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We have performed Monte Carlo simulations of domain growth at zero temperature of a lattice
gas with nearest-neighbor repulsive interactions on a triangular lattice. Kawasaki dynamics were
used with a fractional surface coverage of one-third. We studied both the case in which the second-
nearest-neighbor interaction is attractive and the case in which it is zero. The effect of increasing
the range of allowed hops from nearest neighbor to third nearest neighbor was investigated. We
find that domain growth freezes in the case in which the second-nearest-neighbor interaction is at-
tractive and only nearest-neighbor hops are allowed. Domain freezing is released when longer-
range hops are allowed or when the second-nearest-neighbor interaction is zero. Allowing only
nearest-neighbor hops, the growth exponent when there is no second-nearest-neighbor interaction is
consistent with the Lifshitz-Slyozov theory. We conclude that the range of particle hops is an im-
portant parameter to consider when classifying growth kinetics.

I. INTRODUCTION

The kinetics of domain growth in systems that have
been quenched below an ordering temperature 7T, has
been widely studied.! There has been considerable in-
terest recently in the kinetics of domain growth at zero
temperature, with particular focus on the freezing of
domain sizes.>”® A combination of Monte Carlo simula-
tions and renormalization-group methods was employ-
ed® to study the ferromagnetic Ising model, H
=JNN2(,-¢J-)NNS,-SJ-.7 Using Kawasaki dynamics, it was
found that the domain size freezes at zero temperature.
A similar method was used* to study the eight-state Potts
model on a square lattice, with the Hamiltonian

H=JNN 2 Ssisj+JNNN 2 Ssis-

(i NN DN

(Ref. 8). Two “fixed points” at T =0 were found; one is a
freezing “fixed point” for Jynn /JnnF 1, and the other is
the equilibration “fixed point™ for Jynn/Inn =1. It was
concluded that the attractive ‘“fixed point” for quenches
to finite temperatures is the equilibration “fixed point.”
Another Hamiltonian which has been investigated is

HZJNN 2 stj+JNNN 2 siS-

(i#))n (i%/)NNN

on a square lattice with Jyyn and Jynn both positive. Us-
ing Glauber dynamics, it was found that for
a=Jynn/JInn <1, domain freezing occurs; whereas for
a=>1, the growth exponent x is approximately %.5 At
finite temperatures, the domain-growth freezing is
released. Using the same Hamiltonian with a=1, but us-
ing spin-exchange dynamics, it was found that the
domain size freezes when only nearest-neighbor spin ex-
changes are allowed.® If second-nearest-neighbor spin ex-
changes are also allowed, the freezing is released.

Some general conclusions concerning domain growth
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have been drawn from these studies. It was suggested
that the freezing of domain growth at zero temperature
implies that the growth law at finite temperatures below
the critical temperatures is / ~1ntz.> However, this has
not been observed in simulations either for (2X1) or-
dered domains on a square lattice’ or for (V'3 XV'3) (Ref.
10) ordered domains on a triangular lattice.!! The simu-
lations of the growth of (2X 1) domains on a square lat-
tice show / ~t*, with a temperature-dependent x for tem-
peratures close to zero. This temperature dependence
has been interpreted in two different ways. Sadiq and
Binder®!? concluded that there is a “crossover” from
x =0 at zero temperature to a finite value, probably
x =1, for all nonzero temperatures. The temperature
dependence that is observed in simulations is thought to
arise because the simulations have not yet reached the
asymptotic regime in which the true growth exponent
would be observed, and the time it would take to reach
this asymptotic regime becomes longer as the tempera-
ture becomes lower. Using a precursor-mediated mecha-
nism for domain growth, it has been found that the
growth exponents obtained from Monte-Carlo simula-
tions are strongly dependent on the mobility of the pre-
cursors.! It has also been found that the freezing of the
growth of (2X 1) domains, using Kawasaki dynamics, on
a square lattice at zero temperature is released if second-
nearest-neighbor hops are allowed.® The growth ex-
ponent that was obtained is close to J, and it was suggest-
ed that the actual growth exponent for (2X 1) domains
on a square lattice is 1. It was argued that the conflicting
observations of Sadiq and Binder® resulted because their
simulations were not sufficiently long to probe the asymp-
totic regime. Since the density is conserved in the simu-
lations allowing second-nearest-neighbor hops with
Kawasaki dynamics, the value of approximately 4 for the
growth exponent of (2X1) domains on a square lattice
led to the conclusion® that density conservation is ir-
relevant for degeneracies greater than two.
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Recent work? using a renormalization-group method
has proposed the classification of the growth kinetics of
many systems into four classes. In class I, the only
influence temperature has on the growth kinetics is
through the determination of the correlation length and
hence the width of the domain boundaries. In this class
the zero-temperature kinetics for sufficiently long-time
scales and sufficiently large length scales is the same as
the finite-temperature kinetics. In class-II systems
domain-growth freezing occurs when the temperature is
zero, but the growth kinetics follow a power-law behavior
at finite temperatures. Such behavior can result from a
time scale 7 which depends strongly on the temperature
in such a way that r=ryexp(—E /T),where 7, is weakly
dependent on the temperature 7, and E is a local barrier,
independent of the domain length. In class-III and class-
IV systems, the energy barrier E is dependent on the
domain length and there is evidence for logarithmic
growth kinetics.

In this investigation we will investigate the zero-
temperature growth kinetics for lattice gases with repul-
sive nearest-neighbor and either attractive or zero
second-nearest-neighbor interactions on a triangular lat-
tice and discuss the recently proposed classification? as
applied to these lattice gases. In previous work it was
found that the freezing of domain growth in the eight-
state Potts model* or the superantiferromagnetic Ising
model on a square lattice® is caused by the impossibility
of kink creation and annihilation for certain values of the
interaction parameters. Similar to the eight-state Potts
lattice gas on a square lattice, we find two stable “fixed
points” at zero temperature. One of them is a freezing
“fixed point,” and the other is an equilibration “fixed
point.” These systems exhibit class-II behavior in the
scheme proposed recently.” We find that freezing of
domain growth in the model we study here is caused by
fluctuations in the local fractional coverage which can re-
sult in the formation of locally stable configurations.
These “defects” then pin the domain walls or act as traps
for excess local fractional coverage, causing the freezing
of domain growth. We also investigated the effect of al-
lowing hops of a range longer than nearest neighbor. We
used Kawasaki dynamics (Ref. 14 and additionally in
Refs. 15 and 16), and in some simulations allowed not
only nearest-neighbor hops but also hops to second and
third nearest neighbors. The freezing ‘“‘fixed point” is
rendered unstable by allowing hops of longer range, as in
the case of (2X 1) domains on a square lattice. Interest-
ingly, we find a growth exponent x of approximately + for
the equilibration “fixed point.” For this model, x =1 was
conjectured by Sadiq and Binder.’

II. SIMULATIONS

Since we used Kawasaki dynamics, the probability of a
hop is given by

0, 8E>0
P=1Ll S8E=0, (1)
1, 8E<O
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where 8E is the change in energy caused by the hop.
Time is measured in Monte Carlo steps (MCS) per site.
The Hamiltonian of the lattice gases that were simulated
is

H=Jyn 23 cc;tInnn X €C - ()
(%N (NN

The occupation variable ¢; is unity if site i is occupied
and zero if it is vacant. The interaction strength of a par-
ticle with each of its nearest neighbors is Jyy. The
second-nearest-neighbor interaction strength is Jynn-
We stipulate that Jyy is positive, i.e., the nearest-
neighbor lateral interaction is repulsive, and the cases
JNNN=O0 and Jynn = —Jnn have been studied. The
fractional surface coverage used in all the simulations
was , and at this fractional surface coverage the equilib-
rium configuration is a single (V'3 XV'3) ordered domain
with a degeneracy p =3. The phase diagram for
Jnnn = —JInn has been obtained using Monte Carlo
simulations.!” We allowed three different ranges of parti-
cle hops, namely: only hops to nearest neighbors, hops to
nearest and second-nearest neighbors, and hops to
nearest, second-nearest, and third-nearest neighbors.
Only hops to vacant sites are allowed. We used lattices
which are parallelograms with L sites on each side. The
sizes of the lattices used are commensurate with the
(V3XV3) structure, and periodic boundary conditions
are employed. For each configuration, the individual
domain sizes were measured by counting the area occu-
pied by each domain. The average domain size is then
calculated, and the square root of this average area is tak-
en to be the characteristic domain length /. For each set
of parameters, 30 runs were performed on lattices of size
L XL=99X99 and five runs were performed on lattices
size L XL =201X201. This was done to determine
whether the simulations were affected by the finite lattice
sizes. For the final domain sizes we obtained, no finite-
size effects were observed. Initial configurations were
generated by randomly populating the lattices.

III. RESULTS AND DISCUSSION

The results of the simulations employing the Hamil-
tonian of Eq. (2) with Jynny = —JnN are shown in Fig. 1.
Each curve is obtained from simulations in which a
different range of allowed hops is used. Curve A4 shows
results from simulations where only nearest-neighbor
hops are allowed; curve B shows results from simulations
in which hops up to second nearest neighbor in range are
allowed; and curve C shows results from simulations in
which hops up to third nearest neighbor in range are al-
lowed. The asymptotic domain size for the simulations
allowing only nearest-neighbor hops is / ~ 16, and it is in-
dependent of the lattice size. The decrease in the growth
exponent is perceptibly slower for curves B and C than it
is for curve A. Steplike increases in the domain size be-
come apparent toward the end of the runs for the simula-
tions in which hops of up to third nearest neighbor in
range are allowed. As we will argue later, domain
growth is not frozen if hops of range greater than nearest
neighbor are allowed. Simulations were also performed
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employing the Hamiltonian of Eq. (2) with a weaker
second-nearest-neighbor attractive interaction, Jynn
=—0.1Jyn- In this case only simulations allowing
nearest-neighbor hops were performed. The results of
these simulations are shown in Fig. 2. The domain
growth is frozen as in curve A4 of Fig. 1. The asymptotic
domain size is approximately 18, which is slightly larger
(~10-15%) than the asymptotic domain size for
Jnnn = —Jnn-

The result of simulations employing the Hamiltonian
of Eq. (2) with zero second-nearest-neighbor attraction
are shown in Fig. 3, where the curves are labeled accord-
ing to their allowed hopping ranges as in Fig. 1. The
domain-growth kinetics are well described by I ~t*, with
x asymptotically constant in time for all cases. However,
as shown in Fig. 3, the value of the growth exponent x in-
creases as the range of allowed hops increases. With only
nearest-neighbor hops, the growth exponent is
x ~0.33£0.01. Increasing the range of allowed hops to

include both nearest-neighbor and second-nearest-
neighbor hops increases the growth exponent to
x ~0.38+0.01. Finally, also allowing third-nearest-

neighbor hops increases the growth exponent to
x ~0.41£0.01. Each uncertainty reported here is one
standard deviation. The arrows in Fig. 3 indicate the
range of data used to fit the growth law for each case.

In Figs. 4(a)-(4d) we show typical configurations that
were obtained from the simulations. Each of these
configurations was obtained after 1350 MCS per site.
The configurations shown in Figs. 4(a)-4(c) were ob-
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FIG. 1. Results of simulations for domain growth with
Jnnn = —JInn at T=0. The results from simulations with only
nearest-neighbor hops allowed are plotted as curve A. The re-
sults from simulations with nearest- and second-nearest-
neighbor hops allowed are plotted as curve B. The results from
simulations with nearest-, second- and third-nearest-neighbor
hops allowed are plotted as curve C. The ordinate is the aver-
age domain length in units of the lattice constant, and the
abscissa is the time in units of Monte Carlo steps per site.
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FIG. 2. Results of simulations for domain growth with
Jann = —0.1Jyn at T=0. Only nearest-neighbor hops are al-
lowed. The ordinate is the average domain length in units of
the lattice constant , and the abscissa is the time in units of
Monte Carlo steps per site. Notice the freezing of domain
growth at an asymptotic domain length slightly larger than that
of curve 4 in Fig. 1.
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FIG. 3. Results of simulations for domain growth with
Jann =0 at T=0. The results from simulations with only
nearest-neighbor hops allowed are plotted as curve 4. The re-
sults from simulations with nearest- and second-nearest-
neighbor hops allowed are plotted as curve B. The results from
simulations with nearest-, second-, and third-nearest neighbor
hops allowed are plotted as curve C. The ordinate and abscissa
are the same as those in Fig. 1. For curve B the average domain
length / has been multiplied by a factor of 2, and for curve C /
has been multiplied by a factor of 4, so that the results can be
presented more clearly.
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tained from simulations in which there is an attractive
second-nearest-neighbor interaction Jyyy = —Jnn- The
configuration shown in Fig. 4(a) is obtained from simula-
tions in which only nearest-neighbor hops are allowed,
while the configuration shown in Fig. 4(b) is obtained
from simulations in which both nearest-neighbor and
second-nearest-neighbor hops are allowed, and the
configuration shown in Fig. 4(c) is obtained from simula-
tions in which nearest-neighbor, second-nearest-neighbor,
and third-nearest-neighbor hops are allowed. These cor-
respond to curves A4, B, and C in Fig. 1, respectively.
The configuration shown in Fig. 4(d) is obtained from
simulations in which the second-nearest-neighbor interac-
tion is zero, and hops of up to third nearest neighbor in

range are allowed. The configurations from simulations
allowing only nearest-neighbor or second-nearest-
neighbor hops are similar. _ _

As the system is quenched to below T, (V'3XV'3) or-
dered domains form in regions of the lattice where the lo-
cal fractional coverage is 1. The degeneracy of this struc-
ture is p =3, and domain walls form between domains
which are out of phase with each other. The local
configurations at the domain walls are not (V'3 XV 3) su-
perstructures, and the domains will grow to minimize
such regions. With second-nearest-neighbor attraction,
however, regions which have local fractional coverages
greater than { will phase separate into domains which are

(c)

(d)

FIG. 4. (a) Typical configuration at a time of 1350 MCS for simulations in which only nearest-neighbor hops are allowed. The
second-nearest-neighbor interaction is Jyny = —Jnn. Note the clusters of ordered (V3 XVv3)* particles and clusters of vacant lat-
tices sites. This map corresponds to curve 4 of Fig. 1. (b) Typical configuration at a time of 1350 MCS for simulations in which both
nearest- and second-nearest-neighbor hops are allowed. The second-nearest-neighbor interaction is Jyyy = —Jnn. The clusters of
ordered (V'3 X V3)* particles and clusters of vacant lattice sites are farther apart than in the configuration in (a). The clusters are
mobile in this case because second-nearest-neighbor hops are allowed. This map corresponds to curve B of Fig. 1. (c) Typical
configuration at a time of 1350 MCS for simulations in which first-, second- and third-nearest-neighbor hops are allowed. The
second-nearest-neighbor interaction is Jynny = —Jnn. The clusters of ordered (V3 X1/3)* particles and clusters of vacant lattice
sites are farther apart than in the configurations in (a) and (b). The mobility of the clusters is larger here than in (b). This map corre-
sponds to curve C in Fig. 1. (d) Typical configuration at a time of 1350 MCS for simulations in which hops of up to third-nearest-
neighbor sites are allowed. The second-nearest-neighbor interaction is Jyny =0. This map corresponds to curve C of Fig. 3.
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ordered (V3XV3) and clusters which are ordered
(V3Xv3)*.10 Similarly, regions in which the local frac-
tional coverages are less than 1 will phase separate into
ordered (V'3 X V3) domains and clusters of vacant lattice
sites. This would be expected by considering the phase
diagram shown in Fig. 5.17 The abscissa is the total frac-
tional coverage and the ordinate is the temperature.
There is a cusp at the point where the temperature is zero
and the total fractional coverage is §. The equilibrium
state at this point is a single ordered (V'3XV'3) phase,
whereas on either side of this point the equilibrium states
consist of two phases. When the coverage is less than 1,
an ordered (V3 XV/3) phase is in equilibrium with vacant
lattice sites, and when the coverage is greater than 1, an
ordered (V3XV3) phase is in equilibrium with an or-
dered (V3XV/3)* phase. Fluctuations in the local frac-
tional coverage cause excursions into the two-phase re-
gions of the phase diagram. At zero temperature, these
fluctuations are shown schematically by arrows in Fig. S.
Consider the configurations shown in Figs. 4(a)—4(c).
These configurations were obtained from simulations in
which there is an attractive second-nearest-neighbor in-
teraction between the lattice-gas particles. Clusters of
particles showing (V'3 XV/3)* order as well as “clusters”
of vacant lattice sites are clearly observed. These ‘“‘de-
fects.” which are locally stable, are formed via fluctua-
tions in the local fractional coverage as discussed above.
It can be seen in Figs. 4(a)—4(c) that some of the “de-
fects” are adsorbed at the interface between different
(V/3XV'3) domains, whereas others are completely em-
bedded in a domain of one phase. For the domain size to
grow continuously, it must be possible for a particle to
move away from a (V'3XV'3)* cluster to regions where
there is a deficit in the local fractional coverage. Howev-
er, to do so a particle must traverse regions which are or-

Temperature

Fractional coverage

FIG. 5. Schematic of the phase diagram for the lattice gas
with Jyyn = —Jnn On a triangular lattice (Ref. 17). The arrows
indicate the fluctuations in the local fractional coverage about a
value of + at zero temperature, which could produce locally
stable clusters of ordered (V3 XV3)* particles or locally stable
clusters of vacant sites. The three types of diagrams that are
shown indicate local fractional coverages of 2 . 3 , and zero.
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dered (V'3XV'3). The change in energy due to a particle
moying away from a (V3XV3)* cluster into an ordered
(V3XV3) domain is positive, however, and the probabil-
ity of such a move is zero at 7'=0. Similarly, the proba-
bility of particles moving from a region which is an or-
dered (V'3 XV3) to fill a cluster of vacant sites is zero.

However, if hops of a range longer than nearest neigh-
bor are allowed, it becomes possible for a cluster of or-
dered (V'3XV'3)* particles or a cluster of vacant lattice
sites to move as a whole even though no single particle
may break away from it. Therefore, in the late stages of
the runs, the transport mechanism that enables the
domain size to increase is the diffusion of these “defects.”
As a result of this, the size of a domain will increase in
steps of more than one particle each time a cluster of or-
dered (V'3XV'3)* particles “collides” with a cluster of
vacant lattice sizes. The effect of such discontinuities can
be clearly observed, toward the end of the runs, in curve
C of Fig. 1. Hence, even allowing only finite-range hops,
domain growth is not frozen so long as hops of a range
longer than nearest neighbor are allowed. The diffusivity
of the ““defects” is larger in the case in which third-
nearest-neighbor hops are allowed than in the case in
which second-nearest-neighbor hops are allowed. Thus,
the configuration shown in Fig. 4(c) is more “aged” than
that shown in Fig. 4(b) even though both were obtained
after the same number of Monte Carlo moves in the
simulations. Consequently, the latter configuration
shows a larger number of smaller “defect” clusters which
are separated by shorter distances. It is possible that
both curve B and curve C of Fig. 1 shows [ ~¢* behavior
for long times. However, our simulations are not
sufficiently long to verify this. There is, however, no
reason to expect that x~1 since the mechanism of
growth is not diffusion of single particles but rather of
“‘defects,” the sizes of which must increase with time, and
the diffusivity of which must decrease with size. With an
infinite range of allowed hops, particles can go from the
(V/3XV'3)* clusters directly to the clusters of vacant lat-
tice sites. Since the change in energy for such a move is
not positive, the probability is not zero. Hence, with a
range of allowed hops extended to infinite distance,
domain freezing does not occur.

Since it is the second-nearest-neighbor attractive in-
teraction which is responsible for the formation of the
“defects,” it is interesting to consider the case in which
this interaction is set to a weaker attraction or to zero.
From the above considerations, we expect that, for simu-
lations in which only nearest-neighbor hops are allowed,
domain growth will be frozen as long as the second-
nearest-neighbor interaction is attractive. This is because
the clusters of vacant lattice sites and the clusters of par-
ticles in the ordered (V'3XV'3)* domains are locally
stable as long as JynN IS negative. Furthermore, with
only nearest-neighbor hops allowed, these clusters are not
mobile. The results shown in Fig. 2 support this con-
clusion. The domain size is frozen at [/ ~ 18.

With zero second-nearest-neighbor attraction, clusters
of (V3XV'3)* and clusters of vacant lattice sites are not
locally stable. Consider the configuration shown in Fig.
4(d), which is obtained from simulations in which the
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lattice-gas particles have zero second-nearest-neighbor in-
teraction. In contrast to Figs. 4(a)-4(c), we do not ob-
serve clusters of ordered (V'3 XV/3)* particles or clusters
of vacant lattice sites. Thus there are no ‘““defects,” as in
the case of Jynn <0, to pin the domain walls or to trap
excess or deficit local fractional coverage. Hence,
domain freezing is released by decreasing the second-
nearest-neighbor interaction to zero. It can be seen that
the boundaries between domains consist of walls with ei-
ther excess or deficit fractional local coverage, and it is
interesting to note that the growth exponent is x ~ 1 for
the case in which only nearest-neighbor hops are allowed
(cf. curve A4 of Fig. 3). This value for the growth ex-
ponent was conjectured by by Sadiq and Binder® on the
basis of their simulations which indicated that when
there are domain walls with excess or deficit local frac-
tional coverage, the redistribution of the excess and
deficit density over a length scale of / results in x ~1.
Our results support this conjecture. It has been suggest-
ed that the true density-conserved growth exponent for
(2X1) domains on a square lattice is x~%, and the
values obtained by Sadiq and Binder’ resulted from a
“crossover” between x =0 and x ~%.6 For the lattice gas
that we studied, there is no freezing of domain growth at
zero temperature without second-nearest-neighbor at-
traction. Thus the simulation result of x ~J can be a
true growth exponent and does not have to arise from a
crossover effect between x =0 and 1.

For simulations in which Jyyy =0, increasing the
range of allowed hops from nearest neighbor to third
nearest neighbor increases the measured growth exponent
from ~0.33 to ~0.41, (cf. Fig. 3). This is similar to the
increase in the growth exponent from x =0 to x ~0.5
that was observed for the ordering of (2X 1) domains on
a square lattice when the range of allowed hops is in-
creased from nearest neighbor to second nearest neigh-
bor.® The latter result led to the conclusion that the
growth exponent for density-conserved growth is 1, re-
gardless of the degeneracy of the ground state. It was
also suggested that earlier work® obtained x ~1 because
of the influence of “crossover” from x =0 at zero temper-
ature when only nearest-neighbor hops are allowed, and
that the simulations had not reached the asymptotic re-
gime where x =1, this regime being reached faster when
hops of longer range are allowed.® However, even for the
case in which only nearest-neighbor hops are allowed, we
have found that domain growth for the Hamiltonian with
Jnnn =0 is not frozen at zero temperature. Thus, there
is no possibility of a “crossover” from x =0 to 1 as the
range of hops is increased. Hence, if the density-
conserved growth exponent is x ==, even for p > 2, then
this is the value that would be observed even for the case
in which only nearest-neighbor hops are allowed. How-
ever, we actually observed x ~0.33._ _

Our results for the growth of (V'3 XV'3) domains on a
triangular lattice and those obtained earlier®® for the
growth of (2X 1) domains on a square lattice may be
better interpreted as follows. If there is a need for redis-
tribution of either excess or deficit local density then, as
suggested by Sadiq and Binder,? the growth exponent is
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x ~ 1, allowing only nearest-neighbor hops. If the Hamil-
tonian is such that freezing occurs at zero temperature,
then the growth exponent at temperatures close to zero is
affected by ““crossover” from x =0.° Increasing the range
of allowed hops changes the mechanism of transport
from diffusion to evaporation-condensation. This is be-
cause the limit in which hops of all possible lengths up to
infinity are allowed in Kawasaki dynamics is equivalent
to Glauber dynamics.'3

For the simulations that we performed, the largest lat-
tice size was 201 X201, and there is certainly some doubt
as to whether the values of x obtained are the asymptotic
growth exponents. It is, however, suggestive that the
growth exponent obtained from simulations allowing
only nearest-neighbor hops is in excellent agreement with
the Lifshitz-Slyozov result of x =1 for diffusion driven
coarsening during the late stages of phase separation in
solid solutions.'®!® Furthermore, it is not clear how a
change in the length scale of the hops from nearest neigh-
bor to second nearest neighbor can produce a “cross-
over” from x ~1 to x =1. Therefore, we conclude that
the growth exponent for density-conserved growth is not
4, but changes continuously from x ~1 to x =1 as the
length of allowed hops increases from nearest neighbor to
infinity.

It is clear that the case in which Jyyy =0 falls into
class-I (Ref. 2) systems, whereas the case in which
Junn = —Jnn exhibits class-II behavior. Without next-
nearest-neighbor attraction the time scale of the lattice
gas is not strongly dependent on the temperature through
an energy barrier. On the other hand, with next-nearest-
neighbor attraction, the time scale is dependent on the
temperature through an energy barrier which is not a
function of the domain size. Consider the configuration
space of the system. The local stability of clusters of va-
cant sites and clusters of ordered (V'3 XV'3)* particles
imply that there are points in configuration space which
have energies lower than all other points that it can ac-
cess if only nearest-neighbor hops are allowed. Thus, in
order for the system to “‘escape” from such traps an ener-
gy barrier, independent of the domain size, has to be
overcome. Therefore, the time scale for such a lattice gas
would be strongly dependent on the temperature, and
freezing occurs when the temperature is zero. Therefore,
the triangular lattice gas with Jyy = —Jnnn 1S a class-11
system? when only nearest-neighbor hops are allowed.
When hops of longer range are allowed, from any point
in configuration space there are always accessible points
with lower or equal energies. Hence, freezing does not
occur, and the lattice gas is a class-I system. Therefore,
the range of hops that is allowed for a lattice-gas particle
can subtly influence the dynamical connectivity of points
in configuration space, and is an important parameter to
consider in classifying growth kinetics.

IV. CONCLUSIONS

We have found that for a triangular lattice gas with a
fractional surface coverage of one-third and with
nearest-neighbor repulsions, the nature of domain growth
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of (V3XV'3) superstructures is sensitively dependent
upon whether the second-nearest-neighbor interaction is
zero or attractive. When the second-nearest-neighbor in-
teraction is attractive, fluctuations in the local fractional
coverage lead, upon quenching to zero temperature, to
the formation of locally stable clusters with a (V'3 XV/3)*
superstructure (two particles per unit cell) and clusters of
vacant lattice sites. In simulations allowing only
nearest-neighbor hops, single lattice-gas particles cannot
break away from the ordered (V'3XV'3)* clusters, and
single vacant sites cannot break away from the clusters of
vacant lattice sites because both these clusters are locally
stable. As a result, domain growth freezes. However,
when hops of a range longer than nearest neighbor are al-
lowed, the freezing is released. In this case it is also true
that single particles cannot break away from the ordered
(V3XV3)* clusters and single vacant sites cannot break
away from the clusters of vacant sites. However, both the
ordered (V3XV'3)* clusters and the clusters of vacant
lattice sites are mobile. This is because single particles at
the boundary of an ordered (V'3 XV/3)* cluster can move
along the boundary, by hopping from their original sites
to second-nearest-neighbor sites, and still remain part of
the cluster. Such hops, which do not result in a change
in the total energy and hence have a probability of 1, are
forbidden when only nearest-neighbor hops are allowed.
Similarly, single vacant sites can hop along the boundary
of the clusters of vacant lattice sites. Toward the end of
the simulation runs that we performed, the “coalescence”
of these “defect” clusters to form ordered (V'3XV'3) su-
perstructures contributes significantly to domain growth.
In the classification of growth kinetics, it is thus impor-
tant to consider the range of hops that are allowed for
lattice-gas particles (or the range of spin exchange for Is-
ing system). In the systems we have studied here, a
change of hop range from nearest neighbor to merely
next nearest neighbor can change the domain growth be-
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havior from class I to class II in the scheme proposed in
Ref. 2.
Without an attractive second-nearest-neighbor interac-
tion, domain growth is not frozen even at zero tempera-
1

ture. We find a growth exponent of x ~ when only

nearest-neighbor hops are allowed, in agreement with the
conjecture by Sadiq and Binder.” It has been argued that
the value of x ~ 1 for the growth of (2X 1) domains on a
square lattice results from a crossover effect between
x =0 at zero temperature and x =1 at finite tempera-
ture.’ Our results indicate that even without the freezing
of domain growth at zero temperature, it is possible to
have a growth exponent of x ~ 1. In agreement with re-
sults for the growth of (2X1) domains on a square lat-
tice,® we find that the observed growth exponent depends
on the range of allowed hops. However, we interpret this
as a continuous dependence of the growth exponent on
the hopping range rather than a crossover effect. This is
more consistent because we do not observe domain freez-
ing even in the case in which we allow only nearest-
neighbor hops. We also note that in the case in which
density is conserved (Kawasaki dynamics), allowing the
range of hops to be infinitely long causes the system
effectively to evolve according to Glauber dynamics,
since simulations are always done on finite lattices.
Therefore, x =1 when the range of allowed hops is
infinitely long, even though density is conserved. We
conclude that by increasing the range of allowed hops
from nearest neighbor to infinity, the growth exponent
changes from x ~ 1 to x = 1.
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