CaltechAUTHORS
  A Caltech Library Service

Morphological Expression of the Coherence and Relative Phase of Optical Inputs to the Photoelectrodeposition of Nanopatterned Se-Te Films

Carim, Azhar I. and Batara, Nicolas A. and Premkumar, Anjali and May, Richard and Atwater, Harry A. and Lewis, Nathan S. (2016) Morphological Expression of the Coherence and Relative Phase of Optical Inputs to the Photoelectrodeposition of Nanopatterned Se-Te Films. Nano Letters, 16 (5). pp. 2963-2968. ISSN 1530-6984. doi:10.1021/acs.nanolett.5b04999. https://resolver.caltech.edu/CaltechAUTHORS:20160418-145804523

[img] PDF (Additional details regarding experimental and computer modeling methods, cross-sectional micrographs, analyses of photoelectrodeposit composition and structure) - Supplemental Material
See Usage Policy.

796kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20160418-145804523

Abstract

Highly anisotropic and ordered nanoscale lamellar morphologies can be spontaneously generated over macroscopic areas, without the use of a photomask or any templating agents, via the photoelectrodeposition of Se–Te alloy films. To form such structures, the light source can be a single, linearly polarized light source that need not necessarily be highly coherent. In this work, the variation in the morphologies produced by this deposition process was evaluated in response to differences in the coherence and relative phase between multiple simultaneous linearly polarized illumination inputs. Specifically, the morphologies of photoelectrodeposits were evaluated when two tandem same-wavelength sources with discrete linear polarizations, both either mutually incoherent or mutually coherent (with defined phase differences), were used. Additionally, morphologies were simulated via computer modeling of the interfacial light scattering and absorption during the photoelectrochemical growth process. The morphologies that were generated using two coherent, in-phase sources were equivalent to those generated using only a single source. In contrast, the use of two coherent, out-of-phase sources produced a range of morphological patterns. For small out-of-phase addition of orthogonal polarization components, lamellar-type patterns were observed. When fully out-of-phase orthogonal sources (circular polarization) were used, an isotropic, mesh-type pattern was instead generated, similar to that observed when unpolarized illumination was utilized. In intermediate cases, anisotropic lamellar-type patterns were superimposed on the isotropic mesh-type patterns, and the relative height between the two structures scaled with the amount of out-of-phase addition of the orthogonal polarization components. Similar results were obtained when two incoherent sources were utilized. In every case, the long axis of the lamellar-type morphology component aligned parallel to the intensity-weighted average polarization orientation. The observations consistently agreed with computer simulations, indicating that the observed morphologies were fully determined by the nature of the illumination utilized during the growth process. The collective data thus indicated that the photoelectrodeposition process exhibits sensitivity toward the coherency, relative phase, and polarization orientations of all optical inputs and that this sensitivity is physically expressed in the morphology of the deposit.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1021/acs.nanolett.5b04999DOIArticle
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.5b04999PublisherSupporting Information
ORCID:
AuthorORCID
Carim, Azhar I.0000-0003-3630-6872
Atwater, Harry A.0000-0001-9435-0201
Lewis, Nathan S.0000-0001-5245-0538
Additional Information:© 2016 American Chemical Society. Received: December 8, 2015; Revised: March 8, 2016; Publication Date (Web): March 16, 2016. This work was supported by the “Light–Material Interactions in Energy Conversion” Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001293. The authors gratefully acknowledge Dr. B. Brunschwig and D. Ding for insightful discussions and R. Gerhart for assistance with photoelectrochemical cell fabrication. A.I.C. acknowledges a Graduate Research Fellowship from the National Science Foundation. A.P. acknowledges an Edward W. Hughes Research Fellowship from the California Institute of Technology. R.M. acknowledges a Summer Undergraduate Research Fellowship from the California Institute of Technology. The authors declare no competing financial interest.
Group:Kavli Nanoscience Institute
Funders:
Funding AgencyGrant Number
Department of Energy (DOE)DE-SC0001293
NSF Graduate Research FellowshipUNSPECIFIED
Caltech Summer Undergraduate Research Fellowship (SURF)UNSPECIFIED
Subject Keywords:Electrodeposition; photoelectrochemistry; photodeposition; template-free; maskless; chalcogenide
Issue or Number:5
DOI:10.1021/acs.nanolett.5b04999
Record Number:CaltechAUTHORS:20160418-145804523
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20160418-145804523
Official Citation:Morphological Expression of the Coherence and Relative Phase of Optical Inputs to the Photoelectrodeposition of Nanopatterned Se–Te Films Azhar I. Carim, Nicolas A. Batara, Anjali Premkumar, Richard May, Harry A. Atwater, and Nathan S. Lewis Nano Letters 2016 16 (5), 2963-2968 DOI: 10.1021/acs.nanolett.5b04999
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:66254
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:18 Apr 2016 22:10
Last Modified:10 Nov 2021 23:55

Repository Staff Only: item control page