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In a classical inflationary cosmology based on the R +e€R? Lagrangian the parameters of the
model (such as € and the initial conditions for inflationary trajectories) are constrained by the obser-
vational requirement that any perturbations be delivered small to the present horizon volume. Pre-
vious calculations of the evolution of these perturbations (and, hence, of the parameter constraints
enforced by their evolution) have assumed that the modes begin in their ground state. In this paper,
following the procedure of Halliwell and Hawking, the Wheeler-DeWitt equation is derived for this
model’s inhomogeneous modes in perturbative superspace. Then, the two boundary-condition pro-
posals of Hartle and Hawking (“no boundary”) and Vilenkin (“tunneling from nothing”) are imple-
mented, verifying that both boundary conditions require the inhomogeneous modes to begin in their

ground states.

I. INTRODUCTION

In Ref. 1, Miji¢, Suen, and I explored a classical
cosmological model based on the R +€eR? Lagrangian.
We showed that Robertson-Walker domains would
inflate for a wide range of initial conditions, that this
pure gravity inflation would smoothly shut itself down,
and that the evolution of perturbations on the back-
ground could be used to constrain € and the initial pa-
rameters of the model. In Ref. 2, we turned to the wave-
function formalism and applied it to the same model to
obtain distributions over initial conditions for the classi-
cal model. There, we derived approximately the general
solution in minisuperspace to the Wheeler-DeWitt equa-
tion, we implemented the two boundary-condition propo-
sals of Vilenkin® (“tunneling from nothing”) and Hartle
and Hawking* (“no boundary”) to obtain specific solu-
tions, and we compared the resulting distributions by re-
stricting these wave functions to the initial edge of the
Lorentzian semiclassical domain of inflationary trajec-
tories.

In Ref. 1, we showed that the classical inflation tends
to smooth out scalar and tensor perturbations. We thus
could convert the observational bound (that perturba-
tions presently reentering the horizon be small) into a
lower bound on €, €>10''/2. The only necessary input
was the ““‘usual” assumption that the inhomogeneous sca-
lar and tensor modes begin in their ground states.’ In
this paper, I obtain the wave function for these inhomo-
geneous modes in the perturbative superspace approxi-
mation that the mode strengths are small (this on top of
the approximations already made in Ref. 2 to determine
the wave function in minisuperspace). I then apply the
boundary-condition proposals to verify the ground-state
assumption for both. This ground-state conclusion should
not be surprising since in work on perturbations in a
model of Einstein gravity plus a scalar field Vilenkin® has
found his boundary condition to fix the inhomogeneous
parts of the wave function precisely the same as they are
fixed in Halliwell and Hawking.” There (Einstein gravity
plus a scalar field) as here (R +€eR? cosmology) both
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boundary conditions start perturbations off in the ground
state; the proposals differ (to semiclassical order) only in
the initial state of the expansion degree of freedom.

I thus conceive of this paper as an application of the
perturbation analysis of Ref. 7—an application which
supports and extends the work in Refs. 1 and 2, and
verifies the intuition gleaned from the wave-function for-
malism applied to the scalar field model (Refs. 6 and 7).
My notation will accordingly follow closely that of Refs.
1 and 2. All three papers, though, should be viewed in the
larger contexts of work on higher-derivative gravity and
the wave-function formalism.?

My approach here becomes straightforward after I ex-
ploit one strategic fact: Whitt® has exhibited a conformal
transformation that expresses R +€R? as Einstein gravi-
ty plus a scalar field. This transformation, important to
the calculation and insight of Ref. 1 and central to the
method of Ref. 2, is no less key here. The potential for
this “conformal-picture” scalar field (which, of course,
carries the extra scalar degree of freedom present in the
scalar curvature in higher derivative gravity) is zero for
large values of the field (the inflationary regime) and ap-
proaches the “scalaron mass,” ~1/ V/6€, in the linearized
limit.

Once in the conformal picture, I can borrow (almost)
wholesale the formalism of Halliwell and Hawking’ to set
up and analyze the wave function for the perturbations.
In their paper, Halliwell and Hawking present the mode
expansion in detail for the perturbed Friedmann model.
My application of their work requires me simply to con-
sider the effect of the special form of the potential for the
R +€R? model. Halliwell and Hawking require that the
perturbations match the Hartle-Hawking compact-
manifold boundary condition at zero size for the
Universe (in the Euclidean regime), leading to a wave
function regular in the perturbations. Vilenkin® directly
requires regularity in the wave function to enforce literal-
ly his “tunneling from nothing” proposal. As they show
(and I shall show in the present context) this leads to the
ground-state initial conditions. Wada!® has analyzed the
wave function tensor modes in some detail for a model of
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Einstein gravity plus a cosmological constant that is
nearly equivalent to the R +€R ? conformal picture in the
inflationary limit. His methods for solution of the pertur-
bative superspace Wheeler-DeWitt equation will prove
useful here. Other authors have variously employed the
perturbative superspace approach to problems in quan-
tum cosmology.'!

The body of this paper is split into two sections: In
Sec. II, I obtain the Wheeler-DeWitt equation including
all the mode-strength variables out to quadratic perturba-
tive order. In Sec. III, I solve the perturbed Wheeler-
DeWitt equation for the inhomogeneous-mode parts of
the wave function (for high mode number) and apply the
boundary condition(s), verifying that these modes begin
in the ground state.

II. THE WHEELER-DeWITT EQUATION
WITH PERTURBATIONS

I study a model cosmology governed by the action"?

4 2
16Gfdx\/ g (R +e€R?)

—Gfd3xx/ZK(1+2eR) , @.1)

which represents Einstein gravity with an additional
quadratic gravitational term. Here, R is the scalar curva-
ture, g is the determinant of the spacetime four-metric, A
is the determinant of the induced spatial three-metric on
the boundary of integration, and X is the trace of the ex-
trinsic curvature. The sign conventions are those of Ref.
1 and I choose units in which #=c=1 and G=1},. The
parameter € will then have dimensions of /2. Under the
Whitt conformal transformation,’

g, =e*g,, , ¢=1In(1+2R), (2.2)

the action (2.1) can be reexpressed as Einstein gravity
plus a scalar field:

2R
16 G Terg J 4 R
_fd x(_—g~)1/2
3 1 _
X FHY 4 241__1 2
876 008 TGl le )

2K . (2.3)

87TG o d 2
Geometric quantities in conformal space are here denot-
ed by a tilde. During the classical inflationary epoch, the
€R? term will dominate the action (2.1). This corresponds
to large ¢, generating in (2.3) an effective cosmological
constant, 1/(8¢). The unperturbed Robertson-Walker
line element is

ds?=—dt*+a*(t)[dx?+sin®y(d 6*+sin’0 d ¢?)]
2t )(Qydx'dx)) ,

where 0=y =m, 0<60=m, and 0=¢=27. With a con-
venient choice of variables in the conformal picture, this

=—dt’+a (2.4)
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can be rewritten
d§2=02[ —dT2+a2(T)(Qijdx ‘dx))], 2.5

where =2G /37, a=a(1+2€eRy)"?0 r=1t(1
+2€eR, )1/2 ! o= +In(1+2€R;), and the O subscript
denotes the homogeneous part. Now, the action (2.3) in
this unperturbed model can be written

SOZ%de’~a

+a

2

déy
dr

2 —2
2| (1—e Hop

1__

Ay

] , (2.6)

where a2 =36me/G. This action, and its corresponding
Wheeler- DeW1tt equation, has been studied in Ref. 2,
where the O subscript distinction on the homogeneous
variables was omitted. To include the effect of perturba-
tions, I now explore the full action (2.3) in the manner of
Halliwell and Hawking.” In the conformal picture, the
3+1 split is written
ds*=—(N2—=N,NYd7?+2Ndx'dr+h dx'dx’ . (2.7
This metric may then be expressed as a general expansion
around the unperturbed metric (2.5):

N=0 (146738 Q"m | » (2.8a)
nlm
Ni=0a(r) 3167 ki (Pi) 1 + 21 2 (S 1 1 s
nlm
(2.8b)
¢ ¢o +2l/27T2fn1mQ Im » (2.80)
nlm
and
ﬁszazaz(T)(Qij+€ij) » (2.8d)
where
611212[61/2 n1m3Qz]inm 61/2bn1m( g )nlm
nim
+21/2C(o,e)n1m(Sij(o,e))nlm
+2d(0'e)nlm(Gij(0’e))"1m] . (2.8€)

The coefficients a,, b,, ¢,, d,,, f,, &> j.» and k, are all
perturbatively small functions of time. I will henceforth
follow the convention of denoting all the indices n,l,m
and the odd-even parity designators o,e by the single in-
dex n. The Q" are hyperspherical scalar harmonics; P;"
and S;" are hyperspherical vector harmonics of the scalar
and vector types; P;", S;", and G;;" are hyperspherical
tensor harmonics of the scalar, vector and tensor types,
respectively. All are defined and displayed (together with
some of their most useful properties) in Ref. 7. The
three-metric ;0 " *a™* will be used to raise and lower
spatial indices.

To simplify the calculation I introduce the gauge
choice, a,=b,=c,=j,=0. Then, following the pro-
cedure of Ref. 7, I can expand the action in the confor-
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mal picture (2.3) out to quadratic order in the perturba-
tions. The only wrinkle concerns the potential term
ji2le

— [ 647Ge

The simplifying assumption I wish to make is to hold the
homogeneous part of the scalar field, ¢, in Eq. (2.8¢c),
large, corresponding to the strongly inflationary regime.
Indeed, in Ref. 2, the wave function is derived only up to
first order in e 2% [first order in 1/(€R)]. If I keep only
terms to this order here and assume addmonally that the
perturbation mode strengths are small, I can rewrite the
potential term as
1 /2 1—2e

o 4
Jatx(= 647Ge

Note that the only remaining coupling of the perturba-
tions to the potential will come from perturbations of
(—g)'2. The rest of the perturbed action is straightfor-
ward, if tedious, to obtain.

I should stress that this method of analysis consigns
the wave function to three successive approximations:
First to small inhomogeneous mode strengths, then to
first order in 1/(€eR,), and finally (below) to a first-order
Wentzel-Kramers-Brillouin (WKB) approximation. The
latter two approximations already severely restrict the
realm of validity in minisuperspace, and the wave func-

2¢ ___ 2
le 7—1) (2.9)

~24,
(2.10)

]

2
— 2
dy

2

L = 10 [ % | +642

o

[ ld,, +4lq,
a

(Fu—8udo P~ —1>fi]+l%

a
a

These equations (2.11) are now the R +€eR? version of
Egs. (B1)—(B5) of Ref. 7 with my choice of gauge and no-
tational conventions. At this point, it is possible to

. achieve a vast simplification to the tensor-mode parts of
these equations by choosing a new expansion variable in
the manner of Wada:!°

a=affe " (2.12)
n
Then the action (2.11) can be reexpressed as
S=S,+3S, , (2.13a)
n
where
Sozéfdfl—&a%a%%,
2
+a|1— |2 | (1—2e ”0)‘ ] (2.13b)
a*

2
_%n
2
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tions here must then be held near the unperturbed wave
functions of Ref. 2. But, these approximations are valid
on the quantum-classical boundary at the initial edge
of inflationary trajectories in the Lorentzian domain of
minisuperspace. I will thus stay with the interpretation
of Ref. 2 and consider the wave function to give the am-
plitude for branching to a classical trajectory in the ex-
pansion degree of freedom on this boundary (other de-
grees of freedom may remain in the highly quantum re-
gime long after this branching).

The calculation sketched above gives for the action to
quadratic perturbative order

S=85,+3S, , (2.11a)
where the unperturbed action is now
_1 .2 372
S0—2 fdr‘ ad”+a’d,
2 -2
tal1— % | (1—2e ""’)H (2.11b)
*
(the overdot denotes d /d ) and
s,=[drL, , 2.11c¢)
where
2
n+1—6 -2
*
o ki
= | gl-——=>t—— b (2.11d)
P gn 3a nz_l) a fn¢0
[
and
s,=[drL,, (2.13¢)
where
1_ n 1
Ln=—5a3[ d?’,— 5 d,%]
2
+ ‘(f —8, o) —(n?—1)=3
a
k,g 5 1
+ |2 | & | Zn8n [ﬁ g2
3la| & a
ki 2
3(72(712‘—1) nfn¢0} ] .
(2.13d)

Now, 0L, /3g, =0 and 9L, /dk, =0 provide the con-
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straints
2
1& . . . la
?Efn¢0_fn(¢0)3+fn¢0_ {_(;
k,=3(n’—1)a N 2
. —4 | &
2+ﬁ.____ ol
B3+ |2
(2.14a)
and
. & .
(nz—l)gf,ﬁ‘fnl%
g, = - 4 2 . (2.14b)
;2 n-— a
+__ —_

The only perturbative degrees of freedom are the scalar
modes, carried by the f,, and the tensor modes, carried

by thed,.
Now, the canonical momenta are
o oL, =—aa+ 3 (—adag’+1ik,g,a) (2.15a)
a . &n 3 n8&n®) 5 -1oa
aa n
_ oL, 3 3, . _,
Ty = 7 Q& ¢0+E[—gna (fn‘—gn(p())——a knfn] s
° 3¢y n
(2.15b)
oL, _3
T, = ad" =a’d, , (2.15¢)
and
oL, 3 .

The Hamiltonian is obtained by the usual prescription,
H=x,x—L:

1 Ly 35 | -2
H=— ___q_+__o_a 1— i (1_26 ¢0)
2 a al a,
17-2
+3 | =5 tan’=1)f}
n
77_2
+3 | =5 tan?—1d?
n
T, f, Sammy
+ 38—+ 3k, — | | - (2.16)
n n

The constraint parts of this Hamiltonian (the last two
sums), corresponding to the independent constants g,,, k,,
must be individually satisfied by the wave function (since
the wave function is independent of g,,, k,, ). They will be
trivially satisfied at the order of approximation used here
because they are of quadratic order in the perturbations
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and T, is small. Factor-ordering worries left out (again

to this order of approximation), canonical quantization,
fr, = —i3d/0x, yields finally the Wheeler-DeWitt equation
appropriate to this approximation and gauge,

Av(@&, ¢y {d,},(f,})=0, (2.17a)
where
A=A,+3A1,, (2.17b)
1@ 1 &
° 2a |aa? a? ag?
_ 2
—@ 1= % | (1—2e 2"‘0)]], (2.17¢)
a*
and
2
ﬁnz_l_ L_a_?+a-2(n2__l) 3
2a a’ of?
_ L ¥ a2 (2.17d)
a? ad? " :
III. SOLUTION OF THE

WHEELER-DeWITT EQUATION

To solve the infinite-dimensional Wheeler-DeWitt
equation (2.17) I follow Wada!® and write the wave func-

tion as
V=exp(iS) , (3.1)

and expand S (&, ¢, {d,},{f,}) out to quadratic order in
the perturbations,

S(@,¢0,{d, ), {f1])=S0(@ po)+ 13T SHa@)d?

+iss/@af? . 3.2)
n

Separating the order of perturbation, and keeping terms

to semiclassical order, I obtain three equations:

2 2

aSO 1 aSO
da a? | 3¢,
_ 2
—azll— 2 (1=2¢ ) |=0, (3.3a)
a*
aS, | |asid | (sH?
- +—5—+&n*—1=0, (3.3b)
oa da a
and
3S, | [asf | (s))»
— +a3n?*—1)=0. (3.3¢)
oT da a?

Now, Eq. (3.3a) has been solved in Ref. 2 in the region of
minisuperspace where the kinetic term in ¢, is ignorable
(near the Hartle-Hawking and Vilenkin wave functions).
For Egs. (3.3b) and (3.3c), I can make the adiabatic ap-



proximation for large mode number n. Writing
9S, /8@ =m,= —aa and assuming that & is slowly vary-
ing, Egs. (3.3b) and (3.3c) can be rewritten as

(S,9?+a*n’—1)=0 (3.3d)

and

(S, 2+a*n?—1)=0. (3.3e)

These equations (3.3d) and (3.3e) are algebraically solv-
able to get

S,?~+iV'n?’—1a? and S,/=+iVn?—1a?. 3.4
Now, in the treatment by Halliwell and Hawking, they
require that the mode strengths d,(7) and f,(7), when
evaluated in the Euclidean domain for small scale factor,
should vanish. That is, the Hartle-Hawking boundary
condition requires that the contributions to the path in-
tegral are from those paths which start out at d, = f,, =0.
To see what this leads to in the wave function here, 1
briefly consider the scalar modes: In the semiclassical re-
gime (whether inside or outside the barrier) I find [from
Eq. (2.15¢) and Egs. (3.1)-(3.3)]:

m, =~a’f, =S,/ f,=xiVn’-1a’f, . (3.5a)
In the Euclidean semiclassical regime (under the barrier),
I retrieve the solution, @=a(7g)=a,sin(7g /a,), where
T =Iit, from the discussion preceding Eq. (4.27) of Ref.

2. Then, the solution to Eq. (3.5a) is
tan(7g /2a,) |+Vn’-1

Sfalrg)=fulrg) (3.5b)

tan(rg /2a,)

The solution which matches the boundary condition that
fn(7E=0)=0 picks out the positive sign. As can be seen
from Eqgs. (3.1)-(3.4), this sign just corresponds to the
wave-function mode regular in f,. Now Vilenkin’s
boundary condition enforces this regularity directly on
the wave function. Though the procedure is admittedly
not rigorous (as Vilenkin® has pointed out), because f,
and d, have been assumed small in deriving (3.4), this re-
quirement demands the positive sign and both boundary
conditions are seen to yield the same form for the pertur-
bative parts of the wave function.

A final expression for the wave function may now be
written down. I use the notation [based on Egs. (3.1) and
(3.2)] .

W(aa¢0’{fn}’{dn})

=‘I’O( a’ ¢0)Hwnscalar( C—i’ fn )wntensor( a’ dn ) . (36&)

The homogeneous part of this ~wave function
V,=exp(iSy[@,d,]) is given by Eq. (4.37) of Ref. 2 for
Vilenkin’s boundary condition and by Eq. (4.38) of Ref. 2
for Hartle and Hawking’s. The wave functions for the in-
homogeneous modes for large n in the adiabatic approxi-
mation, as inferred from (3.1), (3.2), and (3.4) with the +
sign, can be written for both boundary conditions as
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-Vn2—1a%f2,2

\Pnscalar(a’fn )=~e (3.6b)

and

—V 215242
T (3.6¢)

\I’ntensor( a, dn )=e

Both of these wave functions have the ground-state form
for harmonic oscillators of frequency w?=a@*n?—1).
Indeed, from Eq. (2.17) they individually satisfy
Schrodinger equations in the form for such an oscillator
in the semiclassical approximation:

-
IE\I’ scalar
Z—L ————aSO _a_ n
a da 3a scalar
L 1 82 a n —
=E _;2— af2 +a2(n2—l)f'% v scalar(a,fn)
(3.7a)
and
. 9
tgwntensor
_ i |9 |3 .
__E & E tensor
2
='217 o 3?12 +@(n? = D} | W o @ d,) -
a n
(3.7b)

Here time has been reintroduced in terms of the expan-
sion of the classical background &(7) in the Lorentzian
semiclassical domain. That tensor modes should satisfy
the same Schrodinger equation as scalar modes directly
follows from the work of Ford and Parker,!?> who showed
that odd- and even-parity gravitational perturbations are
equivalent to massless minimally coupled scalar fields.

The modes remain in the ground state until the adia-
batic approximation breaks down-—until they cross out
of the horizon.!> This crossing was shown in Ref. 1 to
occur during the inflationary epoch, where the approxi-
mation of large ¢, still holds. The ground state wave
function (3.6) at the outgoing horizon crossing is the
starting point of the evolution calculations in Secs. IV
and V of Ref. 1.
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