR have a minimum significance of 7σ. The spectra were fit with a
model consisting of an absorbed cutoff power law with a radial blackbody.
The middle panel shows residuals from this model fit, while the bottom panel
shows residuals when the model includes a cyclotron component. Error bars
denote 90%-confidence limits. The derived spectral parameters (with& 4σ-
significanceNuSTAR bins) are listed in Table 2.

Angular momentum must be imparted to the neutron star
to change the spin period in this way (Pringle & Rees 1972;
Lamb et al. 1973). The environment of the neutron star in an
absorbed HMXB such as IGR J16393−4643 is generally as-
sumed to be a quasi-spherical stellar wind (e.g., Bondi 1952;
Walter et al. 2006; Shakura et al. 2012, 2015). Accretion of
this wind can, under certain conditions, provide a net change
in angular momentum (Shakura et al. 2012). Alternatively, a
wind-fed accretion disk can develop around the neutron star
in IGR J16393−4643 (Ghosh & Lamb 1979; Boerner et al.
1987), and since a BIII-type donor star is not expected to
fill its Roche lobe, this favors a transient scenario for the
disk. Transient accretion disks have been suggested in other
wind-fed pulsars that exhibit long-term spin-up trends (e.g.
GX 301−2: Koh et al. 1997).

Naturally, the strong magnetic field of the pulsar influences
the dynamics of the accretion disk out to a certain distance
(Ghosh & Lamb 1979). Material within the corotation radius
is forced to corotate with the neutron star and if its angular
velocity is less than the local Keplerian velocity, then thema-
terial can be accreted along the field lines (this implies a mag-
netospheric radius smaller than the corotation radius). De-
pending on whether the accreted material’s angular momen-
tum has the same or an opposite direction as the neutron star’s
spin, this will cause the neutron star to spin faster or slower,
respectively (Waters & van Kerkwijk 1989). The consistent
downward trend of the pulsation period in IGR J16393−4643
suggests that material in the accretion disk orbits in the same
direction as the neutron star’s spin.

Additional accretion dynamics can be elucidated from the
power density spectrum (PDS). Going from low frequency
to high frequency, the PDS changes from a flat power law
(slope∼ −0.5) to a steeper power law (slope∼ −2). The
PDS breaks at a frequency of 0.00108(21) Hz which is very

Table 2
Spectral parameters from the model that best fits the combined Swift-NuSTAR

spectrum of IGR J16393−4643.

model parameter full peak valley unit

const∗tbabs∗cyclabs∗(bbodyrad+cutoffpl)

C 0.8+0.2
−0.1 0.9+0.2

−0.1 0.5±0.1

NH 42+3
−4 42 42 1022 cm−2

Γ −1.8+0.6
−0.4 ≤ −2.3 ∼ −2.5

Ecut 5.0+0.6
−0.4 4.6+0.4

−0.2 4.3+0.1
−0.3 keV

norm. at 1 keV 3±2 ∼1 ∼0.4 10−5 ph cm−2 s−1

kT 1.4±0.1 1.6±0.1 1.6±0.1 keV

norm. 0.7±0.2 ∼0.6 ∼0.6

Ecyc 29.3+1.1
−1.3 29.4±1.2 30.4+1.4

−0.9 keV

σcyc 4+5
−2 ≤ 5 3+4

−1 keV

depth 0.4±0.1 0.6+0.4
−0.3 1.9+1.6

−0.6 keV

Fabs 19.6+0.3
−1.4 22±11 12+4

−7 10−11 erg cm−2 s−1

Funabs 28.3+1.3
−2.0 31±15 18±8 10−11 erg cm−2 s−1

χ2
ν/dof 0.99/970 1.06/749 1.10/749

Note. — Spectral parameters are shown for the “full” or time-averaged spectrum, as well
as for the 904-s pulse phase-resolved spectra where the “peak” corresponds to counts from
phases 0.6–0.85, while the “valley” includes only those counts corresponding to phases
in 0.0–1.5 and 0.9–1.0 (see Figure 4). The column density forthe phase-resolved spectra
is fixed to the value from the “full” spectrum.C is an instrumental cross-calibration co-
efficient which is fixed at 1 forSwift and variable forNuSTAR. Flux values are given as
observed (“abs”) and corrected for absorption (“unabs”) inthe 0.5–80-keV energy range.
Uncertainties on the flux offer a more realistic representation of the error range than do the
uncertainties on the normalizations which are large and mostly omitted. Errors are quoted
at 90% confidence.

close to the spin frequency of the neutron star (0.0011062(1)
Hz). These characteristics of the PDS in persistent, accret-
ing X-ray pulsars are described by Revnivtsev et al. (2009),
and they suggest that the neutron star in IGR J16393−4643 is
spinning close to corotation with the inner edge of an accre-
tion disk that has been truncated by the magnetic field. Us-
ing canonical values for the neutron star mass (1.4M⊙) and
magnetic dipole moment (µ = 1030 G cm−3 for B ∼ 1012 G),
this gives estimates of 1.1 × 108 cm and 2.0 × 108 cm for
the magnetospheric radius assuming mass accretion rates of
10−6 M⊙ yr−1 and 10−7 M⊙ yr−1, respectively. However, an
alternative model for quasi-spherical wind accretion devel-
oped by Shakura et al. (2012) could also produce the observed
change in spin frequency, and in this case, an accretion diskis
not required.

5. SUMMARY & CONCLUSIONS

A NuSTAR observation of IGR J16393−4643 has revealed
valuable insights into the nature of this source. The de-
tection of a cyclotron resonant scattering feature at 29.3+1.1

−1.3
keV allowed us to constrain the magnetic field strength to
B = (2.5± 0.1)× 1012 G. This is the first time that the mag-
netic field has been measured in this object. The cyclotron
line was not detected in previous excursions into this energy
range byRXTE-ASM, INTEGRAL-ISGRI, andSuzaku-HXD.
This result is a testament to the spectral sensitivity and resolv-
ing power ofNuSTAR.

The pulsation period of the neutron star in
IGR J16393−4643 is now at 904.0±0.1s. Looking at



NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393−4643 7

the five measurements made between 2006 and 2014, we
find that this period has consistently gotten shorter with
time at an average long-term spin-up rate of−0.6 s per year
(ν̇ = 3 × 10−14 Hz s−1). The slope of the power density
spectrum breaks near the pulsation frequency as expected
for persistently emitting accretion-powered pulsars. This
could indicate that a transient and magnetically truncated
accretion disk is almost in corotation with the neutron star
whose magnetospheric radius is around 2× 108 cm, although
accretion from a quasi-spherical wind could also lead to the
observed change in pulsation frequency.

IGR J16393−4643 is an archetype of the class of heavily
obscured wind-accreting pulsars, with its ks-long pulsation
period and its column density that is at least an order of mag-
nitude greater than the expected line-of-sight value. Yet its
source classification has been subject to multiple changes over
the years and the identity of the donor star remains elusive.
Results we obtained thanks toNuSTAR represent new puzzle
pieces to add to the still-developing picture we have of this
intriguing source.
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