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1. Introduction

For a long time, compactification of heterotic string theory on Calabi-Yau manifolds

was the primary candidate for constructing realistic models in four dimensions with N = 1

supersymmetry. This was also a strong motivation to study Type II superstrings on Calabi-

Yau three-folds which share many common properties with the corresponding heterotic

compactifications. At the same time substantial progress has been made in understand-

ing the mathematical aspects of Calabi-Yau three-folds, such as quantum cohomology and

mirror symmetry [1]. It was not until the discovery of F-theory [2] that it was realized that

N = 1 four-dimensional heterotic string vacua can be equivalently described as F-theory

compactifications on elliptically fibered Calabi-Yau four-folds. Since then, the study of

Calabi-Yau four-fold compactifications has become of particular importance for physical

applications. Compactification of F-theory on an elliptically fibered Calabi-Yau four-fold is

closely related to the corresponding compactifications of Type IIA and M-theory. Namely,

when the area of the elliptic fiber shrinks to zero, M-theory compactification on a Calabi-

Yau four-fold is well described by F-theory compactification on the same Calabi-Yau mani-

fold. On the other hand, Type IIA string theory is related to M-theory via compactification

on an extra circle (of small radius).

One of the most striking outcomes in the study of compactifications on Calabi-Yau

three-folds is the great success in understanding non-perturbative phenomena in N = 2

field theories in four dimensions, see e.g. [3] for introduction and references. On the other

hand, understanding of Calabi-Yau four-fold compactifications still is quite far from that

stage, so we shall not discuss non-perturbative phenomena in this paper. Instead, we

consider classical supergravity theories interacting with two-dimensional non-linear sigma-

models that can be constructed from Calabi-Yau four-folds. Surprisingly, it turns out that

manifestly supersymmetric formulations of such theories has not been given previously.

On general grounds, a compactification of Type IIA (IIB) string theory on a Calabi-

Yau four-fold leads to a N = (2, 2) (resp. N = (0, 4)) effective field theory in two dimen-

sions. In the low-energy limit the theory is described by supergravity coupled to matter.

For example, from the Kaluza-Klein reduction of Type IIA string theory on a Calabi-

Yau four-fold in section 3 we find that a suitable low-energy theory is N = (2, 2) dilaton

supergravity interacting with some number of chiral and twisted chiral multiplets. It is

invariant under the “mirror transformation” which, acting on the matter fields, exchanges

chiral multiplets and twisted chiral multiplets. We thus generalize the proposal of [4] where
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it was suggested that the “kinematic structure” of the mirror transformation has its origin

in a mapping between chiral and twisted chiral multiplets when these superfields are re-

garded as the fundamental degrees of N = (2, 2) superstring theories. The generalization

posits that this mapping also applies to the effective action. Another characteristic feature

of this supergravity theory is that the supergravity multiplet contains a real dilaton field.

In a special case, when all matter multiplets are chiral and massless, a component action

of this N = 2 dilaton supergravity was constructed in [5]. However, to describe Type IIA

compactifications on Calabi-Yau four-folds we need a generalization of this theory that

includes interaction with twisted chiral multiplets and the possibility to turn on the su-

perpotential and as well the twisted superpotential. Thus, in sections 4 and 5 we present

superspace construction of general N = (2, 2) dilaton supergravity coupled to matter. The

construction in section 4 is based on the Goldstone mechanism in the superspace formu-

lation of non-minimal gauged N = (2, 2) supergravity. Coupling of the new N = (2, 2)

dilaton supergravity to matter multiplets is the subject of section 5, where we discuss local

integration in superspace. In section 6 we perform the Kaluza-Klein reduction of Type

IIB string theory on a Calabi-Yau four-fold and describe the component action of the re-

sulting N = (0, 4) dilaton supergravity. Most of this section, as well as section 3, is not

new and presented for the sake of completeness. The superspace formulation of the new

N = (0, 4) dilaton supergravity is presented in section 7. In the appendix A we present

a straightforward but technical world-sheet calculation of string amplitudes corresponding

to the target space metric of the effective two-dimensional theory, and in the appendix B

we list extra derivative constraints arising from de-gauging N = (2, 2) non-minimal super-

gravity. Appendix C contains components of the covariant derivative in N = (2, 2) dilaton

supergravity needed in section 5. Finally, in appendix D we repeat the derivation [6] of

the chiral density projection formula in N = (2, 2) dilaton supergravity. We begin in the

next section with a summary of notations and definitions used throughout the paper.

2. Calabi-Yau Four-folds: Some Conventions and Definitions

We study compactification of Type II string theory on M(2) × X where M(2) is a

maximally symmetric homogeneous two-dimensional space-time and X is a Calabi-Yau

four-fold. We use the following notations for the space-time indices. Capital letters M ,

N , . . . run from 0 to 9 and denote ten-dimensional Lorentz indices. Latin letters m, n,

. . . and a, b, . . . represent, respectively, real and holomorphic indices tangent to X . Greek
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letters α, β, . . . and µ, ν, . . . are used for the two-dimensional spinor indices “+” and “−”,

and light-cone indices “ ” and “ ”, correspondingly. Sometimes we also use capital latin

letters A, B, . . . to denote both spinor and vector indices.

A Calabi-Yau space X is a compact Kähler manifold with complex dimension four

and SU(4) holonomy group. It follows that X is a Ricci-flat manifold and, therefore, it can

be used as a background for Type II string compactification. As a topological space, X

is classified by the Hodge numbers hp,q which count the number of harmonic (p, q)-forms

ω
(p,q)
i ∈ Hp,q(X), i = 1, . . . hp,q. The non-vanishing cohomology groups have the following

dimensions [7]:

h1,1 = h3,3, h3,1 = h1,3,

h2,1 = h1,2 = h3,2 = h2,3,

h0,0 = h4,4 = h4,0 = h0,4 = 1,

h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1). (2.1)

For the Euler number of X we have:

χ

6
= 8 + h1,1 + h3,1 − h2,1 (2.2)

We denote by Ω a covariantly constant (4, 0)-form. The (1, 1)- and (3, 1)-forms are

related to the deformation parameters of the Kähler form and the complex structure of

X , respectively. Namely, an arbitrary variation of the metric of the Calabi-Yau four-fold

X that respects SU(4) holonomy looks like:

δgabdz
adzb + δgabdz

adzb + c.c.

where

δgab =
h3,1∑

j=1

φjwjab, iδgab =
h1,1∑

i=1

siωi
ab
. (2.3)

By the appropriate contraction with Ω, from the forms wjab we can construct elements in

H1,3(X):

ω
(1,3)
j = Ωabcdg

ddwjdfdz
adzbdzcdzf

In what follows we will use some integrals over the Calabi-Yau space X [8,9]:

V =

∫

X

d8z
√
g =

1

4!

∫

X

K ∧K ∧K ∧K

3



Gφiφj

=
1

4V

∫

X

d8z
√
g wi abw

ab
j

(2.4)

Gσkσl
=

1

2V

∫

X

d8z
√
g ωk

ab
ωl ab (2.5)

Yimn =

∫

X

ω
(1,1)
i ∧ ω(2,1)

m ∧ ω(1,2)
n (2.6)

dijkl =

∫

X

ω
(1,1)
i ∧ ω(1,1)

j ∧ ω(1,1)
k ∧ ω(1,1)

l (2.7)

The notations (2.4) and (2.5) will become clear in the next section where we identify

expectation values of the fields si and φj with the Kähler and complex structure moduli,

respectively. In particular, we write:

K = igabdz
a ∧ dzb =

h1,1∑

i=1

〈si〉 ω(1,1)
i (2.8)

for the Kähler form on X . The moduli space of a Calabi-Yau space is locally a product of

the moduli space of complex deformations, Mc(X), and the (complexified) moduli space

of Kähler structure, MK(X). Notice, the metric Gφiφj

defined above is the Weil-Petersson

metric on the moduli space of complex structure of X , with the Kähler potential, cf. [8]:

K(φi, φi) = − ln
(∫

X

Ω ∧ Ω
)
. (2.9)

3. Compactification of Type IIA String Theory on Calabi-Yau Four-folds

In this section we describe the effective two-dimensional theory constructed from com-

pactification of Type IIA string theory on a Calabi-Yau four-fold X . When the volume

of X is large compared to the string scale, Type IIA supergravity is a good low-energy

approximation to Type IIA string theory. Therefore, in the ‘large volume limit’ we may

describe the low-energy effective theory studying compactification of Type IIA supergrav-

ity on the Calabi-Yau space X . With this motivation, let us start this section recalling

some facts about Type IIA supergravity itself.

The bosonic field content of Type IIA supergravity contains the metric gMN , the

dilaton ϕ, a vector field AM , and tensor fields BMN and CMNP . The bosonic part of the

Lagrangian (in string frame) looks like:

L(10) =
√−g

[
1
2e

−2ϕ(R(10) + 4
(
∇ϕ)2 − 1

12
H2

)
− 1

4
F 2 − 1

48
G′2

]
+ . . . (3.1)
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where we introduced the gauge-invariant field strengths:

F = dA, H = dB,

G = dC, G′ = G+ A ∧H.

With this choice of normalization the fields A, B, and C transform in a natural, dilaton-

independent way under gauge transformations.

The dots in the Lagrangian (3.1) stand for higher order terms among which we find

the Chern-Simons term B ∧G ∧G and the anomaly term B ∧ I8, where the eight-form I8

is proportional to the Euler density of X . After integration over a compact eight-manifold

X these topological terms produce a global anomaly [10,11]:

N =
χ

24
− 1

2(2π)2

∫

X

G ∧G (3.2)

To cancel the tadpole for the B-field one has to introduce N fundamental strings filling

two-dimensional non-compact space.

The action of Type IIA supergravity is invariant under 16 left and 16 right super-

symmetry transformations, such that the left supersymmetries are chiral while the right

supersymmetries are anti-chiral with respect to the ten-dimensional chirality operator Γ11.

Since X admits a nowhere vanishing complex spinor of definite chirality, compactification

of Type IIA string theory on X is described by N = (2, 2) supergravity theory coupled

to matter. With the appropriate choice of orientation, the fundamental strings filling

two-dimensional space-time do not break supersymmetry further.

To find the spectrum of the effective low-energy theory we perform Kaluza-Klein

reduction of Type IIA supergravity to two dimensions. Below we describe the decompo-

sition of Type IIA bosonic fields in harmonics of X . By supersymmetry, incorporation of

fermionic zero-modes completes the resulting spectrum into appropriate N = (2, 2) super-

multiplets. Via dimensional reduction Type IIA dilaton ϕ becomes a real scalar field in

the two-dimensional theory. The ten-dimensional metric gMN decomposes into the two-

dimensional metric gµν , h
3,1 complex scalars φi and h1,1 real scalars sj defined in (2.3).

The antisymmetric tensor fields BMN and CMNP can be expanded into harmonic modes

as follows:

B =
h1,1∑

i=1

riω
(1,1)
i , (3.3)
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C =

h1,1∑

j=1

Ajµω
(1,1)
j +

h2,1∑

k=1

zkω
(2,1)
k + c.c. (3.4)

It is convenient to combine real fields si and ri into complex scalars σi. Taking into account

the vector field Aµ from the Ramond-Ramond sector of Type IIA theory, we end up with

the following list of N = (2, 2) supermultiplets:

a gravitational multiplet : gµν , Aµ, ϕ

h3,1 chiral multiplets : φi, φi

h1,1 twisted chiral multiplets : σj , σj , Ajµ

h2,1 (twisted) chiral multiplets : zk, zk

Vector fields Aµ and Aiµ do not have propagating degrees of freedom in two dimensions and

play the role of auxiliary fields in the supergravity multiplet and twisted chiral multiplets,

respectively.

The complex scalar fields zk which come from (2, 1)-modes take value in a torus. When

background fluxes satisfy G∧ω(2,1)
k = 0 and H ∧∗ ω

(2,1)
k = 0 there is no superpotential for

the corresponding harmonics zk, so these fields are massless. A T -duality transformation on

the torus then converts them from ordinary chiral superfields to twisted chiral superfields.

It is natural to choose zk to be scalar components of chiral superfields. Indeed, if we start

in eleven dimensions, the reduction of the C-field (3.4) yields h2,1 complex scalar modes in

three dimensions. These modes are scalar components of chiral superfields since there is no

notion of “twisted chiral superfields” in three dimensions. After a further compactification

on a circle they naturally remain as chiral superfields in two dimensions, but now a T -

duality becomes possible and zk can be alternatively described if one prefers as twisted

chiral superfields.

To find the effective action for the light fields we have to substitute (2.3), (3.3) and

(3.4) in the Lagrangian (3.1) and integrate over the internal space X . Using the formulas

(2.4), (2.5) and (2.6) we obtain the following effective action for the bosonic modes, cf.

[9,5]:

L(2) = e−2ϕV
[
R(2) + 4(∇ϕ)2 − Gφiφj

(∂µφ
i)(∂µφ

j
)− (3.5)

−1

2
Gσiσj

(∂µσ
i)(∂µσ

j)
]
− 1

4
Yimnσ

i(Dµz
m)(Dµzn) + . . .
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where the covariant derivative Dµ acting on zm contains a connection corresponding to

the holomorphic dependence of the basis of (2, 1)-forms on the complex structure [9].

To summarize, we find that in the large volume limit compactification of Type IIA

string theory on a Calabi-Yau four-fold X leads to N = (2, 2) dilaton supergravity coupled

to a non-linear sigma-model. The target space of this sigma-model is parametrized by some

number of chiral and twisted chiral multiplets. This agrees with the result of [12], where

it was found that the most general N = (2, 2) non-linear sigma-model is based on a target

space with two non-commuting complex structures J±, so that the space ker(J+ − J−) is

parametrized by chiral superfields, while ker(J+ + J−) is parametrized by twisted chiral

superfields.

This kind of dilaton supergravity coupled to N = (2, 2) chiral matter was studied

some time ago [5]. However, for our purposes we need to generalize the component con-

struction of [5] to include twisted chiral multiplets. Furthermore, background fluxes of

Ramond-Ramond field strengths induce effective superpotential [13,14] and/or twisted chi-

ral superpotential [13,14,15] in the two-dimensional theory. Hence, we have to incorporate

these terms in the construction as well. The most elegant and convenient way to do this

is in N = (2, 2) superspace where the supersymmetry becomes manifest [16,17]. In ad-

dition to the usual space-time coordinates xµ, N = (2, 2) superspace is parametrized by

anti-commuting coordinates θα = (θ+, θ−) and their complex conjugates θ
α̇

= (θ
+̇
, θ

−̇
).

Then, we expect that the action of the matter fields (3.5) can be written in a compact

form, similar to the action of matter coupled N = 1 supergravity in four dimensions:

S =

∫
d2x

∫
d2θd2θE−1 exp(−K). (3.6)

We postpone the discussion of the superspace measure E till the next sections where

superspace formulation will be discussed in detail. Now we simply assume that the suitable

measure exists. The main advantage of the superspace formulation is that due to the

extended supersymmetry, all the term in the action (3.5) with up to two derivatives or

four fermions are determined by a single real function K(φi, φi, σj, σj , zk, zk, ϕ), the Kähler

potential [18]. It is invariant under the generalized Kähler transformation:

K −→ K + Λ1(φi, σj, zk) + Λ1(φi, σj , zk) + Λ2(φi, σj , zk) + Λ2(φi, σj, zk) (3.7)

The target space metric is given by the second derivative of the Kähler potential.
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For the sake of simplicity, let us assume for a moment that h2,1 = 0. Then the metric

is block diagonal:

Gφiσj
=

∂2K

∂φi∂σj
= 0 (3.8)

From the condition (3.8) it follows that locally we can write the Kähler potential that gives

the effective action (3.5) as:

K = Kc(φi, φi) +KK(σj, σj) (3.9)

where Kc is the Kähler potential (2.9) on the moduli space of the complex structure:

Kc(φi, φi) = − ln
(∫

X

Ω ∧ Ω
)
.

Similar to the case of Calabi-Yau three-folds [8], one can verify that the metric Gσiσj
can

be obtained from the Kähler potential:

KK(σj , σj) = − ln
(∫

X

K ∧ K ∧ K ∧ K
)
. (3.10)

Indeed, if ω(2) is a harmonic 2-form on a Calabi-Yau four-fold X , its Hodge dual is given

by the following neat formula:

∗ω(2) = −1

2
ω(2) ∧ K ∧ K +

2

3

( ∫
X
ω(2) ∧ K ∧K ∧ K

)

( ∫
X
K ∧ K ∧ K ∧ K

) K ∧K ∧K (3.11)

Therefore, we can write (2.5) in the following form:

Gσkσl
= − 1

2V

∫

X

ω
(1,1)
k ∧∗ ω

(1,1)
l =

=
1

4V

∫

X

ω
(1,1)
k ∧ ω(1,1)

l ∧ K ∧K − 1

72V2

(∫

X

ω
(1,1)
k ∧ K ∧K ∧K

)(∫

X

ω
(1,1)
l ∧ K ∧ K ∧ K

)

Using the explicit expression (2.8) for the Kähler form K, it is easy to see that the above

metric indeed follows from the Kähler potential (3.10):

Gσkσl
= −1

2

∂2KK(σj , σj)

∂σk∂σl

Hence, to the leading order the metric on the target space is Kähler, torsionless, and equal

to the metric on the moduli space of the Calabi-Yau space X , Mc(X) ×MK(X).
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The classical action (3.5) is invariant under two U(1) R-symmetries. We will denote

their linear combinations as U(1)A and U(1)V . The action of these symmetries on the

supercharges can be represented as:

Q− Q+̇ (3.12)

Q+ Q−̇

where the upper (lower) row is assigned a U(1)A charge +1 (−1) while the right (left)

column is assigned a U(1)V charge +1 (−1). These R-symmetries are not symmetries of

the string theory – there is no way to assign R-transformations to massive string modes

to preserve them. Even though we will not explicitly include massive string modes in

the present paper, we will include a superpotential and twisted chiral superpotential that

violate the R-symmetries. Even in the absence of the superpotentials, higher derivative

interactions among the massless fields obtained by integrating out massive string states

would be expected to violate the R-symmetry.

The explicit expression for the chiral superpotentials generated by the most general

Ramond-Ramond flux F =
∑

(RR fields) in terms of the Calabi-Yau moduli was derived

in [14]:

W (φi) =
1

2π

∫

X

Ω ∧G (3.13)

and for the twisted chiral superpotential:

W̃ (σj) =
1

2π

∫

X

eK ∧ F (3.14)

The superpotentialW (φi) and the twisted superpotential W̃ (σj) are holomorphic functions

of the fields φi and σj , respectively. Taking into account the superpotential terms, the

action of the matter fields reads as:

S(2) =

∫
d2x

∫
d2θd2θE−1e−K +

∫
d2x

∫
d2θE−1W (φi)+ (3.15)

+

∫
d2x

∫
dθ+dθ−̇Ẽ−1W̃ (σj) + c.c.
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Generic values of Ramond-Ramond fluxes completely break the N = (2, 2) supersym-

metry3. In the two-dimensional theory this effect corresponds to generation of a superpo-

tential that lifts (part of) supersymmetric vacua. However, if the vacuum values of the

fields φi and σj satisfy:

DW

Dφi
= 0 and

DW̃

Dσi
= 0, (3.16)

then Type IIA compactification on the corresponding Calabi-Yau manifold is supersym-

metric [13,14]. From the formulas (2.2), (3.2) and the quantization condition of the G-flux

[11] it follows that there is a finite number of choices for [G] ∈ H4(X) corresponding to

supersymmetric vacua. In particular, if h2,1 > 8+h1,1 +h3,1, then there are no such vacua

at all.

From the superspace construction in section 5 it follows that in the equations (3.16)

we should use the appropriate covariant derivatives:

DW

Dφi
=
∂W

∂φi
+
∂Kc(φi, φi)

∂φi
W,

DW̃

Dσi
=
∂W̃

∂σi
+
∂KK(σj, σj)

∂σi
W̃ (3.17)

where Kc and KK are given by the tree-level formulas (2.9) and (3.10), respectively. A

simple way to see that one has to use the covariant derivatives instead of ordinary ones

is to consider first compactification of F-theory on the same Calabi-Yau space4 X . In the

component action of the effective N = 1 four-dimensional theory there is a scalar potential:

eK
(
Gφiφj (Dφi

W )(Dφ
j

W ) − 3|W |2
)

(3.18)

where the covariant derivative Dφi
W = DW

Dφi
is defined in (3.17). After a further compact-

ification on a torus T 2, this theory is dual to compactification of Type IIA string theory

3 Investigating the supersymmetry conditions as in [13,14,19], one can also show that any H-

field flux breaks all the supersymmetry. A simple way to see this is to assume, on the contrary, that

there exists a supersymmetric vacuum corresponding to a non-zero H-flux and consider a BPS

soliton connecting such a vacuum to the vacuum with zero H-flux. In Type IIA string theory this

soliton would correspond to an NS5-brane wrapped over a Poincaré dual supersymmetric 5-cycle.

However, there is a contradiction since Calabi-Yau 4-folds do not have supersymmetric 5-cycles,

see e.g. [14]. Therefore, a non-zero H-flux lifts all the supersymmetric vacua. It is natural to

interpret this in terms of the effective superpotential W ∼
∫

C ∧
∗ H for the scalar fields zk.

4 Of course, here we assume that X is elliptically fibered. The result, however, is independent

of this assumption.
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on X . It is clear that after the dimensional reduction of the four-dimensional compo-

nent action the covariant derivatives (3.17) also appear in the component action of the

two-dimensional theory in question.

These models can have a variety of T -duality symmetries. Of particular interest are

mirror symmetries [20,21]. A mirror symmetry is, of course, a symmetry that maps Type

IIA string theory on a four-fold X to Type IIA string theory on the mirror variety X̃, such

that:

hp,q(X) = h4−p,q(X̃) (3.19)

and the conformal field theories associated with X and X̃ are equivalent. This operation

corresponds [4] to a transformation which exchanges chiral multiplets and twisted chiral

multiplets. It can be interpreted [22] in terms of the supergeometrical coordinate transfor-

mation θ− ↔ θ−̇ that also exchanges chiral multiplets and twisted chiral multiplets and

changes the superspace measure in a way consistent with other definitions of mirror sym-

metry. In particular, the latter implies that under the mirror symmetry we have σi ↔ φj

which is consistent with our interpretation of (vevs of) these fields as the Kähler and the

complex structure moduli of the Calabi-Yau space X . Therefore, the mirror symmetry

relates different quantum N = (2, 2) theories also interchanging:

U(1)A ↔ U(1)V

φi ↔ σj (3.20)

W (φi) ↔ W̃ (σj)

The mirror map has no effect on the N = (2, 2) dilaton supergravity itself, so that in the

absence of matter fields it must be mirror-symmetric. It may seem that twisted chiral

fields zk violate the invariance under (3.20). Recall that via a spacetime T-duality trans-

formation, those fields can be described by either chiral or twisted chiral superfields. Hence

mirror symmetry just exchanges these two descriptions.

By definition, the low-energy effective action (3.15) describes dynamics of the light

modes in Type IIA string theory on X in the large volume limit. In other words, tree-level

amplitudes in Type IIA string theory must agree with the corresponding amplitudes in

the effective two-dimensional theory. In the appendix A we illustrate this by a world-sheet

calculation which independently proves that the target space metric is block-diagonal, cf.

(3.8).
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A superspace formulation of N = (2, 2) dilaton supergravity that includes chiral and

twisted chiral multiplets on equal footing does not seem to exist in the literature. Although

a superspace model of N = (2, 2) supergravity where the dilaton is a complex field was

constructed in [23], we are interested in a theory where the supergravity multiplet contains

a real dilaton field. A superspace formulation of such a supergravity theory is presented

in the next section.

4. Superspace Formulation of N = (2, 2) Dilaton Supergravity

In this section we present a superspace construction of N = (2, 2) dilaton supergrav-

ity without gauged symmetry. This last property is a distinguishing feature of the new

formulation since all the known N = (2, 2) gravity theories have at least one gauged U(1)

R-symmetry (see [22] for a general presentation). Theories where the entire U(1)A⊗U(1)V

symmetry group is gauged are called non-minimal (or reducible), as opposed to minimal

theories where only U(1)A or U(1)V factor is gauged. It is very well known how to obtain

one supergravity theory with a smaller holonomy group from a supergravity theory with

a larger holonomy group. This process has been for a long time called “de-gauging” (see

[16], section 5.3.b.7).

The basic idea of de-gauging is to break the gauge symmetry introducing extra matter

field in a Goldstone-like mechanism. For example, consider an abelian vector multiplet in a

four-dimensional N = 1 gauge theory. It contains a U(1) gauge vector field, gaugino and an

auxiliary field. All the other fields can be set to zero by a supersymmetric choice of gauge,

the so-called Wess-Zumino gauge. On the other hand, a massive gauge multiplet contains

some extra component fields which could be eliminated in the massless multiplet. The

reason is that the massive system no longer possess the U(1) gauge invariance. This toy

model teaches us that when a symmetry is broken in superspace, extra component fields

not present in the gauge symmetric phase begin to appear. In other words, Goldstone

supermultiplets must appear. And their component fields come from that part of the

vector multiplet that was ignored in the symmetric phase. Following these steps, we

construct N = (2, 2) dilaton supergravity via de-gauging U(1)A ⊗ U(1)V non-minimal

gauged supergravity. An advantage of this approach is that both the original and the

resulting theories are manifestly invariant under the mirror symmetry (3.20). We also

find that the new N = (2, 2) supergravity multiplet contains a real dilaton field ϕ, in

accordance with the results of section 3 where we studied compactification of Type IIA
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string theory on Calabi-Yau four-folds. We hope that apart from this obvious application

there may also be many other aspects of the new supergravity to explore. For example, it

would be interesting to study black hole solutions in this dilaton supergravity, cf. [24].

The relation between different supergravity theories can be schematically represented

in the form of the following diagram:

U(1)A ⊗ U(1)V
ւ ց

U(1)A ↓ U(1)V
ց ւ

1

(4.1)

where the theory with the trivial holonomy group is the new N = (2, 2) dilaton supergravity

we are going to construct. Notice, however, that various arrows in this diagram have differ-

ent meaning. For example, minimal theories with either of the U(1) R-symmeties gauged

can be obtained by truncation of the non-minimal U(1)A ⊗ U(1)V gauged supergravity

[22]. On the other hand, the vertical arrow corresponds to de-gauging U(1)A ⊗ U(1)V

symmetry, so that the total number of degrees of freedom increases. More precisely, it has

to be a combination of consistent truncation of the non-minimal N = (2, 2) supergravity to

a minimal one plus a de-gauging of the latter. To see this, let us count the number of real

Goldstone scalars. Since the broken U(1)A ⊗ U(1)V phase of the theory has exactly the

same field content as the gauge symmetric phase plus the field content of the Goldstone

multiplets minus the parts that go into the longitudinal components of the U(1)A⊗U(1)V

gauge fields, we find that in total Goldstone multiplets should have three real scalars.

However, there are no mirror-symmetric N = (2, 2) multiplets with such a field content.

Therefore, we conclude that the vertical arrow should be a more economical de-gauging.

Indeed, if we were following another route via a minimal gauged supergravity, at the first

step we would have to make a consistent truncation that would eliminate one of the gauge

fields. In order to de-gauge the resulting minimal gauged supergravity we would have to

introduce extra chiral (or twisted chiral) Goldstone superfield. In any case, one real scalar

from this multiplet would become the longitudinal component of the gauge vector field,

and the other would become a dilaton, in agreement with what we expect. Assuming that

the latter route (which is not, unfortunately, mirror-symmetric) is equivalent to the verti-

cal arrow on the above diagram, we expect that there is an economical de-gauging of the

non-minimal N = (2, 2) supergravity that leads to only one massless scalar (the dilaton).
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To start the construction, let us arrange component fields found in the previous section

into superfields. First we give the definitions in flat superspace and then extend them to

curved superspace. Left-right symmetric N = 2 superspace is parametrized by the bosonic

coordinates xµ = (x , x ), two anti-commuting complex spinor coordinates θα = (θ+, θ−)

and their complex conjugates θ
α̇

= (θ
+̇
, θ

−̇
). The spinor derivatives D+, D−, D+̇ and D−̇

satisfy {D+, D+̇} = ∂ and {D−, D−̇} = ∂ , with all other (anti-)commutators vanishing.

Irreducible matter superfields are defined by imposing some constraints on general

complex superfields. The simplest constraints are linear in derivatives and look like:

D+̇Φ = D−̇Φ = D+Φ = D−Φ = 0 (4.2)

for a chiral superfield Φ, and:

D+̇Σ = D−Σ = D+Σ = D−̇Σ = 0 (4.3)

for a twisted chiral superfield Σ.

In what follows we promote the complex scalar fields φi and σj defined in the previous

section to the chiral and twisted chiral superfields Φi and Σj , respectively. Similarly, we

will regard the compact fields zk as the scalar components of (twisted) chiral superfields

Zk.
Components of the chiral superfield Φi can be obtained using the projection method:

Φi| = φi, Φi| = φi

D+Φi| = ψi+, D+̇Φi| = ψi
+̇

(4.4)

D−Φi| = ψi−, D−̇Φi| = ψi
−̇

i

2
[D+, D−]Φi| = Ai,

i

2
[D+̇, D−̇]Φi| = Ai

where, for example, Φi| denotes the leading component of the superfield Φi, with all the

θ-coordinates put to zero. Similarly, we find the components of a twisted chiral multiplet

Σj :

Σj | = σj , Σj | = σj

D+Σj | = ζj+, D+̇Σj | = ζj
+̇

(4.5)

D−̇Σj | = ζj
−̇
, D−Σj | = ζj−
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i

2
[D+, D−̇]Σj| = Bj ,

i

2
[D+̇, D−]Σj | = Bj

To define chiral and twisted chiral superfields in curved N = (2, 2) superspace, the spinor

derivatives Dα must be appropriately replaced by the covariant derivatives ∇α.

In our construction of N = (2, 2) dilaton supergravity we start with non-minimal

gauged supergravity and then de-gauge U(1)A ⊗ U(1)V symmetry. If we introduce super-

fields Aα and A′
α representing U(1)V and U(1)A gauge connections, and denote by Λα the

Lorentz spin-connection, then the covariant derivative in this theory has the form:

∇α = Eα
BDB + ΛαX + AαY + A′

αY ′ (4.6)

where Eα
B is the supervielbein.

The Lorentz generators, X , U(1)V symmetry generators, Y , and U(1)A symmetry

generators, Y ′, act on the covariant derivative ∇α in the following way [22]:

[X ,∇±] = ±1
2
∇± , [X ,∇±̇] = ±1

2
∇±̇

[Y ,∇±] = − i

2
∇± , [Y ,∇±̇] = +

i

2
∇±̇ (4.7)

[Y ′,∇±] = ∓ i

2
∇± , [Y ′,∇±̇] = ± i

2
∇±̇

The constraints which define non-minimal N = 2 U(1)A ⊗ U(1)V supergravity are

given by:

{∇+,∇+} = 0, {∇−,∇−} = 0

{∇+,∇+̇} = i∇ , {∇−,∇−̇} = i∇ (4.8)

{∇+,∇−} = −1

2
R(X − iY ′

), {∇+,∇−̇} = −1

2
F (X − iY)

where the chiral superfield R and the twisted chiral superfield F are related to the two-

dimensional curvature R(2) and the abelian field strengths of the graviphoton gauge fields.

The easiest way to see this is to compute the commutator [22,25]:

[∇ ,∇ ] =
1

2

(
(∇2R) − 1

2
RR+ (∇+∇−̇F ) − 1

2
FF

)
X+ (4.9)

+
i

2
(∇+∇−̇F )Y +

i

2
(∇2R)Y ′ + . . .+ c.c.

where the dots stand for the covariant derivative terms like (∇−F )∇+̇, etc. If we set

F = 0 in the constraints (4.8), we obtain U(1)A minimal gauged supergravity theory. On
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the other hand, if we set R = 0, we end up with U(1)V minimal theory. We denote the

leading components of the superfields F and R as follows:

F | = G, R| = H (4.10)

In order to obtain N = (2, 2) supergravity theory without gauged symmetry, we

replace the covariant derivative ∇α by ∇̂α which includes only derivatives and Lorentz

generator, so that:

∇α = ∇̂α + AαY + A′
αY ′ (4.11)

and the remaining derivatives are real. The new covariant derivative ∇̂α contains neither

the U(1)V gauge connection nor the U(1)A gauge connection, so it can describe two-

dimensional N = (2, 2) supergravity without gauged symmetry.

Substituting (4.11) into (4.8), and using (4.7), we derive the form of the commutator

algebra for the ∇̂α operators:

{∇̂+, ∇̂+} = i(λ+ + λ̃+)∇̂+ , {∇̂−, ∇̂−} = i(λ− − λ̃−)∇̂−

{∇̂+, ∇̂−} = −1

2
RX +

i

2
(λ− + λ̃−)∇̂+ +

i

2
(λ+ − λ̃+)∇̂−

{∇̂+, ∇̂−̇} = −1

2
FX +

i

2
(λ−̇ + λ̃−̇)∇̂+ − i

2
(λ+ − λ̃+)∇̂−̇ (4.12)

{∇̂+, ∇̂+̇} = i∇̂ +
i

2
(λ+̇ + λ̃+̇)∇̂+ − i

2
(λ+ + λ̃+)∇̂+̇

{∇̂−, ∇̂−̇} = i∇̂ +
i

2
(λ−̇ − λ̃−̇)∇̂− − i

2
(λ− − λ̃−)∇̂−̇

where the new fields λα and λ̃α have appeared. They are components of the non-minimal

gauged supergravity multiplet that could be eliminated by a gauge transformation in the

U(1)A ⊗ U(1)V gauge-symmetric phase. In the theory we are constructing the U(1)A ⊗
U(1)V gauge symmetry is broken, so that the fields λα and λ̃α are dynamical. They have

to be identified with the spinorial derivatives of a new matter Goldstone multiplet. To the

leading order in θα, the fields λα and λ̃α can also be identified with the dilatino field of

the new supergravity multiplet.

If we introduce four linear independent spinors (along with their conjugates):

η+ ≡ λ+ + λ̃+, η− ≡ λ− − λ̃−,

η̃+ ≡ λ+ − λ̃+, η̃− ≡ λ− + λ̃−
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then the conditions (4.12) which define N = (2, 2) dilaton supergravity can be written in

the following simple form:

{∇̂+, ∇̂+} = iη+∇̂+ , {∇̂−, ∇̂−} = iη−∇̂−

{∇̂+, ∇̂−} = −1

2
RX +

i

2
η̃−∇̂+ +

i

2
η̃+∇̂−

{∇̂+, ∇̂−̇} = −1

2
FX +

i

2
η̃−̇∇̂+ − i

2
η̃+∇̂−̇

{∇̂+, ∇̂+̇} = i∇̂ +
i

2
η+̇∇̂+ − i

2
η+∇̂+̇

{∇̂−, ∇̂−̇} = i∇̂ +
i

2
η−̇∇̂− − i

2
η−∇̂−̇

Note that these equations, as well as the conditions (4.12), are manifestly invariant under

the mirror symmetry transformation (3.20).

To summarize, there exists a unique mirror-symmetric two-dimensional N = (2, 2)

dilaton supergravity defined by the set of constraints (4.12) on the covariant derivative

∇̂α. The new supergravity theory does not have gauged symmetry and contains a real

dilaton field ϕ, as we will show in a moment.

Since we define new N = (2, 2) dilaton supergravity theory imposing constraints (4.12)

on the covariant derivatives ∇̂α, the Bianchi identities in this theory may lead to further

constraints on some fields5. For theories described by covariant derivatives ∇̂α, the Bianchi

identities are simply Jacobi identities:

[∇̂[α, [∇̂β, ∇̂γ)}} = 0 (4.13)

where [ , } is the graded commutator, and [ , ) stands for the graded antisymmetrization

symbol. Instead of deriving derivative constraints on the spinor fields λα and λ̃α directly

from the Jacobi identities (4.13) we use an equivalent approach which is much easier.

While substituting (4.11) into (4.8) one also finds terms proportional to gauge symmetry

generators Y and Y ′. Vanishing of these terms leads to a set of constraints which is

equivalent to the set of constraints obtained from the Jacobi identities (4.13). We outline

the result in appendix B.

5 In ordinary field theories, the fields satisfy Bianchi identities because they are expressed in

terms of the potentials; they are identities and impose no extra constraints.
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There are two simple solutions to the Jacobi identities corresponding to either ηα or

η̃α put to zero. An advantage of the first solution is that the covariant derivative ∇̂α

anti-commutes with itself, ∇̂2
α = 0, like in the usual gauged supergravity theories [22]. On

the other hand, in the second case we find especially simple form of the anti-commutators

{∇̂+, ∇̂−} and {∇̂+, ∇̂−̇}. In both cases the remaining spinor superfields can be expressed

in terms of an unconstraint real superfield V :

V = V (4.14)

so that the Jacobi identities (4.13) are satisfied. This means that (4.13) impose no further

constraints on V , and only define the other superfields (like F and R) in terms of the

derivatives of V . It is natural to identify the dilaton field with the leading scalar component

of V :

ϕ = V | (4.15)

Below we present more evidence for this identification. One might notice that a real

superfield V contains one massless vector field, in agreement with the result of the previous

section6. It is also worthwhile to stress here that massless superfield V is not a Goldstone

multiplet itself, but rather what remains after the Goldstone mechanism takes place. A

nice property of this solution is that V is manifestly mirror-symmetric.

Since local integration measures of the new N = (2, 2) dilaton supergravity can be

nicely derived from the corresponding expressions of the U(1)A ⊗ U(1)V theory only for

the solution corresponding to η̃α = 0, in what follows we discuss in detail only this case.

Namely, we take the following ansatz for the spinors λα:

λ+ = λ̃+ = i(∇̂+V ) , λ− = −λ̃− = i(∇̂−V ) (4.16)

λ+̇ = λ̃+̇ = −i(∇̂+̇V ) , λ−̇ = −λ̃−̇ = −i(∇̂−̇V )

which implies ηα = 2i∇̂αV and η̃α = 0.

Substituting (4.16) into (4.12), we find the following supergravity algebra:

{∇̂+, ∇̂+} = −2(∇̂+V )∇̂+ , {∇̂−, ∇̂−} = −2(∇̂−V )∇̂−

6 However, massless vector fields in two dimensions do not have propagating degrees of free-

dom. For the same reason two-dimensional superfield V does not have an irreducible transverse

component, unlike a similar four-dimensional superfield.
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{∇̂+, ∇̂−} = −1

2
RX , {∇̂+, ∇̂−̇} = −1

2
FX (4.17)

{∇̂+, ∇̂+̇} = i∇̂ + (∇̂+̇V )∇̂+ + (∇̂+V )∇̂+̇

{∇̂−, ∇̂−̇} = i∇̂ + (∇̂−̇V )∇̂− + (∇̂−V )∇̂−̇

where the superfields R and F can be obtained from the Bianchi identities. Solving the

set of constraints in appendix B we get:

R = 4∇̂−∇̂+V , F = 4∇̂−̇∇̂+V (4.18)

We also find the following expressions for the gauge connection:

λ = λ̃ = i∇̂ V − 2∇̂+∇̂+̇V + 4(∇̂+V )(∇̂+̇V )

λ = −λ̃ = i∇̂ V − 2∇̂−∇̂−̇V + 4(∇̂−V )(∇̂−̇V )

Further commutators of the covariant derivatives with vector indices follow from the

consistency of the Bianchi identities (4.13):

[∇̂+, ∇̂ ] = −
(
2iλ+λ+̇ + (∇̂+̇λ+) + (∇̂+λ+̇)

)
∇̂+

[∇̂+̇, ∇̂ ] =
(
2iλ+λ+̇ + (∇̂+̇λ+) + (∇̂+λ+̇)

)
∇̂+̇

[∇̂−, ∇̂ ] = −
(
2iλ−λ−̇ + (∇̂−̇λ−) + (∇̂−λ−̇)

)
∇̂−

[∇̂−̇, ∇̂ ] =
(
2iλ−λ−̇ + (∇̂−̇λ−) + (∇̂−λ−̇)

)
∇̂−̇ (4.19)

[∇̂+, ∇̂ ] = −
( i

2
(∇̂−̇R) +

i

2
(∇̂−F ) + 1

2λ−̇R− 1
2λ−F

)
X − i

2
R∇̂−̇ − i

2
F ∇̂−

[∇̂+̇, ∇̂ ] =
( i

2
(∇̂−R) +

i

2
(∇̂−̇F ) − 1

2λ−R+ 1
2λ−̇F

)
X +

i

2
R∇̂− +

i

2
F ∇̂−̇

[∇̂−, ∇̂ ] = −
( i

2
(∇̂+̇R) +

i

2
(∇̂+F ) + 1

2λ+̇R− 1
2λ+F

)
X +

i

2
R∇̂+̇ +

i

2
F ∇̂+

[∇̂−̇, ∇̂ ] =
( i

2
(∇̂+R) +

i

2
(∇̂+̇F ) − 1

2λ+R+ 1
2λ+̇F

)
X − i

2
R∇̂+ − i

2
F ∇̂+̇

where we used (4.17). It is worthwhile to stress here that one would obtain a different result

de-gauging the corresponding commutators in the U(1)A⊗U(1)V non-minimal supergravity

[26].
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5. Lagrangians for Matter Multiplets Coupled to N = 2 Dilaton Supergravity

In order to couple matter fields to new N = (2, 2) dilaton supergravity we have to

repeat the analysis of [22]. Up to terms with two derivatives or four fermions, the most

general action of N = (2, 2) supergravity coupled to chiral superfields Φi and Zk, and

twisted chiral superfields Σj looks like (3.15):

S =

∫
d2x

∫
d2θd2θE−1L(Φi,Φi,Σj,Σj ,Zk,Zk)+ (5.1)

+

∫
d2x

∫
d2θE−1W (Φi) +

∫
d2x

∫
dθ+dθ−̇Ẽ−1W̃ (Σj) + c.c.

In order to obtain the component action corresponding to (5.1), one needs the ap-

propriate projection formulas. For gauged N = (2, 2) supergravity theories such formulas

were derived by Grisaru and Wehlau [6]. In the case of the minimal U(1)A theory the local

density projection formula has the following form:
∫
d2xd4θE−1L =

∫
d2xe−1

[
∇2 + iψ−̇∇+ − iψ+̇∇−+ (5.2)

+(−1

2
H − ψ−̇ψ+̇ + ψ−̇ψ+̇)

]
∇2L|

Here ψαµ is the gravitino field and L is an arbitrary scalar function of superfields. In fact,

the same projection formula is also valid in the non-minimal U(1)A ⊗ U(1)V supergravity

theory [22]. Although (5.2) is a D-type superinvariant, sometimes it is called a chiral

density projector because in the non-minimal N = (2, 2) supergravity ∇2L is a chiral

superfield (for a general L). Therefore, replacing ∇2L by an arbitrary covariantly chiral

Lagrangian Lc, we can obtain the component projection formula for any chiral superspace

integral: ∫
d2xd2θE−1Lc =

∫
d2xe−1

[
∇2 + iψ−̇∇+ − iψ+̇∇−+ (5.3)

+(−1

2
H − ψ−̇ψ+̇ + ψ−̇ψ+̇)

]
Lc|

In particular, the superspace measures E−1 and E−1 are related as follows:
∫
d2xd4θE−1L =

∫
d2xd2θE−1∇2L| (5.4)

By mirror symmetry the twisted chiral density projection formula in the U(1)V gauged

supergravity theory has the following form:
∫
d2xd4θE−1L =

∫
d2xe−1

[
∇−̇∇+ − iψ−∇+ + iψ+̇∇−̇+ (5.5)
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+(−1

2
G+ ψ−ψ+̇ + ψ+̇ψ−)

]
∇+̇∇−L|

As explained in [22], the derivation of this formula goes through as in [6] for the case of

U(1)A theory. In the case of the U(1)V ⊗U(1)A gauged supergravity the symmetry between

chiral and twisted chiral fields is restored by the contribution of the anticommutator term

{∇+,∇−̇} ∼ F |. More explicitly, the twisted chiral density projection formula (5.5) can

be derived using the methods of [6] or [27].

The projection formulas in the two-dimensional N = (2, 2) dilaton supergravity can

be obtained from (5.2) and (5.5) replacing ∇α by a new covariant derivative ∇̂α. Thus,

substituting (4.11) and (4.16) into (5.2) and using the commutation relations (4.7) – (4.8)

we obtain the following density projection formula:

∫
d2xd4θE−1L =

∫
d2xe−1

[
(∇̂+ − (∇̂+V ))(∇̂− − (∇̂−V )) + iψ−̇(∇̂+ − (∇̂+V ))−

−iψ+̇(∇̂− − (∇̂−V )) + (−1

2
H − ψ−̇ψ+̇ + ψ−̇ψ+̇)

]
∇̂

2

L| = (5.6)

=

∫
d2xe−1

[
∇̂+∇̂− + i(ψ−̇ − λ−)∇̂+ − i(ψ+̇ − λ+)∇̂−+

+
(
− 1

4
H − ψ−̇ψ+̇ + (ψ−̇ − λ−)(ψ+̇ − λ+)

)]
∇̂+̇∇̂−̇L|

In order to convince even hard boiled sceptics that (5.6) is the right projector, in appendix

D we repeat the calculation of Grisaru and Wehlau [6] in the new N = (2, 2) dilaton

supergravity. As expected, the result is equivalent to (5.6).

Similarly, the twisted chiral density projection formula (5.5) yields:

∫
d2xd4θE−1L =

∫
d2xe−1

[
(∇̂−̇ − (∇̂−̇V ))(∇̂+ − (∇̂+V )) − iψ−(∇̂+ − (∇̂+V ))+

+iψ+̇(∇̂−̇ − (∇̂−̇V )) + (−1

2
G+ ψ−ψ+̇ + ψ+̇ψ−)

]
∇̂+̇∇̂−L| (5.7)

We note that for a given superspace Lagrangian L, both projection formulas (5.6) and

(5.7) lead to the same result:

∫
d2xd4θE−1L =

∫
d2xe−1

[
(∇̂+ − (∇̂+V ))(∇̂− − (∇̂−V )) + iψ−̇(∇̂+ − (∇̂+V ))−

−iψ+̇(∇̂− − (∇̂−V )) + (−1

2
H − ψ−̇ψ+̇ + ψ−̇ψ+̇)

]
∇̂

2

L| =
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=

∫
d2xe−1

[
(∇̂−̇ − (∇̂−̇V ))(∇̂+ − (∇̂+V )) − iψ−(∇̂+ − (∇̂+V ))+

+iψ+̇(∇̂−̇ − (∇̂−̇V )) + (−1

2
G+ ψ−ψ+̇ + ψ+̇ψ−)

]
∇̂+̇∇̂−L|

This follows from the corresponding property of the local density projectors in gauged N =

(2, 2) supergravity theory [6], and also can be verified explicitly using the commutation

relations (4.17) in the new N = (2, 2) dilaton supergravity.

Now we are ready to derive component actions for various superspace Lagrangians L.

Let us start with a simple example corresponding to pure dilaton supergravity. Obviously,

in order to reproduce the right exponential dependence on the dilaton field in (3.5), we

have to take the function L in the form:

Lgrav = exp(−2V ).

Substituting this in the projection formula (5.6) (or (5.7)) and seting all the fermions to

zero, we obtain the following action for bosonic fields:

Sgrav =

∫
d2xe−1 exp(−2ϕ)

[
R(2) + 4(∂µϕ)(∂µϕ)

]
(5.8)

Here we used (4.16) and the formulas for the other components of the real superfield V

derived in appendix C. Clearly, the action (5.8) for dilaton and graviton fields agrees7

with the first two terms in the effective action (3.5) of Type IIA theory on a Calabi-Yau

four-fold. Moreover, we note that bosonic action (5.8) has exactly the same form as the

action of N = 0 dilaton gravity studied long time ago, see e.g. [24].

Now we consider coupling of N = (2, 2) dilaton supergravity to matter fields. In

particular, we are interested in superspace form of the effective action (3.5) describing

compactification of Type IIA string theory on a Calabi-Yau four-fold X . Once again, to

reproduce the exponential dependence on ϕ = V | we take the superspace action in the

form: ∫
d2xd4θE−1 exp(−2V )L (5.9)

where L is a function of all matter superfields but V . It is convenient to absorb exp(−2V )

in the definition of the supervielbein determinant E−1
0 = E−1 exp(−2V ), so that L = 1

7 We will account for the extra volume factor V in a moment.
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corresponds to pure supergravity action (5.8), like in N = 1 four-dimensional theory.

Commuting exp(−2V ) to the left in (5.6), we find the modified projection formula:

∫
d2xd4θE−1

0 L = (5.10)

=

∫
d2xe−1 exp(−2ϕ)

[
(∇̂+ − 3(∇̂+V ))(∇̂− − 3(∇̂−V )) + iψ−̇(∇̂+ − 3(∇̂+V ))−

−iψ+̇(∇̂− − 3(∇̂−V )) + (−1

2
H − ψ−̇ψ+̇ + ψ−̇ψ+̇)

]
(∇̂+̇ − 2(∇̂+̇V ))(∇̂−̇ − 2(∇̂−̇V ))L|

Applying this projection formula to an arbitrary function L(Φi,Φi,Σj ,Σj) of chiral su-

perfields Φi and twisted chiral superfields Σj we get the action of the bosonic fields (the

vielbein determinant e−1 is suppressed):

L = e−2ϕL
[
R(2) + 4∂µ(ϕ− 1

2 logL)∂µ(ϕ− 1
2 logL)+

+1
2(logL)φiφj

(∂µφi)(∂
µφj) − 1

2 (logL)σiσj
(∂µσi)(∂

µσj)+ (5.11)

+1
2
ǫµν

(
(logL)φiσj

(∂µφi)(∂νσj) + (logL)σjφi
(∂µφi)(∂νσj)

)]

The subscripts on L denote derivatives with respect to the scalar fields, e.g. (logL)φiφj
=

(∂2/∂φi∂φj) logL. Deriving (5.11) one may find helpful some formulas from appendix

D where we discuss in detail the component action of a free chiral superfield. A careful

reader may notice that (5.11) has the structure reminiscent of N = 1 supergravity in four

dimensions. In particular, it is convenient to introduce the Kähler potential K:

L = exp(−K) (5.12)

so that the superspace action (5.9) takes the form:

∫
d2xd4θE−1

0 e−K =

∫
d2xd4θE−1e−2V e−K . (5.13)

Performing the superspace integration, one finds Lagrangian for the bosonic fields:

L = e−2ϕ̃
[
R(2) + 4(∂µϕ̃)(∂µϕ̃) − 1

2Kφiφj
(∂µφi)(∂

µφj)+ (5.14)

+1
2
Kσiσj

(∂µσi)(∂
µσj) − 1

2
ǫµν

(
Kφiσj

(∂µφi)(∂νσj) +Kσjφi
(∂µφi)(∂νσj)

)]
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where we introduced a new dilaton field ϕ̃ = ϕ + 1
2K invariant under generalized Kähler

transformations (3.7):

K −→ K + Λ1(φi, σj) + Λ1(φi, σj) + Λ2(φi, σj) + Λ2(φi, σj) (5.15)

Under this Kähler transformation the original dilaton field ϕ is shifted in the opposite

way, so that the linear combination ϕ̃ = ϕ + 1
2K remains invariant. Since the Kähler

metric is invariant under (5.15) as well, both the superspace action (5.13) and the corre-

sponding component action (5.14) are manifestly invariant under the generalized Kähler

transformations (5.15).

Now we are in position to identify the function K that would reproduce the effective

action (3.5) of Type IIA theory on a Calabi-Yau four-fold. Namely, the superspace action

(5.13) gives the effective action (3.5) if K is the total Kähler potential (3.9). This form of

the superspace action might be expected for a number of reasons. First of all, it is similar

to the superspace action of N = 1 supergravity in four dimensions. Moreover, Type IIA

supergravity on a Calabi-Yau four-fold has a breathing mode corresponding to rescaling

of the volume V → c2V and simultaneous shift of the dilaton ϕ → ϕ + log c, cf. (3.1).

Therefore, the superspace action is expected to be a function of 2V +K, where K is the

total Kähler potential given by (3.9) - (3.10).

To summarize, we constructed superspace Lagrangians describing N = (2, 2) dilaton

supergravity coupled to matter superfields and found projection formulas that allow one

to rewrite integrals over the entire superspace in terms of component fields. Therefore,

we provide a superspace formulation of the effective field theories constructed from com-

pactification of Type IIA string theory on Calabi-Yau four-folds, as well as more general

N = (2, 2) sigma-models with torsion coupled to dilaton supergravity, cf. [5].

Incorporation of superpotential terms is more subtle. These terms are superinvariants

obtained by integration only over a half of the superspace, cf. (5.1). Unfortunately, unlike

(5.2) and (5.5), the chiral and twisted chiral density projectors in N = (2, 2) dilaton

supergravity do not simply follow from the full superspace projector (5.10). However, by

dimensional arguments and from an examination of the index structure of the possible

terms, the chiral density projection formula must look like:

∫
d2x

∫
d2θE−1W =

∫
d2xe−1

[
∇̂2 + . . .− 1

2
H − ψ−̇ψ+̇ + ψ−̇ψ+̇

]
W | (5.16)
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where the dots stand for term containing λα or terms linear in covariant derivatives8. By

the similar reasoning, the twsited chiral density projection formula must look like (5.5):

∫
d2x

∫
d2θẼ−1W̃ =

∫
d2xe−1

[
∇̂−̇∇̂+ + . . .− 1

2
G+ ψ−ψ+̇ + ψ+̇ψ−

]
W̃ | (5.17)

Although normalization and coefficients in (5.16) and (5.17) may not be correct, the terms

quadratic in the gravitino are rather general and, in particular, are independent on de-

gauging. So, we infer that one effect of the superpotential is to produce a mass term for

the gravitino fields [22]:

m
ψ−̇

∼W, mψ− ∼ W̃ (5.18)

It is this property of N = (2, 2) supergravity that was needed in [13,14] in order to find

the superpotentials (3.13) and (3.14) induced by Ramond-Ramond fluxes. Moreover, let

us demonstrate that (5.16) and (5.17) lead to the expected structure of the scalar potential

(3.18). Extending the computation of (5.11), from (5.1) we get the action of the auxiliary

fields:

Laux ∼ L
[
| 12H − iAi(logL)φi

|2 + | 12G− iBj(logL)σj
|2 + (logL)φiφj

AiAj− (5.19)

−(logL)σiσj
BiBj

]
− i(Wφi

− (logL)φi
)Ai −W ( 1

2H + iAi(logL)φi
)−

−i(W̃σi
− (logL)σi

)Bi − W̃ ( 1
2G+ iBi(logL)σi

) + c.c.

Integrating out the auxiliary fields and using (5.12), we find the expected scalar potential

(3.18):

Laux ∼ eK
(
K−1

φiφj

(Dφi
W )(Dφj

W ) −K−1
σiσj

(Dσi
W̃ )(Dσj

W̃ ) − |W |2 − |W̃ |2
)

with the covariant derivatives (3.17).

6. Compactification of Type IIB String Theory on Calabi-Yau Four-folds

Compactification of Type IIB string theory on a Calabi-Yau four-fold X leads to a

chiral N = (0, 4) supersymmetric effective field theory in two non-compact dimensions. In

the low-energy limit this theory is described by N = (0, 4) supergravity coupled to scalar

superfields. In this section we perform a Kaluza-Klein reduction on a Calabi-Yau four-fold

8 These terms will not affect the action of bosonic fields.
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X and, in particular, find that the supergravity multiplet includes a real scalar dilaton

field instead of an SU(2) gauge field [28,29]. A manifestly supersymmetric formulation of

such N = (0, 4) supergravity theory will be presented in the next section. In this section

we show that Kaluza-Klein harmonics combine into N = (0, 4) scalar superfields [29,30].

Furthermore, since we deal with N = (0, 4) supersymmetry, there is a significant difference

between right-movers and left-movers. Namely, all left-moving modes are supersymmetry

singlets. We will also see that the difference between the zero-point energy of the left-

movers and the right-movers is proportional to the Euler number of X [31].

In the large volume limit the bosonic spectrum of light modes in Type IIB string

theory includes the metric gMN , the dilaton ϕ, the axion l, the 4-form tensor DMNPQ

and two tensor fields BRRMN and BNSMN . Together with the fermionic superpartners all these

fields fit into Type IIB supergravity multiplet. Non-perturbative Type IIB string theory

is invariant under SL(2,ZZ) duality group. In order to see the action of this group on the

supergravity fields, it is convenient to define the following quantities:

λ = l + ie−ϕ (6.1)

M =
1

Imλ

(
|λ|2 −Reλ
−Reλ 1

)
(6.2)

HMNP =



∂[MB

NS
NP ]

∂[MB
RR
NP ]


 (6.3)

and

FMNPQR = ∂[MDNPQR] +
3

4
BNS[MN∂PB

RR
QR] (6.4)

Then, the field strength FMNPQR is a singlet under the SL(2,ZZ) duality group, while H

transforms as a “vector”. Finally, SL(2,ZZ) acts on a complex scalar λ in the usual way:

λ→ aλ+ b

cλ+ d
(6.5)

where the integer numbers a, b, c and d satisfy ad− bc = 1.

The five-form field strength F is self-dual:

F = ∗F (6.6)

Although this equation can not be derived from any action, for a moment we ignore this

subtlety and write bosonic “Type IIB supergravity Lagrangian” simply as:

L(10) =
√−g

[
− 1

4
R(10) +

1

16
Tr

(
∂M · ∂M

)
+

3

16
HT ·M · H +

5

24
F 2 + . . .

]
(6.7)
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where the dots stand for higher derivative terms.

As in Type IIA theory, in order to find the zero-mode spectrum we have to expand

Type IIB supergravity fields in harmonic (p, q)-forms on the space X . The metric modes

are exactly the same as in (2.3). Namely, from the reduction of gMN we find h1,1 real

scalars si, h
3,1 complex scalars φj and the two-dimensional metric gµν . It turns out that

one of the scalars si comes into the two-dimensional supergravity multiplet. Namely, it is

the Kaluza-Klein mode corresponding to the volume of the Calabi-Yau four-fold:

V = dijkls
isjsksl

where dijkl are the intersection numbers of X given by (2.7). With this mode excluded,

the Kähler deformations of the metric yield h1,1 − 1 scalars ši = V− 1
4 si satisfying the

condition:

dijklš
išj škšl = 1

Expanding the doublet of tensor fields as:

BNS =
h1,1∑

i=1

riω
(1,1)
i , BRR =

h1,1∑

i=1

tiω
(1,1)
i , (6.8)

we get pairs of real scalars ri and ti, h
1,1 in number. All these modes are both right-moving

and left-moving.

Expansion of the self-dual field D is a bit subtle. Namely, instead of D one has to

expand the field strength F ∼ ∑
i ∂µui · ω

(4)
i and impose the self-duality condition (6.6).

Depending on whether the form ω
(4)
i ∈ H4(X, IR) is self-dual or anti-self-dual the scalar

field ui is left-moving or right-moving, respectively. Therefore, we have to distinguish

carefully self-dual and anti-self-dual harmonics of F . To this end we recall some topological

properties of Calabi-Yau four-folds. There is a decomposition of the space of the middle

dimensional forms on X :

H4(X, IR) = B+(X) ⊕B−(X)

where we denote by B+(X) (resp. B−(X)) the space of (anti-)self-dual 4-forms on X . Let

us call the corresponding dimensions b± = dimB±(X). Then b+ and b− are related by the
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Hirzebruch signature 9 (see e.g. [7]):

τ(Q) = b+ − b− =
1

45

∫

X

(7p2 − p2
1) =

χ

3
+ 32

of the quadratic form Q(ω1, ω2) =
∫
X
ω1 ∧ ω2. On the other hand, we also have b4 =

b+ + b− = 2 + 2h3,1 + h2,2. Hence, using (2.1) and (2.2) we find:

b+ = 47 + 3h1,1 + 4h3,1 − 2h2,1 (6.9)

and

b− = −1 + h1,1 + 2h3,1 (6.10)

Actually, we can be a little bit more precise. All the forms of Hodge type (3, 1) or

(1, 3) are anti-self-dual, while the (4, 0)- and (0, 4)-forms on a Calabi-Yau four-fold are

self-dual [13]. Therefore, from (6.9) and (6.10) we find that:

b
(2,2)
+ = 45 + 3h1,1 + 4h3,1 − 2h2,1 (6.11)

and

b
(2,2)
− = h1,1 − 1 (6.12)

Now we expand the self-dual field strength F as:

F =

b2,2

+∑

i=1

(∂µui)ω
(+)
i +

b2,2

−∑

j=1

(∂µvj)ω
(−)
j +

h3,1∑

k=1

(∂µpk)ω
(3,1)
k + (∂µq)Ω + c.c. (6.13)

where the scalar fields ui and vj are real, while pk and q are complex. As we explained

above, ui and q must be left-moving, vj and pk must be right-moving. In particular, the

former are singlets with respect to four left supercharges satisfying:

{Qi+, Qj+} = δijP+

9 The explicit form of the Pontryagin classes is given by:

p1 = −
1

2
trR2

, p2 = −
1

4
trR4 +

1

8
(trR2)2
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Note that the Kaluza-Klein modes of the self-dual field F associated with (2, 1)-harmonic

forms give 2-form field strengths of massless vector fields in two dimensions and, therefore,

do not lead to new propagating degrees of freedom.

Unlike N = (2, 2) theory constructed from compactification of Type IIA string theory,

in Type IIB compactification on on a Calabi-Yau four-fold X not all the fermionic modes

can be determined by N = (0, 4) supersymmetry. In the right sector we still can use su-

persymmetry arguments to conclude that two-dimensional supergravity multiplet contains

2ind(/D) fermions and 2ind(/D) Rarita-Schwinger fields that come from the corresponding

spin-1
2 and spin-3

2 fields in Type IIB supergravity. On a Calabi-Yau four-fold the Dirac

index is given by:

ind(/D) =
1

1440

∫

X

(7

4
p2
1 − p2

)
= 2 (6.14)

in accordance with N = (0, 4) supersymmetry. Furthermore, all the right-moving scalars

found above (φi, φi, pi, pi, šj , rj , tj , vj , ϕ and l) are accompanied by right-moving

fermions. Simple counting gives:

n+ = 4h3,1 + 4h1,1 (6.15)

for the total number of the right-moving fermions 10. There are also left-moving fermions

which are supersymmetry singlets. The number of left-moving fermions, however, is not

determined by supersymmetry. So, it has to be computed separately. Since the fermions

in question come from the Type IIB gravitinos, their number (minus the number of right-

moving fermions) is given by the Rarita-Schwinger index:

n− − n+ = 2ind(/D3/2)

Using (6.15) and the explicit expression for the Rarita-Schwinger index on a Calabi-Yau

four-fold X :

ind(/D3/2) =
1

180

∫

X

(37

4
p2
1 − 31p2

)
= −4h1,1 − 4h3,1 + 4h2,1 (6.16)

we obtain:

n− = 4h2,1 (6.17)

10 Note that n+ is divisible by 4.
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Now we are ready to assemble the supermultiplets. Combining the left-moving bosonic

modes with the fermion fields we get the following supermultiplets:

a gravitational multiplet : gµν , V

h3,1 scalar multiplets Φi : φi, φi, pi, pi

h1,1 scalar multiplets Σj : šj , rj , tj , vj , ϕ, l

Performing a reduction of the ten-dimensional supersymmetry conditions one can easily

check that these fields indeed represent bosonic components of the supermultiplets as

stated. Note, all the matter multiplets include four real scalar fields in accordance with

the general classification of scalar superfields [28,32,29,30]. However, the content of the

gravitational multiplet is different from what was usually studied in N = (0, 4) supergravity

theories [28,29]. In compactification of Type IIB string theory on a Calabi-Yau four-fold we

find that the gravitational multiplet includes a real scalar V instead of SU(2) gauge field.

In the next section we describe the superspace formulation of this N = (0, 4) supergravity

using the Goldstone approach.

In order to find the low-energy effective action one has to substitute (2.3), (6.8) and

(6.13) into (6.7). Integrating over the internal space by means of the formulas (2.4), (2.5)

we get the following two-dimensional action for bosonic fields:

L(2) =
√−gV

[
− 1

4
R(2) +

1

2
(∂+λ)(∂−λ) +

1

2
Gφiφj

(∂+φ
i)(∂−φ

j
) +

1

2
Gφiφj

(∂0p
i)(∂+p

j)+

+
1

2
Gσiσj

(
(∂+s

i)(∂−s
j) + (∂+r

i)(∂−r
j) + (∂+t

i)(∂−t
j) + (∂0v

i)(∂+v
j)

)
+

+
1

2
Qij(∂0u

i)(∂−u
j) +

1

2
(∂0q)(∂−q) + c.c.

]
(6.18)

This Lagrangian describes non-linear sigma-model interacting with N = (0, 4) supergrav-

ity. The target space of the left-moving fields is the cotangent bundle to the moduli space

of the Calabi-Yau manifold X , T ∗Mc(X) × T ∗MK(X), cf. [29]. Since the moduli space

itself is a Kähler space, this result agrees with the general analysis of N = (0, 4) super-

symmetric sigma-models. According to [32], N = (0, 4) supersymmetric sigma-model is

based on a target space which has three covariantly constant (with respect to ∇+) complex

structures which obey the quaternionic algebra:

JrJs = −δrs + frs
tJt
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Another interesting feature that we expect to see in this N = (0, 4) theory is SL(2, IR)

symmetry of classical Type IIB supergravity. Apart from ϕ, l, ri and ti, all the scalar fields

listed above are singlets with respect to this symmetry. The complex scalar λ = l + ie−ϕ

transforms as (6.5) under SL(2, IR) duality transformation, with a, b, c and d real numbers

obeying ad−bc = 1. The doublet of real scalar fields (ri, ti) transforms as a vector under the

general SL(2, IR) transformation. In other words, only the scalar multiplets Σi transform

non-trivially under this symmetry, while all the other fields, including the supergravity

itself, are SL(2, IR)-singlets.

Finally, we remark that from T-duality with Type IIA string theory on a Calabi-Yau

four-fold we expect an anomaly similar to (3.2) in Type IIB compactification on a Calabi-

Yau four-fold. Recall that due to the global anomaly (3.2), in Type IIA vacuum we had

to include N = χ
24

fundamental strings filling two-dimensional space-time to cancel the

tadpole. Under a T-duality in one of the space-time directions the winding modes of these

strings transform into χ
24 momentum modes:

P+ − P− =
χ

24
(6.19)

in the Type IIB vacuum corresponding to compactification on the same Calabi-Yau four-

fold X . Here, for the sake of simplicity, we assumed that there are no background fluxes.

One can interpret (6.19) as the difference in the zero-point energy of the left-moving and

the right-moving Kaluza-Klein modes [31]. In order to see this, we note that a free boson on

a circle has vacuum energy − 1
24

and a periodic fermion has vacuum energy + 1
24

. Therefore,

due to N = (0, 4) supersymmetry, in the right sector bosonic and fermionic contributions

cancel each other, i.e. P+ = 0. In the left sector we have 48+6h1,1 +6h3,1 −2h2,1 bosonic

modes corresponding to the fields φi, φi, šj , rj , tj , ui, q, q, ϕ and l along with n− = 4h1,1

fermionic modes, cf. (6.17). Hence, the total vacuum momentum in the left sector is

non-zero and is given by the following formula:

P− =
1

24
(48 + 6h1,1 + 6h3,1 − 6h2,1) (6.20)

Using P+ = 0 and the explicit expression (2.2) for the Euler number, one can easily obtain

the formula (6.19).
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7. Superspace Formulation of N = (0, 4) Dilaton Supergravity

In this section we construct N = (0, 4) dilaton supergravity that arise, for example, in

Type IIB superstring compactification on Calabi-Yau four-folds. As we demonstrated in

the previous section such a theory has a number of distinct features which are absent in the

existing superspace formulations of two-dimensional N = (0, 4) supergravities. Namely,

unlike the standard formulations with gauged SU(2) R-symmetry [28,29], new supergravity

does not have a gauged symmetry and the supergravity multiplet contains a real dilaton

field V. Below we present a superspace construction of this theory obtained via de-gauging

SU(2) symmetry.

First let us remind that gauged N = (0, 4) supergravity is defined in superspace by

the following set of constraints [33]:

[∇+i,∇+j} = 0, [∇+i,∇+̇
j} = i2δji∇ ,

[∇+i,∇ } = 0 , [∇+i,∇ } = −i[Σ+
iX − Σ

+
jYij ] , (7.1)

[∇ ,∇ } = −1
2 [Σ+i∇+i + Σ

+
i∇+̇

i + RX + iFijYji]

on the covariant derivatives ∇A ≡ (∇+i,∇+̇
i,∇ ,∇ ):

∇A = EA
BDB + ΛAX + iAAi

jYji. (7.2)

Here EA
B is the supervielbein, and X and Yij are the Lorentz and SU(2) symmetry

generators, respectively. The superfield AAi
j is SU(2) gauge connection, while ΛA stands

for the Lorentz spin-connection. We write [ , } for the graded (anti-)commutator. Finally,

DA denotes the flat space fermi and bose derivatives DA ≡ (D+i, D+
i, ∂ , ∂ ).

The Lorentz generators act on ∇A as follows:

[X ,∇+i} =
1

2
∇+i , [X ,∇+̇

i} =
1

2
∇+̇

i ,

[X ,∇ } = ∇ , [X ,∇ } = −∇ .

Similarly, for the action of SU(2) gauge symmetry generators we have:

[Yjk,∇+i} = δki∇+j − 1
2δ
k
j∇+i ,

[Yjk,∇+̇
i} = −δij∇+̇

k + 1
2δ
k
j∇+̇

i ,
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[Yjk,∇ } = 0 , [Yjk,∇ } = 0 .

The constraints (7.1) lead to a set of Bianchi identities that are solved if:

∇+̇
iΣ

+j
= 0 , ∇+iΣ

+j = 1
2
δjiR + iFij ,

∇+iR = i2∇ Σ
+
i , ∇+iFjk = −2δki ∇ Σ

+
j + δkj∇ Σ

+
i .

The first step in obtaining two-dimensional N = (0, 4) supergravity theory that does

not contain a gauged SU(2) is to note that the covariant derivative in (7.2) can be split

as:

∇A = ∇̂A + iAAk
lYlk. (7.3)

Since the superspace covariant derivative ∇̂A does not contain the SU(2) connection nor

the generator, it can not describe two-dimensional N = (0, 4) supergravity with gauged

SU(2) symmetry. We next use (7.3) to derive the form of the commutator algebra for the

∇̂A operators.

A straightforward set of calculations leads to:

[∇̂+i, ∇̂+j} = −i[ A+i j
k + A+j i

k ]∇̂+k ,

[∇̂+i, ∇̂+̇
j} = i2δji ∇̂ + iA+

j
i
k ∇̂+k + iA+i k

j ∇̂+̇
k ,

[∇̂+i, ∇̂ } = iA i
k∇̂+k , [∇̂+i, ∇̂ } = iA i

k∇̂+k − iΣ+
iX , (7.4)

[∇̂ , ∇̂ } = −1
2
[Σ+i∇̂+i + Σ

+
i∇̂+̇

i + RX ]

where the connection superfields now explicitly appear on the right-hand side of the equa-

tions. The leading component of A+i j
k is a component of the gauged supergravity mul-

tiplet that could be eliminated by a gauge transformation in the SU(2) gauge-symmetric

phase.

At this stage, we have completed half of the de-gauging process. The second half con-

sists of specifying the spinorial SU(2) connections in terms of some components of another

(matter) multiplet that is consistent with the two-dimensional N = (0, 4) supergravity

theory. For this purpose, we introduce the second of the four distinct N = (0, 4) scalar

multiplets (SM-II) that were discussed in [29,30]. In the case of rigid supersymmetry this

multiplet is described by:

D+iV = iλ−i , V = V , ϕii = 0 ,
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D+iϕj
k = 2δki λ

−
j − δkj λ

−
i , ϕj

i = ϕi
j ,

D+̇
iλ−j = δij∂ V + i∂ ϕj

i , D+iλ
−
j = 0 .

In the locally supersymmetric theory one has to replace Dα by ∇α.

The triplet of spin-0 fields ϕj
i can be “eaten” by the triplet of spin-1 fields in the

minimal N = (0, 4) supergravity multiplet and thus become their longitudinal components

via the usual Goldstone mechanism. This eliminates the local SU(2) symmetry. The scalar

and spinor field of the matter multiplet become the dilaton and dilatino.

We are thus led to conjecture that the new form of two-dimensional N = (0, 4)

supergravity with a component spectrum given by:

eµ
ν graviton,

ψµ
+i SU(2)-doublet, gravitino,

Aµi
j SU(2)-triplet, vector auxiliary fields,

λ−i SU(2)-doublet, dilatino field and

V real dilaton field

may be constructed with (7.4) as its starting point. We note that the chirality of the

dilatino is opposite to that of the gravitino.

In order to gain a control over the component field content of the theory, we must

impose the following constraints:

A+ij
k = [2λ−jδ

k
i − λ−iδ

k
j ] ,

A+
i
j
k = −[2λ

−
jδ
k
i − λ

−
iδ
k
j ] .

At lowest order in θα, the field A+ij
k is a component field that is absent in the SU(2)

gauge-symmetric phase of the theory; it can be set to zero in the Wess-Zumino gauge. On

the other hand, when the SU(2) symmetry is broken, part of this field becomes dynamical.

In general, A+ij
k contains SU(2) representations of spin-1

2 and spin-3
2 . However, the above

constraints eliminate the pure spin-3
2 representation of SU(2).

With this result substituted into (7.4),

[∇̂+i, ∇̂+j} = −i[λ−i∇̂+j + λ−j∇̂+i] ,

[∇̂+i, ∇̂+̇
j} = i2δji ∇̂ + i[2λ

−k
δji − λ

−j
δki ]∇̂+k + i[2λ−kδ

j
i − λ−iδ

j
k]∇̂+̇

k ,

[∇̂+i, ∇̂ } = iA i
k∇̂+k , [∇̂+i, ∇̂ } = iA i

k∇̂+k − iΣ+
iX ,
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[∇̂ , ∇̂ } = −1
2 [Σ+i∇̂+i + Σ

+
i∇̂+̇

i + RX ]

we can calculate the Bianchi identities:

[[∇̂+i, ∇̂+j}, ∇̂+k} + [[∇̂+k, ∇̂+i}, ∇̂+j} + [[∇̂+j, ∇̂+k}, ∇̂+i} = 0 (7.5)

[[∇̂+i, ∇̂+j}, ∇̂+̇
k} + [[∇̂+i, ∇̂+̇

k}, ∇̂+j} + [[∇̂+j , ∇̂+̇
k}, ∇̂+i} = 0

These will be satisfied if:

∇̂+iλ
−
j = −λ−iλ−j ,

∇̂+iλ
−j

= iλ−iλ
−j − iA i

j + δij∇̂ V , etc.

Let us now briefly comment on density projectors in the new N = (0, 4) dilaton

supergravity theory. For a general superspace Lagrangian L, the component action of

N = (0, 4) gauged supergravity can be obtained by means of the following projection

formula: ∫
d2xd2θ d2θ E−1L = 1

2

∫
d2xd2θ E−1

[
1
2Cij∇̂+̇

i∇̂+̇
j
]
L|+

+1
2

∫
d2xd2θ E−1

[
1
2
Cij∇̂+i∇̂+j

]
L| (7.6)

where the corresponding chiral and anti-chiral density projector formulas look like:
∫
d2xd2θ E−1L| = i

∫
d2x

[
1
2e

−1Cij(∇̂+i + i4eψ +
i)

]
∇̂+jL|

∫
d2xd2θ E−1L| = i

∫
d2x

[
1
2e

−1Cij(∇̂+̇
i + i4eψ +i)

]
∇̂+̇

jL|

Similar formulas also hold in the new two-dimensional N = (0, 4) dilaton supergravity.

The explicit expressions for the density projectors can be obtained by a straightforward

but tedious computation substituting (7.3) into (7.6).

“I found a way to make it work.”

Stanislaw Ulam
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Appendix A. World-Sheet Calculation of Type IIA String Amplitudes

Consider compactification of Type IIA string theory on a Calabi-Yau four-fold X .

Let us further assume that there are no background Ramond-Ramond fluxes, so that

two-dimensional space-time is flat. From the world-sheet viewpoint, this compactification

corresponds to adjoining c = (12, 12) N = (2, 2) superconformal field theory (SCFT) to free

conformal theory with central charge c = (3, 3) that is responsible for the two-dimensional

space-time. It is the first part that will be interesting to us. Namely, we are going to

show that two-point correlation function of vertex operators corresponding to chiral and

twisted chiral superfields is zero, i.e. that the Zamolodchikov metric on the moduli space

of Calabi-Yau four-folds is block diagonal (3.8).

N = (2, 2) superconformal algebra consists of two N = 2 supervirasoro algebras —

one left-moving and one right-moving — each generated by an energy-momentum tensor

T , a current J and two weight 3/2 supercurrents G± with J-charge Q = ±1. Recall

that in a Kaluza-Klein reduction two-dimensional chiral superfields come from harmonic

(3, 1)-forms on X , while twisted chiral superfields correspond to harmonic (1, 1)-forms.

Similar to the three-fold case, we identify these fields with marginal operators in (c, c)

and (a, c) multiplets, respectively. Let us call this operators Φ(1,1) and Φ(−1,1). They

are neutral, (Q,Q) = (0, 0), and have conformal weight 1/2. The lowest components of

(anti-)chiral multiplets must satisfy 2h = Q and 2h = Q, so Φ(1,1) and Φ(−1,1) are not the

lowest components in the corresponding multiplets. They can be obtained in the operator

product expansion of the supercurrents with operators Ψ:

2G∓(w,w) · Ψ(±1,1)(z, z) =
1

w − z
Φ(±1,1)(z, z) + reg (A.1)

where “reg” stands for the regular part. Another operator product expansion that will be

useful to us is the following:

2G∓(w,w) · Φ(±1,1)(z, z) = reg (A.2)

Now we are ready to demonstrate (3.8). Consider a matrix element of the target space

metric Gφiσj
that mixes (1, 1) and (3, 1) moduli:

Gφiσj

|z − z′|4 = 〈Φφi

(1,1)(z, z) · Φ
σj

(1,−1)(z
′, z′)〉 = (A.3)

=

∮
dw

2πi
〈2G−(w,w) · Ψφi

(1,1)(z, z) · Φ
σj

(1,−1)(z
′, z′)〉 = 0
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In the last equality we used the fact (A.2) that the operator product of G−(w,w) and

Φ
σj

(1,−1)(z
′, z′) has no singularity as w → z′.

One might think that Gφiσj
would be non-zero since the corresponding OPE has a

singular part:

2G±(w,w) · Φ(±1,1)(z, z) =
∂

∂z

(Ψ(±1,1)(z, z)

w − z

)
+ reg

However, repeating the above arguments in the right sector one can easily see that Gφiσj
is

also zero. In fact, OPE is singular in both left and right sectors only for 〈Φφi

(1,1) ·Φ
φ

j

(−1,−1)〉
and 〈Φσi

(−1,1) · Φ
σj

(1,−1)〉 which correspond to the metric Gφiφj

for chiral multiplets and the

metric Gσiσj
for the twisted chiral multiplets, respectively. Therefore, we conclude that

the target space is locally a product of the manifold Mc(X) parametrized by the chiral

fields φi and the manifold MK(X) spanned by the twisted chiral fields σj .

Appendix B. Extra derivative constraints arising from de-gauging N = (2, 2)

non-minimal supergravity

In this appendix we collect some more technical formulas that arise in the construction

of N = (2, 2) dilaton supergravity via de-gauging U(1)A⊗U(1)V non-minimal supergrav-

ity. Consistency of the de-gauging procedure requires that all terms in (4.8) with gauge

symmetry generators Y and Y ′ vanish, so that the commutator algebra of the new covariant

derivative ∇̂α has the form (4.12), e.g.:

{∇̂+, ∇̂+} = {∇+,∇+} − 2{∇+, λ+Y + λ̃+Y ′} =

= −2(∇+λ+)Y − 2(∇+λ̃+)Y ′ + iλ+∇+ + iλ̃+∇+ =

= i(λ+ + λ̃+)(∇̂+ + λ+Y + λ̃+Y ′) − 2(∇+λ+)Y − 2(∇+λ̃+)Y ′ =

= i(λ+ + λ̃+)∇̂+ + [−2(∇+λ+) + iλ̃+λ+]Y + [−2(∇+λ̃+) + iλ+λ̃+]Y ′ =

= i(λ+ + λ̃+)∇̂+ + [−2(∇̂+λ+) + iλ̃+λ+ + iλ̃+λ+]Y + [−2(∇̂+λ̃+) + iλ+λ̃+ + iλ+λ̃+]Y ′ =

= i(λ+ + λ̃+)∇̂+ + [−2(∇̂+λ+) + 2iλ̃+λ+]Y + [−2(∇̂+λ̃+) + 2iλ+λ̃+]Y ′

Therefore, we obtain the following commutation relation:

{∇̂+, ∇̂+} = i(λ+ + λ̃+)∇̂+
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plus two constraints (Jacobi identities):

(∇̂+λ+) − iλ̃+λ+ = 0 , (∇̂+λ̃+) − iλ+λ̃+ = 0.

Similar calculations lead to the following set of constraints:

∇̂+λ+ − iλ̃+λ+ = 0, , ∇̂+λ̃+ − iλ+λ̃+ = 0,

∇̂−λ− + iλ̃−λ− = 0, , ∇̂−λ̃− − iλ−λ̃− = 0,

∇̂+λ− + ∇̂−λ+ + i(λ̃+λ− − λ̃−λ+) = 0,

∇̂+λ̃−̇ + ∇̂−̇λ̃+ + i(λ+λ̃−̇ − λ−̇λ̃+) = 0,

∇̂+λ̃− + ∇̂−λ̃+ + 2iλ̃+λ̃− − i(λ+λ̃− + λ−λ̃+) − i

2
R = 0,

∇̂+λ−̇ + ∇̂−̇λ+ + 2iλ+λ−̇ − i(λ̃+λ−̇ + λ̃−̇λ+) − i

2
F = 0,

λ̃ = −i(∇̂+λ̃+̇ + ∇̂+̇λ̃+) + 2λ̃+λ̃+̇ + (λ+λ̃+̇ + λ̃+λ+̇),

λ = −i(∇̂+λ+̇ + ∇̂+̇λ+) + 2λ+λ+̇ + (λ+λ̃+̇ + λ̃+λ+̇),

λ̃ = −i(∇̂−λ̃−̇ + ∇̂−̇λ̃−) − 2λ̃−λ̃−̇ + (λ−λ̃−̇ + λ̃−λ−̇),

λ = −i(∇̂−λ−̇ + ∇̂−̇λ−) + 2λ−λ−̇ − (λ−λ̃−̇ + λ̃−λ−̇)

By virtue of the above relations, the Jacobi identities (4.13) are automatically satisfied.

Furthermore, only half of the spinor fields are independent. In section 4 we disscuss two

natural solutions to these constraints: when either ηα or η̃α are put to zero. In both

cases the remaining spinor superfields can be expressed in terms of an unconstrained real

superfield.

Appendix C. Components of covariant derivatives in N = (2, 2) dilaton super-

gravity

The expressions for the covariant derivatives in N = (2, 2) dilaton supergravity eval-

uated at θ = 0 are, cf. [16]:

∇̂α| = ∂α

∇̂µ| = Dµ + ψαµ∇̂α| + ψα̇µ ∇̂α̇| = (C.1)
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= Dµ + ψαµ∂α + ψα̇µ∂α̇

where Dµ is the fully covariant gravitational derivative with the Lorentz connection ωµ =

Λµ| that includes, in addition to the ordinary connection, extra terms that are bilinear in

the gravitini ψαµ , ψα̇µ . Specifically, Dµ is defined to be 11:

Dµ = eµ + ωµX

We also need expressions for the higher θ components of the covariant derivatives.

The θα component of ∇̂β is defined by [16]:

∇̂α∇̂β | = 1
2{∇̂α, ∇̂β}| (C.2)

while the θα component of ∇̂µ is:

∇̂α∇̂µ| = [∇̂α, ∇̂µ]| + ∇̂µ∇̂α| = (C.3)

= [∇̂α, ∇̂µ]| + Dµ∇̂α| + ψβµ∇̂β∇̂α| + ψβ̇µ∇̂β̇∇̂α|

From (C.2) and (4.17) we obtain the following results:

∇̂+∇̂+| = iλ+∂+ , ∇̂−∇̂−| = iλ−∂−

∇̂+̇∇̂+̇| = −iλ+̇∂+̇ , ∇̂−̇∇̂−̇| = −iλ−̇∂−̇

∇̂+∇̂−| = −1

4
HX , ∇̂+∇̂−̇| = −1

4
GX

∇̂+̇∇̂−̇| = −1

4
HX , ∇̂+̇∇̂−| = −1

4
GX

∇̂+∇̂+̇| =
i

2
D +

i

2
(ψ+ + λ+̇)∂+ +

i

2
ψ−∂− +

i

2
(ψ+̇ − λ+)∂+̇ +

i

2
ψ−̇∂−̇

∇̂−∇̂−̇| =
i

2
D +

i

2
ψ+∂+ +

i

2
(ψ− + λ−̇)∂− +

i

2
ψ+̇∂+̇ +

i

2
(ψ−̇ − λ−)∂−̇

and from (C.3) we derive the series of identities that appears below:

∇̂+∇̂ | = D ∇̂+| +
i

2
ψ+̇D | − 1

4
(ψ−H + ψ−̇G)X +

[
iψ+λ+ +

i

2
ψ+̇(ψ+ + λ+̇)−

−2iλ+λ+̇ − (∇̂+̇λ+) − (∇̂+λ+̇)
]
∂+ +

i

2
ψ+̇ψ−∂− +

i

2
ψ+̇(ψ+̇ − λ+)∂+̇ +

i

2
ψ+̇ψ−̇∂−̇

11 In the notations of [22] this would correspond to ωµ = γµ = ϕµ.
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∇̂−∇̂ | = D ∇̂−|+
i

2
ψ−̇D |−

[ i
2
(∇̂+̇R)+

i

2
(∇̂+F )+ 1

2 (λ+̇+ 1
2ψ

+)H− 1
2(λ+− 1

2ψ
+̇)G

]
X+

+
i

2
(G+ψ−̇ψ+)∂+ +

i

2
(2ψ−λ− +ψ−̇(ψ− +λ−̇))∂− +

i

2
(H+ψ−̇ψ+̇)∂+̇ +

i

2
ψ−̇(ψ−̇−λ−)∂−̇

∇̂+̇∇̂ | = D ∇̂+̇| +
i

2
ψ+̇D | − 1

4
(ψ−G+ ψ−̇H)X +

i

2
ψ+(ψ+ + λ+̇)∂+ +

i

2
ψ+ψ−∂−+

+
[
2iλ+λ+̇ + (∇̂+̇λ+) + (∇̂+λ+̇) +

i

2
ψ+(ψ+̇ − λ+) − iψ+̇λ+̇

]
∂+̇ +

i

2
ψ+ψ−̇∂−̇

∇̂−̇∇̂ | = D ∇̂−̇|+
i

2
ψ−D |+

[ i
2
(∇̂+R)+

i

2
(∇̂+̇F )− 1

2λ+H+ 1
2λ+̇G− 1

4
ψ+G− 1

4
ψ+̇H

]
X+

+
i

2
(ψ−ψ+−H)∂++

i

2
ψ−(ψ−+λ−̇)∂−+

i

2
(ψ−ψ+̇−G)∂+̇+

i

2
(ψ−ψ−̇−ψ−λ−−2ψ−̇λ−̇)∂−̇

∇̂+∇̂ | = D ∇̂+|+
i

2
ψ−̇D |−

[ i
2
(∇̂−̇R)+

i

2
(∇̂−F )+ 1

2
λ−̇H− 1

2
λ−G+

1

4
ψ+H+

1

4
ψ+̇G

]
X+

+
i

2
ψ−̇ψ+∂+ +

i

2
(2ψ−λ− −G+ψ−̇(ψ− + λ−̇))∂− +

i

2
ψ−̇ψ+̇∂+̇ +

i

2
(ψ−̇(ψ−̇ − λ−)−H)∂−̇

∇̂−∇̂ | = D ∇̂−| +
i

2
ψ−̇D | − 1

4
(ψ+H + ψ+̇G)X +

i

2
ψ−̇ψ+∂+ +

[
iψ−λ−+

+
i

2
ψ−̇(ψ− + λ−̇) − 2iλ−λ−̇ − (∇̂−̇λ−) − (∇̂−λ−̇)

]
∂− +

i

2
ψ−̇ψ+̇∂+̇ +

i

2
ψ−̇(ψ−̇ − λ−)∂−̇

∇̂+̇∇̂ | = D ∇̂+̇|+
i

2
ψ+D |+

[ i
2
(∇̂−R)+

i

2
(∇̂−̇F )− 1

2
λ−H+ 1

2
λ−̇G− 1

4
ψ−G− 1

4
ψ−̇H

]
X+

+
i

2
ψ+(ψ+ +λ+̇)∂+ +

i

2
(H+ψ+ψ−)∂− +

i

2
(ψ+(ψ+̇−λ+)−2ψ+̇λ+̇)∂+̇ +

i

2
(G+ψ+ψ−̇)∂−̇

∇̂−̇∇̂ | = D ∇̂−̇| +
i

2
ψ−D | − 1

4
(ψ+G+ ψ+̇H)X +

i

2
ψ−ψ+∂+ +

i

2
ψ−(ψ− + λ−̇)∂−+

+
i

2
ψ−ψ+̇∂+̇ + +

[
2iλ−λ−̇ + (∇̂−̇λ−) + (∇̂−λ−̇) +

i

2
ψ−(ψ−̇ − λ−) − iψ−̇λ−̇

]
∂−̇

where we also used the commutation relations (4.19).

Furthermore, the ∇̂ component of ∇̂ is given by:

∇̂ ∇̂ | = ∇̂ |∇̂ | + ψα∇̂α∇̂ | + ψα̇∇̂α̇∇̂ |

so that:

[∇̂ , ∇̂ ]| = [∇̂ |, ∇̂ |] + ψα∇̂α∇̂ | + ψα̇∇̂α̇∇̂ | − ψα∇̂α∇̂ | − ψα̇∇̂α̇∇̂ | =

= [D ,D ] +D[ (ψα]∂α) +D[ (ψα̇]∂α̇) +ψα∇̂α∇̂ |+ψα̇∇̂α̇∇̂ | −ψα∇̂α∇̂ | −ψα̇∇̂α̇∇̂ |
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Substituting the above expressions for the components of ∇̂α∇̂µ| into [∇̂ , ∇̂ ]|, we get:

[∇̂ , ∇̂ ]| = [D ,D ] + D[ (ψα]∂α) + D[ (ψα̇]∂α̇)+ (C.4)

+ψ+
(
D ∇̂+̇|+

i

2
ψ+D |+

[ i
2
(∇̂−R)+

i

2
(∇̂−̇F )− 1

2λ−H + 1
2λ−̇G− 1

4
ψ−G− 1

4
ψ−̇H

]
X+

+
i

2
ψ+(ψ++λ+̇)∂++

i

2
(H+ψ+ψ−)∂−+

i

2
(ψ+(ψ+̇−λ+)−2ψ+̇λ+̇)∂+̇+

i

2
(G+ψ+ψ−̇)∂−̇

)
+

+ψ−
(
D ∇̂−| +

i

2
ψ−̇D | − 1

4
(ψ+H + ψ+̇G)X +

i

2
ψ−̇ψ+∂+ +

[
iψ−λ−+

+
i

2
ψ−̇(ψ− + λ−̇)− 2iλ−λ−̇ − (∇̂−̇λ−)− (∇̂−λ−̇)

]
∂− +

i

2
ψ−̇ψ+̇∂+̇ +

i

2
ψ−̇(ψ−̇ − λ−)∂−̇

)
+

+ψ+̇
(
D ∇̂+̇|+

i

2
ψ+D |+

[ i
2
(∇̂−R)+

i

2
(∇̂−̇F )− 1

2
λ−H + 1

2
λ−̇G− 1

4
ψ−G− 1

4
ψ−̇H

]
X+

+
i

2
ψ+(ψ++λ+̇)∂++

i

2
(H+ψ+ψ−)∂−+

i

2
(ψ+(ψ+̇−λ+)−2ψ+̇λ+̇)∂+̇+

i

2
(G+ψ+ψ−̇)∂−̇

)
+

+ψ−̇
(
D ∇̂−̇| +

i

2
ψ−D | − 1

4
(ψ+G+ ψ+̇H)X +

i

2
ψ−ψ+∂+ +

i

2
ψ−(ψ− + λ−̇)∂−+

+
i

2
ψ−ψ+̇∂+̇ +

[
2iλ−λ−̇ + (∇̂−̇λ−) + (∇̂−λ−̇) +

i

2
ψ−(ψ−̇ − λ−) − iψ−̇λ−̇

]
∂−̇

)
−

−ψ+
(
D ∇̂+| +

i

2
ψ+̇D | − 1

4
(ψ−H + ψ−̇G)X +

[
iψ+λ+ +

i

2
ψ+̇(ψ+ + λ+̇)−

−2iλ+λ+̇ − (∇̂+̇λ+) − (∇̂+λ+̇)
]
∂+ +

i

2
ψ+̇ψ−∂− +

i

2
ψ+̇(ψ+̇ − λ+)∂+̇ +

i

2
ψ+̇ψ−̇∂−̇

)
−

−ψ−
(
D ∇̂−|+

i

2
ψ−̇D | −

[ i
2
(∇̂+̇R) +

i

2
(∇̂+F ) + 1

2(λ+̇ + 1
2ψ

+)H − 1
2(λ+ − 1

2ψ
+̇)G

]
X+

+
i

2
(G+ψ−̇ψ+)∂++

i

2
(2ψ−λ−+ψ−̇(ψ−+λ−̇))∂−+

i

2
(H+ψ−̇ψ+̇)∂+̇+

i

2
ψ−̇(ψ−̇−λ−)∂−̇

)
−

−ψ+̇
(
D ∇̂+̇| +

i

2
ψ+̇D | − 1

4
(ψ−G+ ψ−̇H)X +

i

2
ψ+(ψ+ + λ+̇)∂+ +

i

2
ψ+ψ−∂−+

+
[
2iλ+λ+̇ + (∇̂+̇λ+) + (∇̂+λ+̇) +

i

2
ψ+(ψ+̇ − λ+) − iψ+̇λ+̇

]
∂+̇ +

i

2
ψ+ψ−̇∂−̇

)
−

−ψ−̇
(
D ∇̂−̇|+

i

2
ψ−D |+

[ i
2
(∇̂+R)+

i

2
(∇̂+̇F )− 1

2
λ+H + 1

2
λ+̇G− 1

4
ψ+G− 1

4
ψ+̇H

]
X+

+
i

2
(ψ−ψ+−H)∂++

i

2
ψ−(ψ−+λ−̇)∂−+

i

2
(ψ−ψ+̇−G)∂+̇+

i

2
(ψ−ψ−̇−ψ−λ−−2ψ−̇λ−̇)∂−̇

)

Now one can compare this huge formula with the leading component of the commu-

tator [∇̂ , ∇̂ ] computed directly from the Bianchi identities (4.13):

[∇̂ , ∇̂ ] =
(
λ+̇S − λ+S + i(∇̂+̇S) + i(∇̂+S)

)
X+ (C.5)
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+
( i

2
λ−̇R− i

2
λ−F− 1

2 (∇̂−̇R)− 1
2 (∇̂−F )

)
∇̂+̇+

( i
2
λ−R− i

2
λ−̇F+ 1

2(∇̂−R)+ 1
2(∇̂−̇F )

)
∇̂++

+
( i

2
λ+̇R+

i

2
λ+F − 1

2 (∇̂+̇R)+ 1
2(∇̂+F )

)
∇̂−̇ +

( i
2
λ+̇F +

i

2
λ+R− 1

2 (∇̂+̇F )+ 1
2 (∇̂+R)

)
∇̂−

where we denoted:

S =
i

2
(∇̂−̇R) +

i

2
(∇̂−F ) + 1

2λ−̇R − 1
2λ−F

By comparing the coefficients of ∇̂+| = ∂+ in (C.4) and (C.5), for example, we find:

i

2
λ−R− i

2
λ−̇F + 1

2(∇̂−R) + 1
2 (∇̂−̇F ) = D[ ψ

+
] +

i

2
ψ+ψ+(ψ+ + λ+̇)+

+
i

2
ψ−ψ−̇ψ+ +

i

2
ψ+̇ψ+(ψ+ +λ+̇)+

i

2
ψ−̇ψ−ψ+ −ψ+

[
iψ+λ+ +

i

2
ψ+̇(ψ+ +λ+̇)−2iλ+λ+̇−

−(∇̂+̇λ+) − (∇̂+λ+̇)
]
− i

2
ψ−(G+ ψ−̇ψ+) − i

2
ψ+̇ψ+(ψ+ + λ+̇) − i

2
ψ−̇(ψ−ψ+ −H)

In the same fashion we obtain the relations defining the other components of the superfields

R and F :

i

2
λ+̇F +

i

2
λ+R− 1

2 (∇̂+̇F ) + 1
2 (∇̂+R) = D[ ψ

−
] +

i

2
ψ+(H + ψ+ψ−) + ψ−

[
iψ−λ−+

+
i

2
ψ−̇(ψ−+λ−̇)−2iλ−λ−̇−(∇̂−̇λ−)−(∇̂−λ−̇)

]
+
i

2
ψ+̇(H+ψ+ψ−)+

i

2
ψ−̇ψ−(ψ−+λ−̇)−

− i

2
ψ+ψ+̇ψ− − i

2
ψ−(2ψ−λ− + ψ−̇(ψ− + λ−̇)) − i

2
ψ+̇ψ+ψ− − i

2
ψ−̇ψ−(ψ− + λ−̇)

i

2
λ−̇R − i

2
λ−F − 1

2 (∇̂−̇R) − 1
2(∇̂−F ) =

= D[ ψ
+̇
] +

i

2
ψ+(ψ+(ψ+̇ − λ+)− 2ψ+̇λ+̇) +

i

2
ψ−ψ−̇ψ+̇ +

i

2
ψ+̇(ψ+(ψ+̇ − λ+)− 2ψ+̇λ+̇)+

+
i

2
ψ−̇ψ−ψ+̇ − i

2
ψ+ψ+̇(ψ+̇ − λ+) − i

2
ψ−(H + ψ−̇ψ+̇) − ψ+̇

[
2iλ+λ+̇ + (∇̂+̇λ+)+

+(∇̂+λ+̇) +
i

2
ψ+(ψ+̇ − λ+) − iψ+̇λ+̇

]
− i

2
ψ−̇(ψ−ψ+̇ −G)

i

2
λ+̇R +

i

2
λ+F − 1

2
(∇̂+̇R) + 1

2
(∇̂+F ) =

= D[ ψ
−̇
] +

i

2
ψ+(G+ ψ+ψ−̇) +

i

2
ψ−ψ−̇(ψ−̇ − λ−) +

i

2
ψ+̇(G+ ψ+ψ−̇)+

+ψ−̇
[
2iλ−λ−̇ + (∇̂−̇λ−) + (∇̂−λ−̇) +

i

2
ψ−(ψ−̇ − λ−) − iψ−̇λ−̇

]
− i

2
ψ+ψ+̇ψ−̇−

− i

2
ψ−ψ−̇(ψ−̇ − λ−) − i

2
ψ+̇ψ+ψ−̇ − i

2
ψ−̇(ψ−ψ−̇ − ψ−λ− − 2ψ−̇λ−̇)
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λ+̇S − λ+S + i(∇̂+̇S) + i(∇̂+S) =

= [D ,D ]X +ψ+
[ i
2
(∇̂−R)+

i

2
(∇̂−̇F )− 1

2λ−H+ 1
2λ−̇G− 1

4
ψ−G− 1

4
ψ−̇H

]
− 1

4
ψ−(ψ+H+

+ψ+̇G)+ψ+̇
[ i
2
(∇̂−R)+

i

2
(∇̂−̇F )− 1

2λ−H+ 1
2λ−̇G−1

4
ψ−G−1

4
ψ−̇H

]
−1

4
ψ−̇(ψ+G+ψ+̇H)+

+
1

4
ψ+(ψ−H + ψ−̇G) + ψ−

[ i
2
(∇̂+̇R) +

i

2
(∇̂+F ) + 1

2 (λ+̇ + 1
2ψ

+)H − 1
2 (λ+ − 1

2ψ
+̇)G

]
+

+
1

4
ψ+̇(ψ−G+ ψ−̇H) − ψ−̇

[ i
2
(∇̂+R) +

i

2
(∇̂+̇F ) − 1

2λ+H + 1
2λ+̇G− 1

4
ψ+G− 1

4
ψ+̇H

]

Appendix D. Derivation of the projection formula in N = (2, 2) dilaton super-

gravity

Here we repeat the derivation [6] of the local density projection formula in N = (2, 2)

dilaton supergravity. Namely, we start by writing the most general expression for the chiral

projector with the right dimension and index structure:

∫
d2xd4θE−1L =

∫
d2xe−1

[
∇̂+∇̂− +X+∇̂+ +X−∇̂− + Y

]
∇̂

2

L| (D.1)

where the coefficients Xα and Y are to be determined. Following [6], we evaluate (D.1)

for the kinetic action L = ΦΦ of a free chiral multiplet:

∫
d2xd4θE−1ΦΦ =

∫
d2xe−1

[
(∇̂2∇̂

2

Φ)Φ| + (∇̂+∇̂
2

Φ)(∇̂−Φ)| − (∇̂−∇̂
2

Φ)(∇̂+Φ)|+

+(∇̂
2

Φ)(∇̂2Φ)| +X+(∇̂+∇̂
2

Φ)Φ| +X+(∇̂
2

Φ)(∇̂+Φ)| (D.2)

+X−(∇̂−∇̂
2

Φ)Φ| +X−(∇̂
2

Φ)(∇̂−Φ)| + Y (∇̂
2

Φ)Φ|
]

Clearly, the left-hand side of this formula is invariant under complex conjugation. So, the

right-hand side must be invariant as well. As we will see in a moment, this condition

completely determines the unknown coefficients Xα and Y . It suffices to consider only

bosonic terms. Using the formulas in appendix C along with the definition (4.4), one can

easily compute the relevant components:

∇̂+∇̂+̇∇̂−̇Φ| ∼ −ψ−D φ+ (ψ+̇ − λ+)A

∇̂−∇̂+̇∇̂−̇Φ| ∼ ψ+D φ+ (ψ−̇ − λ−)A
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∇̂+∇̂−∇̂+̇∇̂−̇Φ| ∼ D D φ+ i(ψ+̇ψ+ − λ+ψ
+)D φ+

+i(ψ−̇ − λ−)ψ−D φ− i

4
HA+ iψ+̇ψ−̇A− i(ψ−̇ − λ−)(ψ+̇ − λ+)A

Substituting these into (D.2), we find that the resulting component action is invariant

under complex conjugation only if we put:

X+ = i(ψ−̇ − λ−)

X− = −i(ψ+̇ − λ+)

Y = −1

4
H − ψ−̇ψ+̇ + (ψ−̇ − λ−)(ψ+̇ − λ+)

With these expressions for Xα and Y the result does not depend on whether we use the

chiral projector (D.1) or its complex conjugate, of course, as it should be. Specifically, the

chiral projection formula in N = (2, 2) dilaton supergravity takes the following form:

∫
d2xd4θE−1L =

∫
d2xe−1

[
∇̂+∇̂− + i(ψ−̇ − λ−)∇̂+ − i(ψ+̇ − λ+)∇̂−+ (D.3)

+
(
− 1

4
H − ψ−̇ψ+̇ + (ψ−̇ − λ−)(ψ+̇ − λ+)

)]
∇̂

2

L|

One can easily check that this expression is equivalent to the chiral density projector

(5.6) obtained by de-gauging the corresponding projector in the non-minimal N = (2, 2)

supergravity.
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