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We propose a simple yet efficient mechanism for passive error correction in topological quantum memories.
Our scheme relies on driven-dissipative ancilla systems which couple to local excitations (anyons) and make
them “sink” in energy, with no required interaction among ancillae or anyons. Through this process, anyons
created by some thermal environment end up trapped in potential “trenches” that they themselves generate,
which can be interpreted as a “memory foam” for anyons. This self-trapping mechanism provides an energy
barrier for anyon propagation and removes entropy from the memory by favoring anyon recombination over
anyon separation (responsible for memory errors). We demonstrate that our scheme leads to an exponential
increase of the memory-coherence time with system size L, up to an upper bound L., which can increase
exponentially with A /T, where T is the temperature and A is some energy scale defined by potential trenches.
This results in a double exponential increase of the memory time with A /T, which greatly improves over the
Arrhenius (single-exponential) scaling found in typical quantum memories.
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I. INTRODUCTION

The ease with which classical information can be stored
is often taken for granted. Yet achieving the analog of simple
tasks such as recording a list of bits on a long-lasting piece
of paper remains extremely challenging in the quantum realm.
Despite tremendous progress in manipulating individual quan-
tum “objects” such as electrons or photons, self-correcting
classical memories—memories that can store bits at finite
temperature for arbitrarily long periods of time without active
error correction [1-5]—currently have no known quantum
counterpart. The only exceptions are theoretical models
requiring more than three spatial dimensions [1,6,7].

Quantum bits (qubits) require more protection than classical
bits as they can be in a coherent superposition of two states,
which is particularly prone to dephasing due to random energy
fluctuations induced by a thermal environment. To suppress
this source of decoherence, Kitaev and Preskill introduced the
concept of ropological quantum memory [1] where quantum
information is stored in the ground-state subspace of a
Hamiltonian with topological order [8]. Topology guarantees
that states belonging to this subspace remain degenerate under
(weak and static) local perturbations, in the limit of a large
system [9,10]. Quantum information is encoded in a nonlocal
way, which shields it from the local perturbations induced by
typical thermal environments.

A paradigmatic example of topological quantum memory—
the 2D toric code—was introduced by Kitaev in a pioneering
work [11]. Subsequent studies demonstrated, however, that
Kitaev’s toric code does not provide passive protection against
errors induced by a thermal environment [3,12]. The crux
of the issue is that local excitations created by thermal
fluctuations—known as anyons—are essentially free to diffuse
over large distances with no energy cost, which eventually
leads to harmful nonlocal perturbations. The possibility of self-
correction was ruled out in broad classes of 2D and 3D models
for similar reasons [4,5,13—16]. Despite these no-go theorems,
several strategies have been developed to passively prolong
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FIG. 1. Efficient passive error correction provided by a “memory
foam” for anyons (applied, here, to the toric code). Each plaquette
of four spins (black dots) on the toric-code lattice is coupled to
a driven-dissipative ancilla system whose purpose is to lower the
plaquette energy (indicated by height and white-to-blue color scale)
whenever the plaquette is visited by an anyon (in red). The ancilla
can be regarded as a quantum three-level system with a coherent
drive (black double arrow) coupling level |0), to level |2),, with fast
subsequent decay to some metastable level [1), and slower decay
back to |0), (we describe an alternative practical realization based
on cavity-QED systems in Appendix A). When a plaquette becomes
occupied (top left), level |2), falls into resonance with the drive and
level |1), is quickly populated (blue dot). In contrast, when no anyon
is present (top right), level |2), is off-resonant and any occupation
of level |1), slowly decays back to level |0), (grey dot). Crucially,
the population of level |1), acts back on the toric-code memory by
lowering the local plaquette energy. As a result, anyons (created
in pairs) become trapped in potential “trenches” that they self-
generate (in blue). This “memory-foam” effect makes it much more
likely for anyons to recombine than to separate and cause memory
errors.
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the lifetime of topological quantum memories: long-range
interactions between anyons [17-20], energy [2,21-26], and
entropic barriers [27] to suppress anyon propagation, disorder
to localize the anyons [28-30], and engineered dissipation
to remove entropy and excitations from the system [31-33]
(see Refs. [34-36] for recent reviews). Classical cellular au-
tomata effectively mediating long-range interactions between
anyons have also recently been proposed to actively correct
errors [37,38].

In this work, we propose an efficient mechanism to pas-
sively prolong the lifetime of topological quantum memories
based on stabilizer codes [39], focusing on Kitaev’s 2D toric
code as an example. Our scheme relies on the introduction of
driven-dissipative quantum systems (ancillae) which couple
to the memory locally. When anyons are created by local
perturbations, the energy of the corresponding stabilizers (or
“plaquettes”) is quickly reduced due to the memory-ancillae
coupling, which effectively makes the anyons “sink” in energy.
When an anyon moves to a different plaquette, the energy of the
previous one remains lower for a certain time, such that anyons
become trapped in an extended potential well (or “trench”) that
they generate (see Fig. 1). Since escaping a trench requires to
overcome an energy barrier, anyons tend to recombine instead
of separating by large distances, which efficiently suppresses
memory errors. This powerful dissipative error-correction
mechanism can be regarded as a “memory foam” for anyons.

To demonstrate the efficiency of our scheme, we inves-
tigate the dynamics of anyons in a standard paradigmatic
model: Kitaev’s 2D toric code coupled to a bosonic thermal
environment (Ohmic bath) [40]. Remarkably, we find that
the coupling to driven-dissipative ancilla systems induces
a significant free-energy barrier to errors: For a constant
ancilla-memory coupling strength U, the memory lifetime
increases exponentially with system size L, up to an upper
bound independent of L. Most importantly, its maximum Tp,,x
can increase double exponentially as the bath temperature is
lowered, i.e., Tmax ~ exp(cleﬂ”), where ¢; and ¢, are positive
constants and 8 = 1/T is the inverse bath temperature (we
set the Boltzmann constant to unity). Reaching this limit
requires (i) to increase the system size (single-)exponentially
with decreasing temperature, and (ii) to tune the decay rate of
one component of the memory (the ancilla systems) around an
optimal value which decreases exponentially with decreasing
T. The resulting double-exponential scaling holds in the
low-temperature regime 7 < U, and is in stark contrast to the
scaling Ty,x ~ exp(BA) naively expected from the Arrhenius
law for quantum memories with a gap A. It also strikingly
differs from the super-Arrhenius scaling Tp.x ~ exp(cB?)
(with ¢ > 0) obtained in recent proposals for passive error
correction in topological quantum memories [21,27,41].

The coherence time of quantum memories is generally
governed by the interplay between energy barriers and entropic
contributions to errors [34]. In Kitaev’s 2D toric code, though
the creation of anyons requires an energy of the order of the
gap, the energy barrier that must be overcome to separate
anyons by a distance ¢ and create an error is independent
of £. Anyons are free to diffuse, and entropic effects play
a prominent role since the number of pathways leading to an
error increases with system size [34]. Remarkably, the situation
changes drastically upon introducing driven-dissipative ancilla
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systems as per our proposal: when anyons continuously
sink into potential wells, the energy required for them to
diffuse a distance £ away from each other increases (linearly)
with €. In addition to this large energy barrier, entropic
contributions are also strongly suppressed. Indeed, the finite
lifetime of potential wells at location previously visited by
anyons generates preferred pathways for anyon recombination,
thereby suppressing memory errors.

A number of theoretical proposals have led to memory
lifetimes that scale polynomially with system size, up to an up-
per bound that depends on temperature with super-Arrhenius
scaling of the form 7y, ~ exp(c,Bz) (withc¢ > 0)[21,41]. This
behavior is commonly referred to as partial self-correction, as
opposed to true self-correction characterized by a coherence
time that increases without bound with system size [34]. It
is generally attributed to the existence of an energy barrier
that grows logarithmically with the separation between local
excitations, which is the most favorable scaling achievable
in a wide family of quantum memories based on spin
models with translation invariance [42]. Recent studies have
explored ways to surpass these results by breaking translation
invariance [25,26,43]. So far, however, the complexity of these
models has made it difficult to investigate their self-correction
properties (see, e.g., Ref. [34]). The scheme that we propose
in this work lends itself more easily to theoretical analysis. As
opposed to known models for partial self-correction [21,41],
it does not require to break translation invariance and does not
introduce a ground-state degeneracy that depends on system
size. Most importantly, it leads to an exponential improvement
of the memory lifetime with increasing system size, which,
even if bounded, is reminiscent of true self-correcting models
such as the 4D toric code [1].

A. Structure of the paper

This paper is organized as follows. First, in Sec. II, we
present our model. We start by briefly reviewing Kitaev’s
2D toric code which will serve as a “toy-model” topological
quantum memory to illustrate our scheme. We then introduce
the driven-dissipative ancillae that lie at the heart of our
proposal and consider a standard error model based on a
generic type of (bosonic) thermal bath. Next, in Sec. III, we
examine the low-temperature regime in which a single pair of
anyons is present, with no additional pair creation. To gain
intuition about the dynamics of a single pair, we consider
a simple toy model where anyons generate a self-trapping
potential that (i) develops instantaneously on plaquettes that
they visit, (ii) does not decay, and (iii) can only expand
along one dimension (forming a 1D potential trench). We then
argue that relevant potential trenches are indeed expected to
be (mostly) one-dimensional, and study both analytically and
numerically the effects of relaxing assumptions (i) and (ii). In
Sec. IV, we present the figures of merit of the quantum memory
obtained through our scheme. We discuss the effects arising
in the general case where multiple anyon pairs are present,
and provide qualitative estimates for the memory lifetime.
We support our claims by extensive numerical computations.
Finally, in Sec. V, we summarize our results and discuss
their implications. We then provide additional details in
Appendices.
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II. THE MODEL

The scheme that we propose in this work is directly relevant
to any kind of topological quantum memory based on stabilizer
codes [39]. To provide a concrete discussion and quantitative
results, we focus on Kitaev’s paradigmatic (2D) toric code. We
first briefly recall the details of this model.

A. Kitaev’s toric code

Kitaev’s toric code is defined on a two-dimensional surface
with periodic boundary conditions (a torus). It consists of
quantum two-level systems (“spins”) arranged on a square
lattice, as depicted in Fig. 1. These “physical” qubits are used
to encode two “logical” qubits in a subspace identified by
mutually commuting quasilocal operators (or “stabilizers”) of

the form
As=]]er. By =]]o} (1)

JESs Jjep

where o7 and a; are Pauli matrices and j € s(p) denotes the
set of four spins j belonging to a “star” (around vertices)
or “plaquette” (around elementary squares; see Fig. 1),
respectively. The subspace where logical qubits are stored
is spanned by the eigenstates [i) of star and plaquette
operators (A; and B,) with eigenvalue +1, i.e., such that
AslW) = Bplyr) = |¥). This “stabilizer space” coincides with
the ground-state subspace of the toric-code Hamiltonian

Hie=-2Y4,-2Y 5, @)
s P

where J; and J, are positive constants which we refer
to as “star” and “plaquette” energies, respectively. In this
setting, stars and plaquettes can be regarded as occupied
by a quasiparticle excitation whenever the system lies in a
eigenstate of the corresponding operator (A; or B,) with
eigenvalue —1. These excitations are (Abelian) anyons [11],
and the stabilizer space (or ground-state subspace) can be seen
as the associated vacuum.

The lifetime of the quantum information stored in the toric
code crucially hinges on the dynamics of anyons. In general,
local “errors” (defined by local Pauli operators) create, move,
or annihilate anyons. Starting from the anyonic vacuum, for
example, a “bit-flip” error o7 acting on a physical qubit j
creates a pair of anyons on neighboring plaquettes (since o7}
anticommutes with two plaquette operators). If an anyon is
already present on one of these plaquettes, the bit flip moves
it to the neighboring one, and if a pair of anyons is already
occupying the neighboring plaquettes, the bit flip annihilates
it. The process of creating an anyon pair, moving the anyons,
and recombining them requires a product [ jeco; of local
errors along a closed loop C on the lattice. Although it is clear
that such loops leave the system in its ground-state or stabilizer
space, loops that “go around” the torus (such that they cannot
be contracted) do modify the state of the logical qubits. Indeed,
the Pauli operators associated with these qubits correspond
to products of local spin operators o]’.c’z along loops winding
around the torus (two in each direction) [11]. These loops can
be defined arbitrarily provided that they wind around the torus
and that the resulting operators commute with all plaquette
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and star operators. The quantum information encoded in the
toric code is then robust against local errors provided that
topologically nontrivial loops are not created. We now present
an efficient scheme to suppress logical errors in a passive way,
with no need to constantly monitor the anyon positions and
actively recombine anyons coming from the same pair.'

B. Ancilla systems

The creation of anyons (in pairs) on stars or plaquettes is
suppressed by an energy gap 2Js or 2J,, respectively [see
Eq. (2)]. Once anyons are created, however, no additional
energy cost is required for them to diffuse around the torus
and cause a logical error. To generate an energy cost and
hinder such diffusion, we introduce on each plaquette and
star an ancilla system, which performs a simple local task:
it repopulates a slowly decaying (metastable) state whenever
an anyon visits the plaquette (star), and this population acts
back on the system by effectively lowering the plaquette (star)
energy J, (Jy) [see Fig. 1]. Below we focus on plaquettes,
for simplicity, restricting ourselves to errors of the type oj’F
(bit flips). Our scheme can be readily extended to stars, in
which case protection against all types of local errors would
be provided.

Our proposal consists in complementing each plaquette
p by an ancilla system a, that acts on the original system
according to the effective Hamiltonian

ng,()U
—o B,,
where U > 0 is a coupling constant and n,, (1) < 1 is the
population of the metastable ancilla state at time . Remem-
bering the form of the toric-code Hamiltonian (2), one sees that
H, i effectively shifts the energy of the associated plaquette
from J, to J, —n,, U (we assume that U < J, so that this
energy remains positive). Since this corresponds to the energy
of an anyon on the plaquette, the energy shift —n,, U can be
interpreted as a local effective potential well for anyons. The
coupling constant U corresponds to the maximum depth of
this potential.

The time evolution of the ancilla state population n,, (or
potential depth n,,U) plays a key role in our scheme. We
assume that it decays at a slow rate yge. (corresponding to the
lifetime of the metastable ancilla state), and, most importantly,
that it is “repumped” to unity at a fast rate Ypump > Vdec
whenever an anyon is present on the plaquette. We present
in Appendix A more details regarding the implementation
of an ancilla system that would provide such dynamics and
interact with the toric code according to Eq. (3). Due to the
ancilla-pumping mechanism, anyons continuously “sink” in
energy (over a time ~1/ypump and by a maximum amount of
—U). An effective potential well of depth n,,U develops on
each plaquette that they occupy, and this potential decays on a
slow time scale ~1/yqec as they leave the latter.

The ancilla systems introduced above provide a simple
mechanism for error correction: When an anyon pair is created,

Hp,eff(t) = (3)

I As discussed in Sec. V, our scheme could also be used for active
error correction or decoding.
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both anyons quickly sink into potential wells of depth ~U,
thereby opening up a potential well of area 2 (in units of
plaquette area). Trapped in this potential, the probability that
they diffuse away from each other instead of recombining
can be greatly reduced, as we demonstrate below. Every time
they manage to separate further (by paying an energy cost
~U), they extend the potential well in which they are trapped,
which makes it more likely for them to retrace their steps and
recombine. This mechanism lies at the heart of our proposal.
It generates an anyon dynamics that prolongs the lifetime
of the memory. The fact that potential wells decay over a
slow time scale ~1/yqe. further complicates the dynamics,
but is necessary to avoid the proliferation of potential wells
everywhere in the system (in which case anyons would diffuse
freely as in the original toric code).

We remark that the ancilla systems record information
about the toric code and act back on the latter in a quantum-
non-demolition way, leaving the system in an eigenstate of
plaquette and star operators. Indeed, H,, ot [Eq. (3)] commutes
with the toric-code Hamiltonian [Eq. (2)]. However, quantum
coherence is not required for the internal ancilla dynamics. All
that matters is the population of the ancilla levels, which can
be controlled by incoherent (classical) means, as discussed
in Appendix A2. In particular, the ancilla-decay rate ygec
can be made (almost) arbitrarily small by adding incoherent
repumping processes. Finally, we note that our scheme is
robust against small local perturbations of the toric-code-
ancilla interaction H), ¢, since the ground-state degeneracy
of the toric code is well known to be stable against generic
perturbations that are local and small as compared to the energy
gap 2J [we set J; = J, = J in Eq. (2), for simplicity] [11].
The more relevant issue concerns the robustness of the system
as a quantum memory at finite temperature. To address this,
we now introduce a model thermal bath that weakly couples
to the system.

C. Thermal bath

To model the interaction of the system with a typical
thermal environment, we introduce a bosonic bath of har-
monic oscillators and assume that each physical spin of the
system is weakly coupled to this bath as described by the
paradigmatic spin-boson model of quantum dissipation [40].
More specifically, we consider a local spin-bath coupling of
the form NJJ’.‘ > )\,-(aj + a;) (inducing bit-flip errors), where
A; is the coupling amplitude to a particular bosonic mode i
with creation (annihilation) operator aj (a;). After a standard
master-equation treatment of the system-bath interaction (see,
e.g., Ref. [44]), one finds a rate equation for the toric-code
dynamics

Pm = Z[y(wmn) Pn — Y (@um) Pm], 4

n

where p,, is the probability that the toric-code system is in state
|[¥,) and y(wp,,) is the transition rate to state |, ), which
depends on the energy difference w,,, = E, — E,, between
initial and final states. The explicit form of the rates derived
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v(w) =Ky

w /W,

e“’/T—l‘e o ’ ©)
where k; > 0 is a coupling constant, 7 = 1/8 is the bath
temperature, and w, is an energy cutoff which we assume to be
much larger than all relevant energy scales, for simplicity, such
that e~!°//® ~ 1. The constant A characterises the low-energy
behavior of y(w). Although our scheme applies more broadly,
we choose A = 1 and define ¥ = k. This corresponds to a very
common type of bath usually referred to as “Ohmic” [40].
Irrespective of A, Eq. (5) ensures that the rates satisfy the
detailed-balance condition y(—w) = e/ Ty (w), which would
lead to a thermal (Gibbs) steady state in the absence of ancilla
systems. We note that the generic bath considered here induces
uncorrelated bit-flip errors, as would typically be the case in
systems with (quasi-)local interactions.

III. CORRECTION OF A SINGLE ERROR

In the toric code, memory errors occur due to the creation
and subsequent separation of anyon pairs. For a finite density p
of anyons, an error occurs when anyons separate over distances
~ 1/,/p corresponding to the typical distance between anyon
pairs. In this section, we start by examining the dynamics
of a single anyon pair in the presence of ancilla systems as
introduced above. We estimate, in particular, the probability
Pyep(£) that an anyon pair separates by a distance £ before
recombining. For a well-defined potential trench of depth U >
T, this probability is governed by the small parameter oy =
y(U)/y(0) which determines the probability of escaping the
trench instead of simply diffusing inside it.> For small enough
ay <K 1, we find that Pyep(€) o (aT)e. This exponential decay
lies at the heart of our scheme.

A. Instructive toy model: single anyon pair
in a 1D potential trench

The interplay of intratrench anyon diffusion and occasional
trench expansion makes it challenging to provide a general
analytical description of the separation probability Pgep(£).
Difficulties arise, in particular, from the fact that at least
two anyons diffuse simultaneously within a trench. To gain
insight into this dynamics, we first examine an instructive
toy model based on the following simplifications. (i) We
consider a single pair of anyons. (i) We assume that potential
wells develop instantaneously on plaquettes where anyons
are located (leading to the formation of a trench), and that
local potentials do not decay over time (i.e., we consider an
infinite pump rate and a vanishing decay rate; see Sec. II B).
(iii) We assume that the resulting potential trench is purely
one-dimensional. Indeed, 1D trenches minimize the number
of trench extensions and thus provide the most significant
contribution to Pgp(£) when extensions are very costly. As we
show in Appendix B 2, we expect 1D trenches to dominate for

%In particular, the probability that an isolated anyon located at the
end of a 1D trench “jumps out” of the latter (thereby extending it) is
equal to y(U)/[By(U)+ y(0)] = 1/Ba + 1).
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length scales £ < £;p with

9 1/3
Lip~|— . 6
o= () ®

Finally (iv), we assume that one of the anyons is pinned at its
initial position (i.e., at one end of the trench). This assumption
allows us to treat the problem as a “single-particle problem”
and yields an upper bound PQ)(¢) for the pair-separation
probability. Indeed, pinning one anyon at one end of the trench
minimizes the recombination probability by maximizing the
distance between the two anyons. Note that an upper bound
on the separation probability leads to a lower bound on the
memory-coherence time (see Sec. V).

We consider the generic initial configuration where a pair
of anyons is created by a local perturbation, such that both
anyons quickly (here, instantaneously) end up trapped in a 1D
potential trench of length 2 (in units of plaquette length). We
define the anyon positions as x = 0 and x = 1, respectively,
and assume that the left anyon (at x = 0) is pinned. The
separation probability P{)(€) is then defined as the probability
that the right anyon reaches a maximum separation x = ¢
before recombining with the left one. This probability can
be constructed recursively. Assuming that the right anyon
just extended the trench to reach x = £ — 1, two events can
eventually occur: either the anyon further extends the trench
or it recombines with its partner. The probability of a new
extension can be expressed as

PO)

sep

PO —1)

o 1 _ PO
= ! + ———| Prec(® — z)w)L ’ (N
Ttay  1+ap PO -1

which reflects two possibilities: either the anyon ‘“jumps”
to the right (x = ¢) and, therefore, directly extends the
trench (first term) or it jumps to the left (x = ¢ —2) and
eventually comes back to the starting point x = £ — 1 without
recombining (second term), in which case recursion occurs.
Here, Po.(f —2)=1— Pr.(£ —2) denotes the probability
that the anyon starting at x = £ — 2 comes back tox = ¢ — 1
without taking ¢ — 2 steps to the left and hence recombine.
The probability of the complementary event (i.e., of not
coming back to x = ¢ — 1 and instead recombining at x = 0)
is mainly determined by the free 1D diffusion of the anyon
in the potential trench, yielding Pre.(£ — 2) ~ 1/£. The only
difference stems from the fact that the last recombination
step (when the anyon sits at x = 1 next to its partner) occurs
at a different relative rate o) = y(—[A —2U])/y(0) > 1 as
compared to free diffusion with rate y(0). As shown in
Appendix B 1, we find Prc(€) = 1/(£ + 1/a)).

With the initial condition P%(1) = 1, a straightforward

p
iteration of Eq. (7) leads to the solution

14

PO0) = l : 8
() EaT+(l—2+aJ‘)—l ®

Since 0 < 1/« < 1, the contribution of each factor (each
) to Eq. (8) is governed by the product c4/. This allows
us to identify two regimes based on whether contributions
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FIG. 2. Probability that a single pair of anyons created on
neighboring plaquettes separates by a maximum distance ¢ (in the
direction relevant for logical errors) before recombining, shown for
different potential depths U/T and infinite (vanishing) potential-
pump (-decay) rate. Data points and error bars are obtained by a
kinetic Monte Carlo simulation of the pair dynamics (see Appendix D)
with 10 trajectories. Lines correspond to best fits based on our
theoretical model [Eq. (8)] with two fit parameters: U and an overall
prefactor. The corresponding values Us,/ T = 0.00, 0.00, 0.95, 2.36,
3.64, 4.92, and 6.14 (from top to bottom) agree very well for large
U/T. Other relevant parameters are k = 1, T = 0.2. The system size
is set larger than the maximum observed pair separation. Data points
for £ = 1,2 are not used for the fits.

with a4/ < 1 or a4/ > 1 dominate: when a4 £ < 1 [such that
a4l <« 1 for all contributions in Eq. (8)], the pair-separation
probability decays to leading order exponentially with ¢,
ie., PS(eOI}(Z) ~ ocﬁ 2! ~ (ay€/e)*. The €! correction is a direct
consequence of the fact that the probability to extend a trench
of length [ increases linearly with /. Indeed, as the length
increases, the right anyon must diffuse over a larger distance
to be able to recombine with its partner. More specifically,
the time required for the right anyon to reach the origin
(and possibly recombine) when it just extended the trench
is #; ~1?/y(0). Since the anyon roughly spends a fraction
1/1 of this time at the trench boundary where it can further
extend the trench, the extension probability can be estimated
as y(U)n /1 ~ ayl.

For ay£ > 1 [i.e., for larger separations £ > 1/a4 such
that factors with / >> 1/o4 appear in Eq. (8)], the exponential
suppression crosses over to a power-law decay Rg(gg(ﬁ) ~

(ay &)~V The value Rq(gg(l/oq) ~ e~/ reached at the
crossover decreases double exponentially with decreasing
temperature 7', in the regime U/T > 1 of interest where
1/ay ~eV/T,

Remarkably, our 1D model appears to capture the behavior
of anyons beyond ¢ ~ ¢|p [Eq. (6)]. Figure 2 shows a
comparison of a kinetic Monte Carlo (KMC) simulation of the
full dynamics (see Appendix D) with the estimate of Eq. (8).
Even for moderate ratios U/T > 2, the data is very well
described by the above 1D model (with renormalized values
of U for U/T < 4). Significant deviations are only observed
for U < T where we recover the behavior of free diffusion in
2D. In that case, the probability that an anyon pair separates
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by a distance £ decreases as 1/1n(£), as in the standard toric
code [34].

B. Full dynamics of a single anyon pair

So far, we have assumed that the effective potential induced
by ancilla-plaquette interactions drops instantaneously to its
minimum —U on plaquettes visited by anyons, without recov-
ery when anyons are absent. When considering the creation
of multiple anyon pairs, this assumption would eventually
lead to a situation where the entire system experiences a
constant energy shift —U, in which case one would recover the
dynamics of the standard toric code. To avoid this issue, it is
thus important that the induced potential decays at a finite rate
Ydec- In fact, in realistic physical implementations of the ancilla
systems (see Appendix A), this potential not only decays at a
finite rate, but also develops at a finite “pump” rate Ypump When
anyons are present. To recover the results of Sec. Il A, the
pump and decay rates have to satisfy Ypump > ¥(0) > Viec-
Below we discuss the effects of having such finite rates in
more detail.

1. Finite pump rate

A finite pump rate makes it possible for anyons to move
onto a different plaquette before a well-defined potential trench
(with depth larger than T') can be established. Since this hinders
the performance of our error-correction scheme, pump should
generally be as large as possible as compared to the free-
diffusion rate y(0) = «T [Eq. (5)]. To help suppress errors
due to the finite pump rate, one could also consider ancilla
systems that generate potential wells which extend by a few
plaquettes around anyons (see Sec. V).

The effect of a finite pump rate is particularly relevant
when an anyon “jumps” out of an existing potential trench.
If ypump > y(0), the anyon is very unlikely to diffuse further
away from the trench before the latter is extended. In general,
however, a finite time ~1/ypump Will be required for it to
sink in energy. During that time, the rate for the anyon to
jump further away from the trench is given by y [U(¢)] (where
U(t) = U[1 — exp(—¥pumpt)] is the depth of the local potential
at time t), which can be significantly larger than the rate
y (U) obtained when the potential reaches its minimum. Since
diffusion occurs on time scales longer than 1/ypump in the
regime of interest where ypump is the largest rate in the system,
we estimate the probability to jump further away from the
trench without extending it (i.e., to “escape” the trench) as

Pesc = J3)/™ dt y[U(1)]. With T/U < 1, we obtain
2
72T y(0)
Pesc N —— v .
6 U Ypump

C))

Comparing P with ay = y(U)/y(0) then provides an
estimate of the likelihood of “trench escapes” over ideal trench
extensions.

The effect of a finite pump rate goes beyond increasing
the probability of trench escapes. Once an anyon escapes
and becomes separated from its original trench by a single
plaquette i (with probability Pes. << 1), a new potential trench
most likely develops at the new anyon location. Three events
can then occur: (i) the anyon can escape again and end up
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FIG. 3. Pair-separation probability for different pump rates Ypump,
with fixed potential depth U/T = 6 and vanishing potential decay
rate. Data points and error bars are obtained through kinetic Monte
Carlo simulation with 10 trajectories. Lines correspond to fits given
by aneOg(é) + bP..ct? with (a,b,c) ~ (2.05,2.25,0.40), showing
good agreement with the theoretical estimate of Eq. (10) (for large
pump rates). Note that fitting is irrelevant for the uppermost curve
(vanishing pump rate) which corresponds to the usual toric-code
scaling. Other relevant parameters are k = 1 and 7 = 0.2 as in Fig. 2
(the lowest curve is the same in both figures).

creating yet another trench (again with probability Pes. < 1),
or, to leading order, it can extend the new trench in one of
two directions: either (ii) away from the original trench or
(iii) towards it (thereby falling back into the original trench).
While event (i) occurs with probability ~Pes. << 1 and can
therefore be neglected (to leading order), events (ii) and (iii)
are approximately equally likely, with probability P, ~ 1/2.
Intuitively, this comes from the fact that the potential barriers
that the anyon must overcome to extend the new trench or
come back to plaquette i are similar (~U).> However, event
(iii) leads to the fusion of new and original trenches, and
therefore ultimately does not contribute to the pair-separation
probability to leading order (indeed, the probability that the
anyon escapes again is Pesc < 1). Consequently, the leading-
order additive correction to the pair-separation probability is
provided by events of type (ii): the creation of a new trench
occurs with probability Pes., and subsequent trench extensions
away from the original trench occur with probability P, & 1/2;
other processes contribute with higher powers of Pey. To
leading order, we thus find

Poep(£) = PO() + Pesc Py 2. (10)
Note that this behavior is still exponential, as confirmed by
our KMC simulations (see Fig. 3). The exponential scaling
persists provided that escape events are rare (i.e., Pese < 4,
or 10g ;[ Vpump/¥(0)] 2 1.3 in Fig. 3).

3 Assuming that the anyon sinks to its potential minimum —U after
a (rare) escape event, the probability that it jumps even further from
its original trench reads f,"™™ dt{y[U(v)l/ Puc)(y (U)/{y(U) +
y[U — U(7)]}), which yields P, = 1/4 in the limit U > T.
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2. Finite decay rate—trench splitting

We have argued that a finite potential decay rate ygec
is required to ensure that potential trenches do not cover
the whole system eventually. For a single pair in a single
trench, the decay also makes it possible for the trench to split
into two separate pieces once the anyon separation becomes
large enough. Indeed, a trench can only be stable if all of
its plaquettes can be visited within a time t4 = (T /U )yd_ecl,
which corresponds to the time required for local potentials
to decay by at most 7 from their initial value ~ — U. Since
the mean square deviation for the (essentially free) diffusion
within the trench during that time is given by r? = 2nDty
(where D = y(0) is the diffusion constant and 1 > n > 2 is
the effective dimensionality of the trench), we can estimate
the maximum size £.,,x = 2r that can be reached by a single
trench as

T v
e ~ 242 YO (1)
U Vdec

For system sizes larger than 2¢,,s, anyons from the same
pair which separate by ¢ ~ £, therefore likely end up
trapped in distinct potential trenches. Since at that point
the system has no means to remember that the anyons
originated from the same pair, each anyon subsequently
performs a free 2D diffusion as in the standard toric code
(with a reduced diffusion constant since thermal activation
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FIG. 4. Pair-separation probability for different decay rates ygec,
with fixed potential depth U/T = 4 and infinite potential pump
rate. Data points and error bars are obtained through kinetic Monte
Carlo simulation with up to 10® trajectories for the lowest set of
points. The continuous curve shows a best fit of the form a P{)(¢)
[Eq. (8)] of the data points from ¢ =4 to 15 corresponding to
Yaee = 0, with a and U as fit parameters (yielding Uy /T ~ 3.58,
in good agreement with the actual value). The dashed lines indicate
the value at which Py, (€) saturates for each nonzero value of yg.. The
crossing between each of these lines and the curve corresponding to
Yaee = 0 provides an estimate of the length at which saturation occurs:
Lonax it =~ 3.4,4.0,5.3,6.5,7.6,10.0, and 12.0 (from top to bottom);
in remarkable agreement, for large ¢, with the corresponding
theoretical estimates £, = 2.0, 2.8, 4.5, 6.3, 8.9, 10.0, and 11.5
[see Eq. (11)]. Other relevant parameters are k = 1 and 7 = 0.2 as
in Figs. 2 and 3. Dashed lines are obtained using points for £ = 50 to
120 (not shown).
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is required to extend individual trenches). Consequently, the
exponential decrease of the separation probability [Eq. (8);
or (10) when ypump is finite] saturates at about Pgep(£max) for
large system sizes. Although this introduces an upper limit to
the performance of our error-correction scheme, we emphasize
that the exponential decay of Pgep(£) up to £ ~ £, can lead to
pair-separation probabilities (and therefore error probabilities)
orders of magnitude smaller than in the usual toric code.

We have performed KMC simulations to verify the validity
of our estimate for £y,x [Eq. (11)]. As illustrated in Fig. 4,
our results demonstrate a good agreement with our theoretical
model. As expected, the initial exponential decay of Pgep(£)
crosses over to a plateau for £ 2 £y,x.

IV. MEMORY FIGURES OF MERIT

Building on our understanding of the dynamics of a single
anyon pair, we now investigate the average coherence time of
the quantum memory in the more realistic scenario where
multiple anyon pairs can be created. In the following, we
identify three leading error sources arising from the possibility
of having multiple anyon pairs: trench percolation, trench
saturation and trench refilling (defined below). All of these
effects should be suppressed in order for our error-correcting
scheme to be most effective. As we demonstrate below, this
can be achieved by ensuring that the anyon-diffusion and
trench-decay rates are faster than the rate at which new anyons
are created in an existing potential trench [Eqgs. (14) and (15)].
This imposes a (soft) lower bound on the trench-decay rate
and requires a low-enough bath temperature.

Under the above conditions, individual anyon pairs can
be considered as statistically independent. Indeed, our error-
correction mechanism ensures that they recombine much
faster than they are created—due to fast diffusion in potential
trenches—which makes it is very unlikely for two anyon pairs
to be present at the same time. In fact, the system is most
of the time empty even when the anyon-pair-creation rate is
significant. This behavior is fundamentally different from that
of the standard toric code where temperature must be much
lower in order to ensure that the probability of having multiple
anyon pairs is negligible.

Due to the low anyon-pair density, logical errors most likely
occur when an individual pair separates by half the system size.
The coherence time .., then consists of two contributions
Tere + Tsep, Where e is the average waiting time until the
creation of an error-causing pair of anyons, and Ty, is the
average time required for the anyons of such a pair to actually
separate and cause an error. In contrast to the situation obtained
in the standard toric code where it is typically enough to create
a single pair of anyons to cause an error, here 7. accounts
for the fact that many attempts are required to create an error-
causing pair:

Te N 2Ly (20) Pp(L/2), (12)
where 212y (2J) is the anyon-pair-creation rate (assuming that
potential trenches decay much faster than the typical time
between creation events), and P, (L /2) is the probability that
anyons of a pair separate by half the system size, thus causing
a logical error.
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The separation time g, can estimated as the time required
for the anyons of a pair to diffuse away from each other by
a distance L/2 via thermally activated steps with activation
energy ~U. An upper bound can be obtained by assuming
that each diffusion step is thermally activated with rate ~y (U),
yielding Tep S L?/y(U).* As compared to the exponential or
fast power-law increase of 7. with L [Eqgs. (12) and (10)], the
contribution of 7, to the coherence time can thus safely be
neglected (in the low-temperature regime T < U). Therefore

Teoh ™~ Tere-

A. Effects of multiple anyon-pair-creation events

We have shown in Sec. III that the main limitation to our
scheme arises, for a single anyon pair, from the finite decay rate
of potential trenches. This decay introduces a length scale £;,,x
[Eg. (11)] beyond which the anyon-pair-separation probability
Pyep(£) is expected to saturate. In the general situation where
additional anyon pairs can be created by absorbing energy
from the bath, this nonzero decay rate becomes required.
Indeed, to ensure that our error-correction mechanism remains
active, potential trenches left by anyons that annihilate must
be “erased” fast enough before new anyon pairs are created.
This emphasizes the importance of dissipation in our scheme.

The creation of a new anyon pair can either occur inside
an existing potential trench or lead to the creation of a
new potential trench.’ Anyon-pair creation in an existing
trench occurs with a rate £"y(2J — 2U), where £" is the
area of the existing trench [with length scale ¢ and effective
dimensionality 1 < n < 2; see Eq. (6)]. Two situations can be
distinguished depending on whether the trench is on average
occupied or not when a new anyon pair is created. We refer
to them as “trench saturation” and “refilling,” respectively.
As we demonstrate below, trench refilling imposes a lower
bound on the potential-decay rate yg... More importantly,
trench saturation leads to an upper bound L2 beyond which
increasing the system size is not expected to further enhance
the memory-coherence time. Although this maximum does not
depend on yg4c, keeping our scheme effective up to a system
size L requires a suitable choice of ygec, due to additional
trench-refilling and trench-splitting effects.

Anyon-pair creation away from any existing trench occurs
with a rate ~L2y(2J ) (where L denotes the system size). It
generates new independent trenches, which can be harmful if
the latter join and percolate to create larger trenches of size
~L/2. As we demonstrate in Appendix C, however, trench
percolation can be neglected when yg.c > y(2J), which is
automatically satisfied under the requirements imposed by
trench refilling.

“The rate at which a potential trench of size £ is extended is
~y(U)/¢, where 1/¢ is the approximate probability that an anyon is
located at the trench-potential wall. The total time required to extend
a trench from initial size 2 to L/2 is thus 7y, ~ fﬁ yU)™ ' ~
y(U)™'L?, yielding Ty, ~ y(U)/L? (or ~y(U)/L? for 2D trenches).

3 Anyon pairs can also be created partly inside an existing trench
with rate ~€y(2J — U). Such events can be neglected as compared
to anyon-pair creations inside a trench, which occur at a faster rate
[in the low-temperature regime of interest where 7 < U, such that
y2J -U) K y@J =20)].
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1. Trench saturation

The creation of new anyon pairs inside an existing potential
trench crucially modifies its average anyon density p;. If anyon
creation dominates over anyon recombination, more than one
anyon is found in the trench on average. In that case, the trench
effectively does not decay, and the probability that it becomes
larger ultimately saturates instead of decreasing exponentially
with trench size £ with no bound. As for trench-splitting effects
discussed in Sec. III B 2, this introduces a maximum system
size beyond which we do not expect our scheme to further
enhance the memory-coherence time. To estimate this upper
bound L$® , we determine the average density of anyons in a

max?
trench in a mean-field self-consistent way: For a finite density

pr, the average distance between anyons is & ~ p; 1 New
anyons separated by such a distance are created with arate y ~
Ly (2J —2U)Ps(8;), where Pg(8;) ~ 1/8:’/ is the probability
that anyons created as a local pair separate by a distance &
instead of recombining, with 0 < " < 1 depending on the
effective dimensionality of potential trenches.® Since anyons
diffuse and most likely annihilate when they meet each other,
their average lifetime is T ~ §2/y(0). Therefore the average
anyon density in the trench should satisfy p, = y t/£7, which
yields

2] —2U n/Q2+n—n")
P~ [u} . (13)

y(0)

As expected, p; is independent of the trench size ¢, and
increases with larger trench depth U < J.

As discussed above, trench saturation occurs when, on
average, more than one anyon occupies the trench, i.e.,
o 2 1727, Small values p, < 1/£" indicate that saturation is
irrelevant (i.e., that the trench is most likely empty when new
anyon pairs are created, or that it has already fully decayed).
Using Eq. (13), we find that saturation occurs at system sizes
larger than

(14)

max

y(0) :|1/(2+i771’)

L ~25 ~2| —
y(2J —2U)

2. Trench refilling

Trench saturation is suppressed when the system size
satisfies L S L' . In that case, potential trenches can end up
empty and gradually disappear, as desired. Below, we quantify
the minimum potential-decay rate yq.. required for this process
to be effective.

Anyons that are created in an existing empty trench before
the latter has sufficiently decayed can diffuse quasifreely in
the trench and “reactivate” the latter. This effect, which we
call “trench refilling,” is only relevant when new anyon pairs
are created on a faster time scale than the time tq ~ (T/U)y,.

required for the empty trench to decay by AU 2> T. In that

®The probability that diffusing anyons separate by a distance £
without recombining is ~1/¢ in 1D [see above Eq. (8)] and ~1/ In(¢)
in 2D (see, e.g., Ref. [34]). We neglect nonessential corrections
coming from the bias towards annihilation when two anyons meet.
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case, anyons can diffuse quasifreely in the old trench for a
time ~?4, which allows them to reach distances of the order
of d'v(277y(0)td)1/2 ~ lmax/2, 1.€., to span the entire existing
trench [see Eq. (11)]. Although the probability to form an
original trench of size £ may have been exponentially small (in
£), the probability that the new anyons separate by a distance
£ (thereby “reactivating” the trench) is now Ps'é‘;‘)w(ﬁ) ~1/07.
The average number of such reactivations is n.(¢) ~ £y (2J —
2U )PS‘Q%W(Z)td, where £7y(2J — 2U) is the rate for anyon-pair
creation inside the trench. To suppress the effects of trench
refilling, we require that n,(¢) < 1 for any trench size £ S
L/2, where L is the system size. As anticipated above, this

provides a minimum for the trench-decay rate:

T (L\""
Vaee > <2> y@2J =2U). 15)
We remark that this lower bound is independent of L for
1D trenches (n = n’ = 1), whereas it essentially scales as
L? for 2D trenches (n = 2 and ' — 0).” Note that we have
implicitly assumed that Ypump/y(0) > 1 in deriving Eq. (15).
The potential-pump rate determines the rate at which new
anyons can develop a new trench in the old one. If it is reduced
away from the above ideal limit, the self-trapping of new
anyon pairs becomes less efficient, which has two effects.
First, it increases the time 74 over which the new anyons can
diffuse quasifreely in the existing trench. Second, it increases
the probability P& (€) that they separate by a distance €. Both
of these effects increase the number of reactivations of empty
trenches, as we demonstrate numerically in Sec. IV C.

B. Estimate of the maximum coherence time

We have demonstrated that trench-splitting and refilling
effects lead to upper and lower bounds on the trench-decay rate,
respectively. Summarizing our results from Eqgs. (11) and (15),
we obtain the following requirements:

T (L\"" T (L\*
y(2J — 2U)5(5) L Vaee K 2771/(0)5(2> . (16)
which apply in the low-temperature regime 7 < U, J — U
(with J > U), under the assumption that Ypump > y(0) [we
recall that y(0) ~ T and y (2J — 2U) ~ 2(J — U)e 2/ -U/T,
see Eq. (5)]. This key result illustrates the power and
limitations of our scheme: First, it shows that 7 > 0 is
crucially required [y(0) decreases with temperature, which
makes the right inequality harder to satisfy with decreasing
T1], which emphasizes the importance of diffusion in our
scheme. Second, Eq. (16) highlights the fact that increasing
the trench-energy scale U is not only beneficial; although
U > T is required, increasing U enhances trench-refilling
and splitting effects, making both sides of Eq. (16) harder to
satisfy. Trench refilling can be efficiently suppressed, however,
by ensuring that / — U > T (i.e., by increasing the energy
gap J of the toric-code system). Finally, Eq. (16) confirms the
existence of a maximum system size Lp,x beyond which the

7As mentioned above Eq. (13), (L /2)'7*'7/ should be replaced by
(L/2)*/1n(L/2) for 2D trenches.
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memory-coherence time should not improve further. Here, this
maximum can be estimated by equating both sides of Eq. (16),
yielding

(0)
Linax ~ 2 |:877 Y

1/Q+n—n")
y(2J — 2U)]

T
A 2[4n—e2<f—U>/T (17)

1/Q+n—-n")
J—-U :|

Remembering the results of Sec. IV A 1, we notice that L, =
2(8n)!/CH1=m)g, ~ LS  Therefore the maximum L,y result-
ing from the requirements due to trench-refilling and splitting
effects essentially coincides with the upper bound L3 ~due
to trench saturation [Eq. (14)]. The most important feature of
Lax 1s that it increases exponentially with (J — U)/T > 1.
To keep our scheme effective up to this maximum system
size, the following optimal trench-decay rate is expected to be

required:

Q2U-U)/T

=2/Q2+n-n")
] , (18)

T

V(?epct ~ ZUV(O)E[Um
which also scales exponentially with (J — U)/T. Therefore
our scheme can be effective up to very large system sizes
provided that the potential-decay rate can be made sufficiently
small. As long as the requirements given by Eq. (16) are
satisfied, the memory-coherence time should increase expo-
nentially with system size, which is one of the main results
of this work. To estimate the maximum coherence time that
can in principle be achieved, one can introduce L = L« in
Eq. (12), thereby obtaining

c BU

T~ 2y 2] L2 Pt (Linax /2) ~ (€71 (19)

coh max " sep

where ¢; and ¢, are positive numbers of order 1. In the
specific scenario where J > 3U, such that oy Liax > 1, one
finds ¢; = (J —3U)/J and c; = 1 [using Egs. (8) and (17)].
Therefore, due to the exponential scaling of L,x with inverse
temperature S, the memory-coherence time can increase
according to a double-exponential scaling, in stark contrast to
the Arrhenius law 7o, ~ e?#/ typically observed in quantum
memories protected by a gap 2J. Equation (19) tells us that the
maximum coherence time increases with U/ T despite the fact
that the system size Lp,x up to which our scheme is effective
decreases.® We demonstrate this behavior numerically in
Sec. IV C (Fig. 5).

If y4ec cannot be made small enough to reach the optimal
value of Eq. (18), the left inequality of Eq. (16) (govern-
ing trench-refilling effects) becomes irrelevant, and trench-
splitting effects (governed by the right inequality) become the
main limitation. For a fixed yqge., the maximum system size
thus becomes

T v
Ll ~ boa ~ 2020 | 27O (20)
U Vdec

8In the regime of interest where (J — U)/T > 1, t5;* increases
with U/T despite the exponential factor e#/=Y”2 in the double
exponential.
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FIG. 5. Coherence time as a function of system size L, for
different maximum potential depths U/T (with fixed T = 0.2 and
« = 1). The trench-decay rate is set to 1073y(0), except for the upper
two curves where it is chosen ten times larger to make it closer to
the expected “optimal” value [Eq. (18)]. The potential-pump rate is
effectively infinite, and data points and error bars are obtained by a
kinetic Monte Carlo simulation of the full system dynamics with 10
trajectories. The upper five curves are fitted based on our theoretical
model [Eqs. (8) and (12)] using the largest number of points that can
provide areasonable fit (according to a chi-square goodness-of-fit test;
using U and a prefactor as fitting parameters). Dashed vertical bars
delimit the corresponding fitting range (starting at L = 4), and fitting
curves are extended slightly beyond to illustrate where deviations
occur. Despite the trench-decay rate and the mostly 2D nature of
potential trenches (see the text), we find Uy, = 5.33, 4.82, 3.51, 2.20,
0.67, and 0.00, in good agreement with our model (for large U/ T).
The obtained values of U/ T are consistently smaller than the actual
ones due to the 2D nature of potential trenches and to the finite decay
rate which effectively reduces the potential depth. Although the decay
rate is not supposed to be optimal (for all values U/ T), the coherence
time nevertheless saturates at system sizes L & L. The crossovers
observed for the upper three curves are in remarkable agreement with
Liax =~ 11.0, 13.7, and 21.6 obtained from Eq. (14).

which coincides with the maximum size €., that can be
reached by a potential trench with a single anyon pair [see
Eq. (11)]. Clearly, y(0)/V4ec > U/T must be ensured in that
case. This can be achieved, e.g., by increasing the bath-
coupling constant k = y(0)/T [see Eq. (5)]. Equation (20)
leads to the more conservative estimate

Teon ~ [2V2D] ™ Ui, Py (bmax /2)

ezﬁj < 1 eﬂU >£max
~ e , 2y
Eﬁqax ﬁU Kmax

where we have assumed that £,,,x < €?U (note that when £,
becomes of the order of efV, which requires an exponen-
tially small yge., we recover the double-exponential scaling
discussed above). We remark that the exponent BU £, in
Eq. (21) is independent of temperature. In summary, in the
above scenario which does not take full advantage of our
scheme (leading to an Arrhenius law), the coherence time
is still significantly improved—by an exponentially large
temperature-independent prefactor.
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C. Simulations of the memory-coherence time

In this section, we present the results of our numerical
investigation of the memory-coherence time under the full
dynamics of the system, including all effects discussed in
the previous sections. We refer to Appendix D for technical
details regarding the simulations and a precise definition of
the memory-coherence time. In the following, we demonstrate
that our theoretical arguments and estimates are consistent
with numerical results, and provide additional insight into
the efficiency of our scheme. We remark that all ideal
parameter regimes in which our error-correction mechanism
is most efficient cannot be explored with a reasonable amount
of computing resources. Therefore, in the following, we
deliberately choose nonoptimal parameters where effects such
as trench splitting limit the exponential improvement of the
coherence time.

We first illustrate, in Fig. 5, the significant change of behav-
ior induced by potential trenches. When the maximum depth of
trenches is negligible as compared to temperature (U/T < 1),
the memory-coherence time decreases as Tcon ~ In(L/2)/ L?
with system size L, which corresponds to the usual behavior of
the toric code [34]. When the potential-trench energy scale U
reaches values U 2 T, however, a clear exponential increase
develops, in agreement with our theoretical estimates. In
Fig. 5, this exponential scaling saturates and crosses over to a
~1n(L/2)/L? behavior at relatively small system sizes, which
stems from the nonoptimal choice of parameters mentioned
above. We recall that the expected maximum L, corresponds
to the threshold at which trench saturation, refilling and
splitting effects simultaneously come into play [Eqs. (14)
and (17)], and that we expect to require an optimal value
of the trench-decay rate yg.. to reach it [Eq. (18)]. Here,
the observed crossovers are consistent with our theoretical
estimates for Ly.x [Eqgs. (14) and (17)] despite the fact that
the trench-decay rate yg.. does not precisely corresponds to
the estimated optimal value. This illustrates an important
property of our scheme, namely, its robustness with respect
to tuning yge.. We remark that potential trenches are mostly
two-dimensional in the parameter regimes explored in this
section, such that n — ’ ~ 2 in Eq. (14). The requirement for
purely 1D trenches [Eq. (6)] is not satisfied, even for the largest
values of U/T used in our simulations.

In Fig. 6, we investigate in more detail the robustness of our
scheme with respect to varying the trench-decay rate yge.. Our
numerical results clearly demonstrate that our scheme remains
effective up to system sizes L & Lp,x for values ypge. in a
wide parameter range around the “optimal” value identified in
Eq. (18). These results indicate that trench saturation imposes a
hard constraint L < L. on our scheme, while trench refilling
and splitting lead to much softer requirements on yge.. More
specifically, error correction is still effective when the upper
and lower bounds of Eq. (16) are not strictly satisfied. We
remark that the fact that a large range of values yge. is suitable
for our scheme is expected for system sizes L < L.x. Indeed,
the left-hand side of Eq. (16) shows that trench refilling should
only be relevant when ygee < (T/U)y(2J — 2U)(L/2)" 7,
which scales exponentially with temperature [as e =2/ ~U)/T],
In contrast, the right-hand-side of Eq. (16), which describes
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FIG. 6. Coherence time as a function of system size, for different
potential-decay rates yu.. and fixed U/T =5 (with T = 0.2). The
potential-pump rate is effectively infinite, and data points and error
bars are obtained through a kinetic Monte Carlo simulation of the full
system dynamics with 10° trajectories. Although all curves (except
the bottom one) can be reproduced using Eqs. (12) and (10) as in
Figs. 5 and 7, no fitting curve is shown here, for clarity. Remarkably,
variations of the potential-decay rate over several orders of magnitude
essentially do not affect the coherence-time scaling. All curves in
this parameter range saturate at L,,x & 12, in reasonable agreement
with L. & 13.7 obtained from our theoretical model [Eq. (14)].
The fact that saturation at this maximum is reached for decay rates
away from the estimated “optimal” value log o[y, /v (0)] ~ —3.2
[Eq. (18)] indicates that trench-refilling and splitting effects impose
softer constraints on our scheme than trench saturation, as discussed
in the text.

trench splitting, requires yge. < 20(T/U)y (0)(L/ 2)~2, which
scales quadratically with 7. For system sizes L < Ly, the
range of suitable values for yy.. is therefore exponentially
large. Note that we recover a similar scaling as for the usual
toric code when the trench-decay rate is so small that trench
refilling strongly dominates (bottom curve in Fig. 6). Due to
the slow decay, the entire system ends up being covered by
a single trench, at which point the situation reduces to the
standard toric code with 2J — 2U as the relevant gap (instead
of 2J).

In Fig. 7, we verify our theoretical prediction that the
exponential increase of the memory-coherence time survives
when the potential-pump rate Ypump is finite. Aslong as ypump is
significantly larger than the diffusion rate y (0), we find that 7 o,
simply follows a slower exponential increase, as expected from
our theoretical model [Eq. (10)]. As in Fig. 5, the observed
crossovers are consistent with our theoretical estimates for
Lax- Saturation takes place at larger system sizes for lower
potential-pump rates, which stems from the fact that decreas-
ing Ypump effectively reduces the depth of potential trenches,
thereby increasing L.« [see discussion below Eq. (19)].

Our analysis demonstrates that the coherence-time im-
provement provided by our scheme does not crucially depend
on the potential-decay rate. Provided that L < LS  and
Eq. (16) is approximately satisfied, the quantitative increase
of the memory time with system size is determined by two
more crucial quantities. First, the maximum potential depth
U, which has a striking effect on the coherence time even for
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FIG. 7. Coherence time as a function of system size, for different
potential-pump rates Ypump and fixed U/T =5 (with T = 0.2). The
potential-decay rate is set to yue. = 1073, except for the uppermost
curve where it is chosen ten times larger (note that the two upper
curves nevertheless match, and that they coincide with the second
curve from the top in Fig. 5). Data points and error bars are obtained
by a kinetic Monte Carlo simulation of the full system dynamics with
10 trajectories. The upper five curves are fitted using a single function
of the form an(eOg(é) + bP,..c*2, with parameters (a,b,c,Us/T) ~
(0.84,3.24,0.40,4.82). The values (a,Uy/ T) are extracted by fitting
the uppermost curve using points between L =4 and the dashed
vertical bar. The remaining parameters are extracted in a similar way
using the fourth curve from the top. The resulting curves, shown up
to the point where deviations occur, are in remarkable agreement
with our theoretical model [Eq. (10)]. As in Fig. 5, crossovers are
consistent with L, & 13.7. The fact that saturation occurs at larger
sizes for decreasing pump rate is consistent with the fact that reducing
Ypump effectively lowers the maximum potential depth U, which
increases L.

moderate values U/T 2 1. Second, the potential-pump rate,
which should be much larger than the diffusion rate to fully
benefit from having a large U. We remark that the parameter
regimes explored in our simulations provide a memory lifetime
3—4 orders of magnitude longer than the inverse local-error rate
1/y(2J), in stark contrast to the usual toric code (bottom curve
in Fig. 5). We expect to obtain much stronger enhancements
in ideal regimes, which cannot be explored numerically.

V. CONCLUSION

Protecting quantum bits against environmental errors
remains one of the outstanding challenges towards practical
quantum computing. In this work, we have proposed a passive
and efficient way to correct such errors in the context of
topological quantum memories based on stabilizer codes,
such as the toric code. Our scheme relies on driven-dissipative
ancilla systems that couple to the memory and make
elementary excitations (anyons) dig their own potential
“grave.” When anyons are created, they rapidly form a
potential trench in which they get trapped, which strongly
suppresses anyon-pair separation over anyon recombination.
The required ancilla systems act in a local, translation-invariant
way, and are simple enough to potentially lend themselves
to practical implementations. We have outlined a potential
realization based on circuit-QED systems.
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Our theoretical analysis and extensive numerical
simulations have revealed three important features. First, the
probability that anyons created as a pair separate by a distance
£ decreases exponentially with £. This scaling is observed up
to a maximum separation €y, corresponding to the typical
length scale at which potential trenches split due to their finite
decay rate. Second, the memory-coherence time increases
exponentially with system size, up to an upper bound L .x
beyond which limiting effects (trench saturation, refilling and
splitting) come into play. Although we have derived an optimal
decay rate yg.. from theoretical estimates, our simulations
demonstrate that the coherence time increases exponentially
up to L. in a wide parameter range of yge.. Third, and
most importantly, the memory lifetime improves up to double
exponentially with inverse temperature, in stark contrast with
the Arrhenius law applicable to generic qubits. This limit can
be reached using (i) a system size which is exponentially large
in 1/7, and (ii) a decay rate yqe. for the ancilla systems of the
order of an optimal value which is exponentially smallin 1/7.

Pump and decay (drive and dissipation) are key ingredients
of our scheme. The potential-pump rate, which controls how
fast anyons generate their self-trapping potential, determines
the rate at which ancilla systems acquire information about
the memory. It must be larger than the typical diffusion rate
of anyons for our scheme to be effective. The potential-decay
rate also plays an crucial role, to “erase” potential trenches
when anyon pairs recombine. More generally, it is the
driven-dissipative nature of the ancilla systems which allows
to remove entropy from the memory.

Several extensions of our scheme will be interesting to
explore: In this work, we have assumed that perturbations
caused by the environment are strictly local. To protect the
memory against quasilocal errors, one could consider ancilla
systems that force anyons to generate more extended potential
trenches. This could also help reduce the required strength
of the potential-pump rate. More generally, our scheme
could prove useful, with modifications, as a dynamical
decoder [37,38]. In this context, one could imagine to decode
the memory using classical cellular automata that perform
simple sequences of local updates (of the anyon positions and
local potentials), thereby reproducing the dynamics described
in this work and gradually correcting errors over time.

Further study will be required to construct specific imple-
mentations of our scheme. Beyond analog simulation using,
e.g., circuit-QED systems, digital (or gate-based) quantum
simulation could be considered [45,46]. More generally,
our error-correction mechanism can be readily applied to
generalizations of the toric code such as the surface code [47].
A first step would be to consider implementations based on
the repetition code, its 1D building block. This 1D code was
recently realized in circuit-QED systems, to demonstrate active
error correction [48]. We except our scheme to allow for the
demonstration of efficient passive error correction in similar
settings.
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APPENDIX A: PRACTICAL REALIZATION
IN CIRCUIT QED

In this section, we outline potential practical implementa-
tions of our proposal based on cavity quantum electrodynamics
(cavity QED) focusing, in particular, on superconducting
qubits (circuit QED) [49]. We first discuss potential approaches
to implement the toric-code part of the system as well as the
coupling of plaquette and star operators to ancilla degrees of
freedom. We then discuss in more detail how to realize the
internal ancilla dynamics required for our scheme.

1. Toric code and coupling to ancilla systems

The four-body plaquette and star Hamiltonian couplings
required for the toric-code part of the system can in principle be
implemented using so-called “perturbative gadgets” [50-52],
as proposed in Ref. [33] in the context of circuit QED.
Gadgets are sufficiently versatile to similarly provide, with
straightforward modifications, realizations of the five-body
plaquette- and star-ancilla couplings required for our scheme
(see Ref. [33] for details).

As virtually all circuit-QED implementations of many-
qubit dynamics, perturbative gadgets require continuous driv-
ing fields. Indeed, the energy scale associated with individual
qubits (the bare qubit frequencies, which we assume as
uniform) is usually more than one order of magnitude larger
than the scale of qubit-qubit couplings. Therefore the many-
qubit dynamics of interest typically occurs in a small energy
window centered around the large qubit energy scale and
can only be made prominent by shifting down all relevant
energies using an external drive (with frequency approximately
tuned to the bare qubit frequencies). Driving is not innocuous,
however, since it also modifies the relaxation, excitation
and decoherence processes stemming from the environment
(or bath). Indeed, the desired many-body Hamiltonian terms
are obtained in a frame that rotates at the drive frequency,
and, when described in this frame, typical low-temperature
baths effectively act as infinite-temperature baths (see, e.g.,
Ref. [53]). Intuitively, this can be understood by noticing
that, in the original frame, the system “probes” the bath
spectrum in a high-energy window [wgq — R2/2,wq + 2/2],
where wq is the drive frequency (approximately resonant
with the bare qubit frequencies) and 2 is the bandwidth
generated by the many-qubit dynamics of interest. For a typical
low-temperature Ohmic bath defined in the original frame,
the ratio between excitation and decay rates obtained in the
rotating frame is then y; /y_ ~ 1 4+ Q/wq, which corresponds
to a bath temperature of the order of wq (h = kg = 1). Since
wq > 2, the effective bath temperature is therefore much
larger than all of the energy scales governing the many-qubit
dynamics. In other words, the bath temperature is effectively
infinite.
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From the viewpoint of our scheme, the above discussion
implies that the key low-temperature regime 7 <K J, U
assumed throughout our work cannot be readily obtained
in typical circuit-QED implementations. Instead, one has to
deal with infinite-temperature baths and rates that satisfy
y(w) = y(—w) [compare with definitions in Sec. II]. In that
case, one can engineer the bath spectrum to ensure that
y(0) > y(2J), y(U), such that anyon diffusion nevertheless
occurs at a much faster rate than anyon-pair creations and
anyon jumps out of trenches, respectively. However, this
is not sufficient since anyons can only recombine at a
slow rate ~y(—2J) = y(2J) < y(0). To make our scheme
effective, one must additionally engineer the bath such that
the required imbalance between excitation and decay rates is
restored [mimicking the detailed-balance condition y(w) =
e~“/Ty(—w) of a low-temperature bath].

The fact that driving is required but leads to infinite-
temperature baths is a generic problem in circuit-QED im-
plementations of many-qubit dynamics. Recently, an elegant
solution was proposed in the form of auxiliary (or “shadow”)
qubits [54]. In essence, the idea is to couple the qubits of
interest to auxiliary qubits or cavities that have an intentionally
large decay rate. The coupling between the primary qubits
and these so-called shadow qubits is then chosen such that
targeted excitations can hop back and forth between them, with
shadow qubits tuned to the suitable energy. In that case, any
excitation created locally by some infinite-temperature bath
(in the relevant rotating frame) can be transferred resonantly
to the corresponding local shadow qubit and undergo rapid
decay—which mimics the effects of a low-temperature bath. In
other words, shadow qubits introduce a strongly coupled low-
temperature bath which balances the effects of unavoidable
infinite-temperature baths weakly coupled to the system. We
refer to Refs. [33,54] for details.

Before detailing the ingredients required for the circuit-
QED implementation of the ancilla systems at the core of our
scheme, we remark that shadow qubits have been considered in
Ref. [33] not only to realize the toric code, but also to enhance
its coherence time. In this past study, however, error correction
crucially relies on interactions between anyons and on shadow
qubits with elaborate spectral features tuned to target excita-
tions corresponding to specific anyon configurations. Here, in
contrast, anyon interactions are not required and shadow qubits
are only proposed as a means to locally enhance anyon-pair
recombination.

2. Ancilla systems

So far, we have argued that the toric-code part of our
proposal can be realized using perturbative gadgets and
driving, and that the resulting infinite-temperature bath can
effectively be cooled to low temperatures using auxiliary
qubits or resonators with fast decay. We have also highlighted
that similar gadgets can be used to couple individual toric-code
plaquette and star operators to ancilla degrees of freedom
(e.g., resonators). In the following, we take these ingredients
as a starting point and discuss how to implement the internal
driven-dissipative dynamics of the ancilla systems (namely, the
fast pumping or slow decay of some ancilla level conditioned
on the presence of an anyon). As in the main text, we focus on
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plaquette operators B, = [| jep cr]?, since our construction can
readily be extended to star operators A; = [] jes a; [Eq. (D].
We start by recalling the effective plaquette-ancilla coupling
Hamiltonian used in our scheme [Eq. (3)]:
U

Hp,eff(t) = znc(t)Bpa (Al)

where n.(t) denotes the time-dependent occupation of some
ancilla level. In what follows, we consider an ancilla popu-
lation which consists of photons in a particular cavity mode

with frequency w. and creation (annihilation) operator ag (ac),

respectively, such that n.(¢) = (a:fac)(t) (expectation value in

the ancilla state). To satisfy the requirements of our scheme, the
occupation of this ancilla-cavity mode should (i) be pumped
at a fast rate ypymp (to @ maximum value which we set to 1, for
simplicity) when the plaquette is occupied (B, = —1), and (ii)
should decay at a slow rate y4.c when the plaquette is empty
(B, = +1). To implement this dynamics, we first consider the
more concrete plaquette-ancilla coupling

U .
H, .= 5aiac Ha;,
Jep

(A2)

which takes a natural form in line with Eq. (Al). This
Hamiltonian describes a dispersive coupling between the
plaquette operator and the ancilla-cavity mode; it involves no
exchange of excitations between the system and the ancilla.
Instead, it implies that the occupation of the cavity mode shifts
the plaquette energy, and vice versa.

The dispersive coupling described by Eq. (A2) makes
it straightforward to pump photons into the ancilla cavity
conditioned on the plaquette occupation, as desired. To achieve
this, one can introduce a coherent driving field (laser) with
frequency wq tuned to the shifted cavity-mode frequency
w: + U/2 obtained when the plaquette is occupied. The
dispersive shift U should be much larger than the amplitude
4 of the driving field (and is also typically smaller than
). Strong dispersive shifts have been observed in various
circuit-QED systems [49].

To ensure that the ancilla-cavity occupation does not rise
above a specific number (which we choose as 1, here), we
assume that the ancilla cavity is nonlinear, with a nonlinearity
U, which is much larger than the drive amplitude (but smaller
than w.). As desired, this nonlinearity forbids the introduction
of more than one photon in the cavity when the latter is driven at
a frequency wq &~ w. + U /2. In this photon-blockade regime,
the maximum number of photons that can be pumped into
the cavity is one (up to perturbative corrections which are
irrelevant here).

Although the direct coherent-pumping scheme described so
far satisfies most of our requirements, it also gives rise to one
complication: it makes the cavity-mode occupation oscillate
in time (Rabi oscillations) with frequency corresponding to
the drive amplitude (on resonance). To suppress coherent
effects from the drive, one can consider an incoherent pump
consisting, e.g., of a coherent tone with frequency wq ~ w. +
U/2 modulated by some finite-bandwidth noise (see, e.g.,
Ref. [55]). An alternative way to achieve this was considered in
Ref. [54] (for different purposes) using an auxiliary “shadow”
qubit with a fast decay rate yq ~ 4 > y., where y, is the
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intrinsic photon-loss rate of the ancilla cavity and €24 the
amplitude of the drive. By driving this shadow qubit together
with the ancilla-cavity mode using a two-photon parametric
drive, one obtains an effective pumping rate ypump ~ ¥4 for
the ancilla-cavity mode. This pump rate can be much larger
than the cavity-decay rate ygec ~ Y, as required for the
error-correcting scheme presented in the main text. Intuitively,
this comes from the fact that the parametric drive can only
add (remove) photons with frequency w. + U/2 to the ancilla
cavity together with exciting (de-exciting) the shadow qubit.
Since the latter spends most of its time in its ground state due to
its fast decay rate, the cavity can only (mostly) be replenished,
at a fast rate controlled by the qubit decay. We refer the reader
to Ref. [54] for details regarding the physical implementation
of such a scheme in circuit QED. Note that a large separation
of scales Ypump > Vdec can be achieved in this setting (see, e.g.,
Refs. [56,57]).

We remark that the Hamiltonian in Eq. (A2) corresponds to
a five-qubit coupling, which is challenging to realize even with
perturbative gadgets as discussed above. One could imagine,
however, to generate a similar dynamics using two-body
interactions of the form

U .
H, ,= Zai‘ac ZU?,

Jjep

(A3)

where we have replaced the product in Eq. (A2) by a sum. To
understand why this could also be suitable for our scheme, let
us first note that both operators I jep O’; and ) jep©@ JZ share the
same eigenstates. The main difference is that the sum operator
can have five different eigenvalues (0, &+ 2, +4) instead of
two for the product (plaquette) operator (£1). Consequently,
the coupling of the ancilla-cavity mode will lead to a splitting
into five cavity modes with frequency centered around the
bare cavity frequency w,, instead of two. Among those, only
two of these eigenvalues (42) correspond to eigenstates of
the plaquette operator with [].. a; = —1, i.e., where the
plaquette is occupied. Therefore, instead of pumping the
ancilla cavity mode at a single frequency, one could achieve
the desired pumping conditioned on the plaquette occupation
using two pumps with frequency w. + U and w. — U. The
effective plaquette-ancilla Hamiltonian would take the form
of Eq. (A1) with U/2 — U.

The main difference between implementations based on
Hamiltonians (A2) and (A3) comes from dephasing. Indeed,
both types of dispersive couplings not only effectively shift
the plaquette energy, as desired, but also lead to dephasing
due fluctuations of the ancilla-cavity-mode occupation induced
by driving and damping [58,59]. Although dephasing of the
plaquette operator [ | jep® ]Z is irrelevant, dephasing at the level
of individual spin operators a; would generate errors from the
viewpoint of star operators ~ [ jes a}‘, and should therefore
be avoided if one wants to correct both bit-flip and phase-
flip logical errors. Ultimately, dephasing must be compared
to the gap of the toric code, which we assume to be much
larger. Finally, we note that, although dispersive couplings of
the form (A3) are routinely achieved in circuit-QED systems,
achieving the analog with o operators (as necessary for star
operators) could be more challenging. Specific realizations of
our scheme will be examined in future work.
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APPENDIX B: DETAILS OF THE 1D MODEL

1. Details of the derivation of the pair-separation probability

In this section, we derive an explicit expression for the
quantity P..(n) used in deriving Eq. (7), which represents
the probability that an anyon located at x =n in a 1D
trench recombines with its partner assumed to be fixed at
x = 0 without ever going to x =n + 1. To solve this 1D
free-diffusion process (we assume that the anyon remains in the
1D trench), we first derive the probability P;(r) that a random
walker in 1D eventually takes r steps to the right without ever
taking / steps to the left (with respect to its initial position).
If diffusion is symmetric, this probability is invariant under
switching “right” (4+1) and “left” (—1) directions. Since the
probability of eventually taking r steps to the right or / steps
to the left is equal to 1, we can write

P(ry+ P.(I) = 1. B1)
We also find
Pi(1) = ! B2
=z, (B2)
Pi(2) = PI(D)Px(1), (B3)
Py =P =]]01 - PG, (B4)
i=1 i=1
which yields the recurrence relation
_ Pn—1)
Pi(n) = TTP=D) (BS)
with solution
1

As mentioned in the main text, the probability P.(n) only
differs from P;(n) because of the enhanced probability to go
from x = 1 to x = 0 in the last recombination step, since the
relative rate between anyon recombination and anyon diffusion
is o) > 1. The modification due to this last step yields

Prec(n) _ o P, (1) Prec(n)
Pn—1 l+a, l+a, ""'Pn-1
OQP](IZ — 1)

= Prec(n) = (B7)

L+ oy — Py(l)
Using Egs. (B1) and (B6), we thus obtain the expression given
in the main text:

1

Prec(n) = 1
n +a¢

(B3)

2. Regime of applicability of the 1D model

To identify the expected regime of applicability of our
1D toy model, it is useful to examine the typical shape of
potential trenches. In the limit of a maximum potential depth
U K T, it is clear that anyons essentially diffuse according
to a (symmetric) 2D random walk as in past studies of
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FIG. 8. Typical shape of error-causing potential trenches for increasing maximum potential depth U = 0.2, 0.6, and 0.8 (from left to right)
and fixed bath temperature 7 = 0.15. The above snapshots are taken during a kinetic Monte Carlo simulation of the anyon-pair dynamics (see
Appendix D) at the time when a logical error first occurs, i.e., when one of the anyons manages to overcome the energy barrier defined by the
trench and separates from its partner by more than half the system size L = 9 (here, in the y direction). The shape of the relevant trenches
changes from two-dimensional at low U ~ T to one-dimensional for U 3> T. The observed configurations are in good qualitative agreement
with the estimated crossover lengths ¢,p(U) & 2.1, 3.9, and 5.6. The rate y(2J) for anyon-pair creation is artificially set to zero after one pair
is created. Other relevant parameters are chosen as J = 2, ¥ = 1, with infinite potential-pump rate ypum, and vanishing decay rate ygec.

the toric code coupled to a thermal bath [34]. Potential
trenches only become relevant when U is comparable or larger
to the bath temperature 7.° For finite U > T, the typical
trenches observed when a memory error occurs are mainly
two-dimensional (see Fig. 8). For U > T, however, they
become one-dimensional. Intuitively, this can be understood
by noticing that the probability of extending a trench by one
plaquette in any direction (ocer4) is exponentially suppressed
in U/T when U > T. Consequently, the most likely way
to cause a logical error is to extend a trench a minimum
number of times, which naturally leads to 1D shapes. The
trench orientation is fixed by the shortest error-causing path,
which depends on how logical operators are defined.

The above argument suggests that our 1D “toy” model
provides a suitable description of the error probability for
T « U, which coincides with the regime where potential
trenches are relevant.'” To quantify this, one can consider an
anyon pairin a 1D trench and introduce the possibility of lateral
motion in a perturbative way. Specifically, one can consider
diffusion along the trench where the probability that an anyon
extends the trench and ultimately cause an error is reduced due
to the possibility to “escape” in the lateral direction. As we
demonstrate in the next section, this decreases the probability
of each extension step by a factor (1 — 212a¢ /3). When the
accumulated suppression of probability to extend the trench
to a size £ becomes of order 1, i.e., when £ ~ [9/(2°‘T)]1/3’
a substantial amount of error-causing trenches is expected to
be two-dimensional. This yields the length scale presented in
Eq. (6) of the main text.

9We define potential trenches as domains of connected plaquettes
identified by U > T.

"9Our 1D model readily applies, for any temperature 7, to
implementations of our scheme based on 1D stabilizer codes (see,
e.g., Ref. [64]).

3. Corrections in the quasi-1D regime

The pair-separation probability Ps(gg (£) used in the analysis

presented in the main text [see Eq. (8)] is derived under the
assumption that anyons can only move along the 1D trench
that they generate. In what follows, we derive the analog
of this quantity in the quasi-1D regime where the potential
trench is one-dimensional but anyons can nevertheless escape
in the lateral direction. To ensure that the trench remains
one-dimensional, we treat such escape events as “losses,” as
clarified below. Corrections due to the finite probability of
lateral motion allow us to estimate the limits of applicability
of the 1D model used in the main text. For clarity, we adopt
similar notations as in the main text and indicate quantities
pertaining to the quasi-1D regime by an asterisk (“*”).

In the absence of lateral motion, the pair-separation prob-
ability (which we call here “trench-extension” probability)
satisfies the recurrence relation given in Eq. (7) of the main
text. Including the possibility of lateral losses leads to the
following modifications:

Pou(n)
Prn—1)
_ P*
L R Pr.(n— 1)*exi . (BY)
14+3ay 1430y Péi(n — 1)

Here, differences come from the fact that free diffusion inside
the trench is modified due to losses in the lateral direction,
such that some of the relations used in Sec. B 1 no longer hold
[Eq. (B1), in particular]. In that case, the probability P} (1) to
take one step to the right without recombining with the other
anyon (located a distance n to the left) is also no longer given
by 1 — P (n). Instead, it satisfies the recurrence relation
Pi(n)=P;_ () + Pi(n = DP, (n),

l,Ol‘L

(B10)

where Pl*’aL (n) is the analog of the probability P;'(n) in the
situation where the recombination step that should be avoided
(from x =1 to x =0) occurs with a relative rate « as
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compared to diffusion. We find that Pl*m (n) takes a simple
form,

. Pi(n—1)
P, (n) = , (B11)
o 1+o, +20p — P (1)
which follows from the recurrence relation
1
P* - px —1
l,ai(n) 1—{-0@—}—20% 2,0%(” )
Pr(n — 1)+ Py ()P}, (n)
= (B12)

1+(X¢+20[T

The remaining ingredients are the two probabilities P, (1) and
P} (n) for free diffusion in the quasi-1D regime. As we show
in Sec. B 3 a, the results in Egs. (B6) and (B1) become, in the
absence of lateral motion,

1 n(n +2)
Pl(n) = —— (1 - 3 (x¢>
2n +1
3 )

to leading order in the relative rate o4 between escaping the
trench laterally (at each step) and diffusing along the latter.
Note that both probabilities are reduced because of “losses” in
the lateral direction. Combining these results with Eqs. (B10)
and (B11), we obtain

(B13)

PI1) = - i 1 (1 - (B14)

1
n—i—otl_1
[6 4o (n—DI6+a,(2n—1)]

3(1 + ayn)?

Pi(n)=1-

—noy , (B15)

(to leading order in o4 ), which finally yields

. 2
Poy(n) = o} 1_[ |:n -1+ aIl - a¢<§n3 + 2a$1n2
k=1

5
+2a12n — gn +a12 — 20151 + 1)] (B16)

In the limit n > «, we find the simplified expression
n
* n -1 2 2
Poy(n) = of (n—1+a) l—gn ay )|, (B17)
k=1

which provides the correction factor 1 — 2n2a¢ /3 used in the
main text.

a. Further details of the derivation

The probabilities P(1) and P;'(n) corresponding to free
diffusion in the quasi- 1D regime can be determined recursively
using the following relations:

Pi(n) = Pj(n — HPX(1), (B18)
P*(1) = P* (1) + P}(n — 1)P}(n), (B19)
1
Pi(1) = 3t 2w +3 7 P ()PF(1). (B20)
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Plugging Eq. (B18) in (B19) yields

Pi(n) = \/P,;*(l)(P,;“(l) — P (D), (B21)

which allows us to determine Pj(n) given P*(1). The latter
can be found recursively from Eq. (B20),

14204 — PF (1)
2420 — PF (1)

P(1)=1-— (B22)
We now define P;(1)=1—h,/k, with initial conditions
ho =1, ko =1 (below we also need h; =1+ 2c4). The
recurrence relations for £, and k, become

hy = 20(1~kn,1 + hy_t, (B23)
kn = (1 + 205T)kn—1 + hn—1~ (B24)

Plugging the first equation into the second leads to
hn+l = (2 + 20‘T)hn - hn—l’ (BZS)

which can be solved by a standard ansatz of the form
h, = r". The latter leads to a characteristic quadratic equation
for r with solutions ri» =1+ oy = /(2 + a4)ay. The full
solution then takes the form &, = ar{ + brj, with coefficients
a,b set by initial conditions. We find

P S B (B26)
1+r2 1+r1
k =i<”—1r"+r2_1r"> (B27)
T2\l +rn 1+ 2)

which leads to a rather lengthy expression for P;(1) [and
subsequently for P;"(n) ]. The results, expanded to linear order
in a4, are given in Egs. (B14) and (B13).

APPENDIX C: TRENCH PERCOLATION
1. Requirements for percolation suppression

Trench percolation occurs when multiple trenches of length
£ < L/2 combine to form a long error-causing trench of
length ~L /2. Small trenches are more likely to percolate than
large ones. To understand why, let us estimate the probability
P, (£) of finding at least n trenches of similar length ¢ < L/2
within the lifetime 7.(£) of a single trench. The rate at which
such trenches are created is given by y;(£) =~ 2L%y(2J ) Pyep(£)
[see Eq. (12)], which decreases rapidly with increasing £
due to the exponential or large power-law suppression of
Pyp(£) with £ [see Eq. (10)]. In comparison, the lifetime
of a single trench, 7,(€) ~ (£/2)?/y(0) + yzl,' scales very
weakly with ¢, such that p(£) = p(€)r(€) < 1 is typically
satisfied for large trenches. Assuming that trenches are created
independently (which is a reasonable assumption for low
trench densities), Poisson statistics dictates that the probability
of finding at least n trenches in the time interval 7,(£) is P,(£) =
Yomon € M Ou()" /m!. In general, P,(£) decreases faster

"The first term corresponds to the typical time required for anyons
to diffuse and recombine. The second corresponds to the subsequent
trench decay.
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than exponentially with n in the regime n > u(£). While this
is naturally satisfied for large trenches with u(¢) < 1, it need
not be so for smaller trenches with a significant value ().
Since the number 7 of trenches required for percolation scales
with the area L? of the system, i.e., n ~ (L/£)?, percolation
can be suppressed by enforcing w(£) <« (L/£)*> for any ¢
[for £ ~ O(1), in particular]. This leads to the following
approximate lower bound for the trench decay rate:

Ydee > v (2J). (CDH

This condition tells us that percolation is suppressed provided
that the trench decay rate is much larger than the rate at which
new trenches (or anyon pairs) are created. This lower bound,
however, is less constraining than the one obtained for trench
refilling [Eq. (15)].

2. Contribution of long chains of local anyon pairs

So far, we have argued that percolation is suppressed
provided that Eq. (C1) is satisfied, which is true under the
requirements of our scheme [Eq. (16)]. We have also identified
small trenches (or anyon pairs with a small separation)
as contributing the most to percolation effects, since the
probability P, (£) that an anyon pair separates by a distance £
decreases exponentially with £ in any parameter regime where
our scheme is effective (see Sec. III). To demonstrate that
percolation effects are indeed negligible in this setting, we now
quantify the contribution of small anyon pairs. Specifically, we
examine the probability of finding at least one chain of n (or
more) local anyon pairs—i.e., pairs that are created by a single
local error, composed of anyons on neighboring plaquettes.
Chains of anyon pairs provide an additional channel for anyon
separation. For example, when two anyon pairs are created side
by side—forming a chain of length 3 in some direction—the
two anyons at the center of the chain can recombine and leave a
single pair of anyons separated by a distance 3. Longer chains
can similarly contribute to logical errors.

The number of possibilities to create a chain of length £ >
2n — 1 (composed of at least n local anyon pairs) is bounded
from above by 2.2 - 16 - 9"~2/2. Indeed, any such chain can be
built by creating a first anyon pair anywhere on the lattice (2>
possibilities), extending the chain in any direction by creating
a second pair (16 possibilities), and successively extending the
chain in the forward direction by connecting new pairs to the
end anyon of the chain (nine possibilities for each extension'?).
The factor 1/2 avoids double counting, since each chain can
be constructed starting from one of its two ends.

Based on the above upper bound, the number of con-
figurations of m local anyon pairs containing at least one
chain of (at least) n local pairs must satisfy N (n;m) < (2L? -
16-9"2 /2)(222:’[”), where (2;:") is a binomial coefficient
corresponding to the number of ways to arrange the remaining
m — n pairs on the lattice after forming a chain of n pairs.
Assuming that pairs are created independently with a fixed
rate L2y (2J), the probability that such a configuration of m

12We assume, for simplicity, that chains can overlap with them-
selves. This gives us an upper bound to the number of possibilities to
form a chain, which is sufficient for our purposes.
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pairs is found in a time interval T ~ 1/yg4 corresponding to
the typical lifetime of a single pair satisfies

207 16-9"2/2) (L
( 5 / )( m—n ) P(m)’ (C2)
)

where P(m) = e #u™/m! is the Poisson probability that all
m pairs are created in the same time interval 4., wWhere
w=L>YQ2J)Tgec ~ L?>Y(2J)/Vace. Straightforward algebra
then yields

P.(n;m) <

(L2 — n)l e Hymn

. . n—2 n
P(n;m) <8-9"" " GLE =) (=) (C3)
2 n 2
~8. 9”—2<L V(21)> QL= ),
Vdec (2L2 - 1)'
(C4)

Summing over all possible numbers m > n of local anyon pairs
m=nn+1,... ,L2/2), we finally obtain an upper bound to
the probability that one or more chains of at least n local pairs
is found in any time interval Tge,:

L2y(2J)>”(2L2 —n)!

Ydec (2L2 -1 )'

n—1 n
~ <2) L2<—”(2J)> : (C5)
2 Vdec

where in the last step we have assumed that n < L?, which
is trivially satisfied for chains of n < L local anyon pairs and
system sizes L > 1.

Equation (C5) shows that the probability P.(n) of finding
one or more chains of at least n local anyon pairs decreases
exponentially with n provided that yg. > y(2J), which
coincides with our requirements for percolation suppression
[Eq. (C1)]. When this condition is satisfied, chains of n
local pairs are at least a factor y(2J)/y4ec <K 1 less likely
to occur as compared to chains of n — 1 pairs. Remembering
the lower bound on yge. required to suppress trench-refilling
effects [Eq. (15)], this factor should satisfy y(2J)/Vdec K
yQJ)/y(2J —2U)U/T)2/L)""", where n—n ~2 for
2D trenches [see discussion below Eq. (15)]. Under the
requirements of our scheme, P.(n) is therefore bounded from
above by a quantity that not only decreases exponentially with
n, but does so much more rapidly with increasing system size
(factor 1/L? in the exponent). In comparison, under the most
ideal conditions for our scheme,'? the probability Pyep(£) thata
single anyon pair separates by a distance ¢ changes by a factor
arl = [yU)/y(0)]€ as compared to Pep(£ — 1) [see Eq. (8)
and discussion thereof]. Since this factor is independent of
system size (and even increases with £), the probability P.(n)
of finding at least one chain of n local anyon pairs is generally
negligible as compared to Py, (£)—for system sizes L > 1 in
any regime where our scheme is effective. Therefore chains
of local anyon pairs essentially do not contribute to logical
errors as compared to other error channels such as anyon-pair
separation due to trench extensions by a single pair.

P(n) < 8- 9“(

3When the pump rate is infinite and multianyon effects are ignored
(see Sec. IIT A).
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APPENDIX D: SIMULATIONS

Within our model, the dynamics of the coupled toric-code-
ancilla system is generated by local spin flips ~o7; induced
by the thermal bosonic bath. These flips are, by assumption,
uncorrelated. More importantly, they cause transitions between
anyon configurations at a rate that depends on time, i.e., on
the current anyon configuration as well as on the current
values of the effective plaquette potentials induced by the
ancilla systems. The resulting dynamics is captured by the rate
equation (4), with rates y(w,,) that depend on time through
the time-dependent energy difference w,,, = w,,(¢) between
initial and final anyon configurations.

To simulate the dynamics, we perform a stochastic unravel-
ing of Eq. (4) following a standard time-dependent kinetic
Monte Carlo approach. Specifically, we compute the time
evolution using a “first reaction” algorithm [60] suitably
modified for time-dependent rates [61]. The basic idea is
to evolve the system step by step by (i) randomly drawing,
for every possible spin flip i, a transition time #; from an
exponential probability distribution y;(t)exp ( — ft:)‘ dty; (1))
[where y;(7) is the transition rate at time 7 and ¢ is the current
simulation time], and (ii) by performing the spin flip j with
the minimum transition time ¢; = min;{#;} and updating the
simulation time to f; =ty + ;. This procedure results in a
single Monte Carlo “run,” and averaging over multiple runs is
required to faithfully reproduce the time evolution described
by Eq. (4). For a large number N of runs, the statistical error
decreases as 1/+/N. The error bars presented in our plots
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correspond to 68% confidence intervals (one standard error of
the mean).

The coherence time presented in our numerical results is
defined as the time when a logical error first occurs, averaged
over multiple Monte Carlo samples. For each sample, we
identify this first memory-failure time by reading out, at each
time step, the logical state of the memory using a standard
classical decoding step consisting of (i) measuring the position
of all anyons that are present (the “error syndrome”), and (ii)
using a classical algorithm to compute a correction operator
that would annihilate all anyons in pairs without introducing
“loop operators,” which would modify the memory state [see
discussion below Eq. (2)]. In our simulations, we use a stan-
dard decoding algorithm based on “minimal-weight perfect
matching” [1,62], which has an efficient implementation called
BLOSSOM V [63].

We remark that minimal-weight perfect matching leads to
an “even-odd” effect which must be accounted for to reproduce
the numerical results obtained in Sec. IV C. This is best
understood from the point of view of a single anyon pair. In a
system of odd size L, a logical error occurs when the anyons
separate by a distance (L + 1)/2. When L is even, however, a
logical error does not necessarily occur when anyons separate
by a distance L /2. Since L — (L/2) = L/2, the decoder only
fails half of the time in that case. Therefore the probability
that a logical error occurs is [ Pep(L/2) + Pyep(L/2 + 1)]/2,
where Pgp(£) is the probability that the anyons separate
by £.

[1] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[2] D. Bacon, Operator quantum error-correcting subsystems for
self-correcting quantum memories, Phys. Rev. A 73, 012340
(2006).

[3] Z. Nussinov and G. Ortiz, Autocorrelations and thermal fragility
of anyonic loops in topologically quantum ordered systems,
Phys. Rev. B 77, 064302 (2008).

[4] S. Bravyi and B. Terhal, A no-go theorem for a
two-dimensional self-correcting quantum memory
based on stabilizer codes, New J. Phys. 11, 043029
(2009).

[5] B. Yoshida, Feasibility of self-correcting quantum memory and
thermal stability of topological order, Ann. Phys. 326, 2566
(2011).

[6] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki, On
thermal stability of topological qubit in kitaev’s 4d model, Open
Syst. Inf. Dyn. 17, 1 (2010).

[7] H. Bombin, R. W. Chhajlany, M. Horodecki, and M. A. Martin-
Delgado, Self-correcting quantum computers, New J. Phys. 15,
055023 (2013).

[8] X. G. Wen, Topological orders in rigid states, Int. J. Mod. Phys.
B 04, 239 (1990).

[9] S. Bravyi, M. B. Hastings, and S. Michalakis, Topological
quantum order: Stability under local perturbations, J. Math.
Phys. 51, 093512 (2010).

[10] S. Michalakis and J. P. Zwolak, Stability of frustration-free
hamiltonians, Commun. Math. Phys. 322, 277 (2013).

[11] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303, 2 (2003).

[12] R. Alicki, M. Fannes, and M. Horodecki, On thermalization in
kitaev’s 2d model, J. Phys. A: Math. Theor. 42, 065303 (2009).

[13] A. Kay and R. Colbeck, Quantum self-correcting stabilizer
codes, arXiv:0810.3557.

[14] F. Pastawski, A. Kay, N. Schuch, and I. Cirac, Limitations
of passive protection of quantum information, Quantum Inf.
Comput. 10, 0580 (2010).

[15] O. Landon-Cardinal and D. Poulin, Local Topological Order
Inhibits Thermal Stability in 2D, Phys. Rev. Lett. 110, 090502
(2013).

[16] F. Pastawski and B. Yoshida, Fault-tolerant logical gates in
quantum error-correcting codes, Phys. Rev. A 91, 012305
(2015).

[17] A. Hamma, C. Castelnovo, and C. Chamon, Toric-boson model:
Toward a topological quantum memory at finite temperature,
Phys. Rev. B 79, 245122 (20009).

[18] S.Chesi, B. Rothlisberger, and D. Loss, Self-correcting quantum
memory in a thermal environment, Phys. Rev. A 82, 022305
(2010).

[19] F. L. Pedrocchi, A. Hutter, J. R. Wootton, and D. Loss, Enhanced
thermal stability of the toric code through coupling to a bosonic
bath, Phys. Rev. A 88, 062313 (2013).

094303-18


http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1088/1367-2630/11/4/043029
http://dx.doi.org/10.1016/j.aop.2011.06.001
http://dx.doi.org/10.1016/j.aop.2011.06.001
http://dx.doi.org/10.1016/j.aop.2011.06.001
http://dx.doi.org/10.1016/j.aop.2011.06.001
http://dx.doi.org/10.1142/S1230161210000023
http://dx.doi.org/10.1142/S1230161210000023
http://dx.doi.org/10.1142/S1230161210000023
http://dx.doi.org/10.1142/S1230161210000023
http://dx.doi.org/10.1088/1367-2630/15/5/055023
http://dx.doi.org/10.1088/1367-2630/15/5/055023
http://dx.doi.org/10.1088/1367-2630/15/5/055023
http://dx.doi.org/10.1088/1367-2630/15/5/055023
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1063/1.3490195
http://dx.doi.org/10.1063/1.3490195
http://dx.doi.org/10.1063/1.3490195
http://dx.doi.org/10.1063/1.3490195
http://dx.doi.org/10.1007/s00220-013-1762-6
http://dx.doi.org/10.1007/s00220-013-1762-6
http://dx.doi.org/10.1007/s00220-013-1762-6
http://dx.doi.org/10.1007/s00220-013-1762-6
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://arxiv.org/abs/arXiv:0810.3557
http://dx.doi.org/10.1103/PhysRevLett.110.090502
http://dx.doi.org/10.1103/PhysRevLett.110.090502
http://dx.doi.org/10.1103/PhysRevLett.110.090502
http://dx.doi.org/10.1103/PhysRevLett.110.090502
http://dx.doi.org/10.1103/PhysRevA.91.012305
http://dx.doi.org/10.1103/PhysRevA.91.012305
http://dx.doi.org/10.1103/PhysRevA.91.012305
http://dx.doi.org/10.1103/PhysRevA.91.012305
http://dx.doi.org/10.1103/PhysRevB.79.245122
http://dx.doi.org/10.1103/PhysRevB.79.245122
http://dx.doi.org/10.1103/PhysRevB.79.245122
http://dx.doi.org/10.1103/PhysRevB.79.245122
http://dx.doi.org/10.1103/PhysRevA.82.022305
http://dx.doi.org/10.1103/PhysRevA.82.022305
http://dx.doi.org/10.1103/PhysRevA.82.022305
http://dx.doi.org/10.1103/PhysRevA.82.022305
http://dx.doi.org/10.1103/PhysRevA.88.062313
http://dx.doi.org/10.1103/PhysRevA.88.062313
http://dx.doi.org/10.1103/PhysRevA.88.062313
http://dx.doi.org/10.1103/PhysRevA.88.062313

EXPONENTIAL LIFETIME IMPROVEMENT IN ...

[20] A. Hutter, F. L. Pedrocchi, J. R. Wootton, and D.
Loss, Effective quantum-memory hamiltonian from lo-
cal two-body interactions, Phys. Rev. A 90, 012321
(2014).

[21] J. Haah, Local stabilizer codes in three dimensions without string
logical operators, Phys. Rev. A 83, 042330 (2011).

[22] S. Bravyi and J. Haah, Energy Landscape of 3D Spin Hamil-
tonians with Topological Order, Phys. Rev. Lett. 107, 150504
(2011).

[23] S.Bravyi and J. Haah, Quantum Self-Correction in the 3D Cubic
Code Model, Phys. Rev. Lett. 111, 200501 (2013).

[24] 1. H. Kim, 3d local qupit quantum code without string logical
operator, arXiv:1202.0052.

[25] K. P. Michnicki, 3-d quantum stabilizer codes with a power law
energy barrier, arXiv:1208.3496.

[26] K. P. Michnicki, 3D Topological Quantum Memory with a
Power-Law Energy Barrier, Phys. Rev. Lett. 113, 130501
(2014).

[27] B.J. Brown, A. Al-Shimary, and J. K. Pachos, Entropic Barriers
for Two-Dimensional Quantum Memories, Phys. Rev. Lett. 112,
120503 (2014).

[28] C. Stark, L. Pollet, A. Imamoglu, and R. Renner, Localization
of Toric Code Defects, Phys. Rev. Lett. 107, 030504 (2011).

[29] J. R. Wootton and J. K. Pachos, Bringing Order through Disor-
der: Localization of Errors in Topological Quantum Memories,
Phys. Rev. Lett. 107, 030503 (2011).

[30] S. Bravyi and R. Konig, Disorder-assisted error correction in
majorana chains, Commun. Math. Phys. 316, 641 (2012).

[31] F. Pastawski, L. Clemente, and J. I. Cirac, Quantum memories
based on engineered dissipation, Phys. Rev. A 83, 012304
(2011).

[32] K. Fujii, M. Negoro, N. Imoto, and M. Kitagawa, Measurement-
Free Topological Protection using Dissipative Feedback, Phys.
Rev. X 4, 041039 (2014).

[33] E. Kapit, J. T. Chalker, and S. H. Simon, Passive correction
of quantum logical errors in a driven, dissipative system: A
blueprint for an analog quantum code fabric, Phys. Rev. A 91,
062324 (2015).

[34] B.J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R. Wootton,
Quantum memories at finite temperature, arXiv:1411.6643.

[35] O. Landon-Cardinal, B. Yoshida, D. Poulin, and J. Preskill,
Perturbative instability of quantum memory based on effective
long-range interactions, Phys. Rev. A 91, 032303 (2015).

[36] B. M. Terhal, Quantum error correction for quantum memories,
Rev. Mod. Phys. 87, 307 (2015).

[37] M. Herold, E. T. Campbell, J. Eisert, and M. J. Kastoryano,
Cellular-automaton decoders for topological quantum memo-
ries, NPJ Quant. Inf. 1, 15010 (2015).

[38] M. Herold, M. J. Kastoryano, E. T. Campbell, and J. Eisert, Fault
tolerant dynamical decoders for topological quantum memories,
arXiv:1511.05579.

[39] D. Gottesman, Stabilizer codes and quantum error correction,
arXiv:quant-ph/9705052.

[40] A.J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[41] C. Castelnovo and C. Chamon, Topological quantum glassiness,
Phil. Mag. 92, 304 (2011).

[42] J. Haah, Commuting pauli hamiltonians as maps between free
modules, Commun. Math. Phys. 324, 351 (2013).

PHYSICAL REVIEW B 94, 094303 (2016)

[43] C. G. Brell, A proposal for self-correcting stabilizer quantum
memories in 3 dimensions (or slightly less), New J. Phys. 18,
013050 (2016).

[44] H. P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, USA, 2007).

[45] M. Miiller, K. Hammerer, Y. L. Zhou, C. F. Roos, and P.
Zoller, Simulating open quantum systems: From many-body
interactions to stabilizer pumping, New J. Phys. 13, 085007
(2011).

[46] D. Nigg, M. Miiller, E. A. Martinez, P. Schindler, M. Hennrich,
T. Monz, M. A. Martin-Delgado, and R. Blatt, Quantum
computations on a topologically encoded qubit, Science 345,
302 (2014).

[47] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.
Cleland, Surface codes: Towards practical large-scale quantum
computation, Phys. Rev. A 86, 032324 (2012).

[48] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C.
White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen,
B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley,
C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N.
Cleland, and J. M. Martinis, State preservation by repetitive
error detection in a superconducting quantum circuit, Nature
(London) 519, 66 (2015).

[49] D. L. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, Resolving photon
number states in a superconducting circuit, Nature (London)
445, 515 (2007).

[50] J. Kempe, A. Kitaev, and O. Regev, The complexity of the local
hamiltonian problem, SIAM J. Comput. 35, 1070 (2006).

[51] S.P.Jordan and E. Farhi, Perturbative gadgets at arbitrary orders,
Phys. Rev. A 77, 062329 (2008).

[52] S. A. Ocko and B. Yoshida, Nonperturbative Gadget for
Topological Quantum Codes, Phys. Rev. Lett. 107, 250502
(2011).

[53] J. Hauss, A. Fedorov, S. André, V. Brosco, C. Hutter, R.
Kothari, S. Yeshwanth, A. Shnirman, and G. Schon, Dissipation
in circuit quantum electrodynamics: Lasing and cooling of a
low-frequency oscillator, New J. Phys. 10, 095018 (2008).

[54] E. Kapit, M. Hafezi, and S. H. Simon, Induced Self-Stabilization
in Fractional Quantum Hall States of Light, Phys. Rev. X 4,
031039 (2014).

[55] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J.
Aumentado, H. E. Tiireci, and A. A. Houck, Dispersive Photon
Blockade in a Superconducting Circuit, Phys. Rev. Lett. 107,
053602 (2011).

[56] A. A. Houck, H. E. Tireci, and J. Koch, On-chip quantum
simulation with superconducting circuits, Nat. Phys. 8, 292
(2012).

[57] S. Schmidt and J. Koch, Circuit ged lattices: Towards quantum
simulation with superconducting circuits, Annalen der Physik
525, 395 (2013).

[58] J. Gambetta, A. Blais, D. 1. Schuster,
A. Wallraff, L. Frunzio, J. Majer, M. H. Devoret, S. M.
Girvin, and R. J. Schoelkopf, Qubit-photon interactions in a
cavity: Measurement-induced dephasing and number splitting,
Phys. Rev. A 74, 042318 (20006).

[59] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R. J. Schoelkopf, Introduction to quantum noise, measurement,
and amplification, Rev. Mod. Phys. 82, 1155 (2010).

094303-19


http://dx.doi.org/10.1103/PhysRevA.90.012321
http://dx.doi.org/10.1103/PhysRevA.90.012321
http://dx.doi.org/10.1103/PhysRevA.90.012321
http://dx.doi.org/10.1103/PhysRevA.90.012321
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevLett.107.150504
http://dx.doi.org/10.1103/PhysRevLett.107.150504
http://dx.doi.org/10.1103/PhysRevLett.107.150504
http://dx.doi.org/10.1103/PhysRevLett.107.150504
http://dx.doi.org/10.1103/PhysRevLett.111.200501
http://dx.doi.org/10.1103/PhysRevLett.111.200501
http://dx.doi.org/10.1103/PhysRevLett.111.200501
http://dx.doi.org/10.1103/PhysRevLett.111.200501
http://arxiv.org/abs/arXiv:1202.0052
http://arxiv.org/abs/arXiv:1208.3496
http://dx.doi.org/10.1103/PhysRevLett.113.130501
http://dx.doi.org/10.1103/PhysRevLett.113.130501
http://dx.doi.org/10.1103/PhysRevLett.113.130501
http://dx.doi.org/10.1103/PhysRevLett.113.130501
http://dx.doi.org/10.1103/PhysRevLett.112.120503
http://dx.doi.org/10.1103/PhysRevLett.112.120503
http://dx.doi.org/10.1103/PhysRevLett.112.120503
http://dx.doi.org/10.1103/PhysRevLett.112.120503
http://dx.doi.org/10.1103/PhysRevLett.107.030504
http://dx.doi.org/10.1103/PhysRevLett.107.030504
http://dx.doi.org/10.1103/PhysRevLett.107.030504
http://dx.doi.org/10.1103/PhysRevLett.107.030504
http://dx.doi.org/10.1103/PhysRevLett.107.030503
http://dx.doi.org/10.1103/PhysRevLett.107.030503
http://dx.doi.org/10.1103/PhysRevLett.107.030503
http://dx.doi.org/10.1103/PhysRevLett.107.030503
http://dx.doi.org/10.1007/s00220-012-1606-9
http://dx.doi.org/10.1007/s00220-012-1606-9
http://dx.doi.org/10.1007/s00220-012-1606-9
http://dx.doi.org/10.1007/s00220-012-1606-9
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevX.4.041039
http://dx.doi.org/10.1103/PhysRevX.4.041039
http://dx.doi.org/10.1103/PhysRevX.4.041039
http://dx.doi.org/10.1103/PhysRevX.4.041039
http://dx.doi.org/10.1103/PhysRevA.91.062324
http://dx.doi.org/10.1103/PhysRevA.91.062324
http://dx.doi.org/10.1103/PhysRevA.91.062324
http://dx.doi.org/10.1103/PhysRevA.91.062324
http://arxiv.org/abs/arXiv:1411.6643
http://dx.doi.org/10.1103/PhysRevA.91.032303
http://dx.doi.org/10.1103/PhysRevA.91.032303
http://dx.doi.org/10.1103/PhysRevA.91.032303
http://dx.doi.org/10.1103/PhysRevA.91.032303
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1038/npjqi.2015.10
http://dx.doi.org/10.1038/npjqi.2015.10
http://dx.doi.org/10.1038/npjqi.2015.10
http://dx.doi.org/10.1038/npjqi.2015.10
http://arxiv.org/abs/arXiv:1511.05579
http://arxiv.org/abs/arXiv:quant-ph/9705052
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1080/14786435.2011.609152
http://dx.doi.org/10.1080/14786435.2011.609152
http://dx.doi.org/10.1080/14786435.2011.609152
http://dx.doi.org/10.1080/14786435.2011.609152
http://dx.doi.org/10.1007/s00220-013-1810-2
http://dx.doi.org/10.1007/s00220-013-1810-2
http://dx.doi.org/10.1007/s00220-013-1810-2
http://dx.doi.org/10.1007/s00220-013-1810-2
http://dx.doi.org/10.1088/1367-2630/18/1/013050
http://dx.doi.org/10.1088/1367-2630/18/1/013050
http://dx.doi.org/10.1088/1367-2630/18/1/013050
http://dx.doi.org/10.1088/1367-2630/18/1/013050
http://dx.doi.org/10.1088/1367-2630/13/8/085007
http://dx.doi.org/10.1088/1367-2630/13/8/085007
http://dx.doi.org/10.1088/1367-2630/13/8/085007
http://dx.doi.org/10.1088/1367-2630/13/8/085007
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1137/S0097539704445226
http://dx.doi.org/10.1137/S0097539704445226
http://dx.doi.org/10.1137/S0097539704445226
http://dx.doi.org/10.1137/S0097539704445226
http://dx.doi.org/10.1103/PhysRevA.77.062329
http://dx.doi.org/10.1103/PhysRevA.77.062329
http://dx.doi.org/10.1103/PhysRevA.77.062329
http://dx.doi.org/10.1103/PhysRevA.77.062329
http://dx.doi.org/10.1103/PhysRevLett.107.250502
http://dx.doi.org/10.1103/PhysRevLett.107.250502
http://dx.doi.org/10.1103/PhysRevLett.107.250502
http://dx.doi.org/10.1103/PhysRevLett.107.250502
http://dx.doi.org/10.1088/1367-2630/10/9/095018
http://dx.doi.org/10.1088/1367-2630/10/9/095018
http://dx.doi.org/10.1088/1367-2630/10/9/095018
http://dx.doi.org/10.1088/1367-2630/10/9/095018
http://dx.doi.org/10.1103/PhysRevX.4.031039
http://dx.doi.org/10.1103/PhysRevX.4.031039
http://dx.doi.org/10.1103/PhysRevX.4.031039
http://dx.doi.org/10.1103/PhysRevX.4.031039
http://dx.doi.org/10.1103/PhysRevLett.107.053602
http://dx.doi.org/10.1103/PhysRevLett.107.053602
http://dx.doi.org/10.1103/PhysRevLett.107.053602
http://dx.doi.org/10.1103/PhysRevLett.107.053602
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1002/andp.201200261
http://dx.doi.org/10.1002/andp.201200261
http://dx.doi.org/10.1002/andp.201200261
http://dx.doi.org/10.1002/andp.201200261
http://dx.doi.org/10.1103/PhysRevA.74.042318
http://dx.doi.org/10.1103/PhysRevA.74.042318
http://dx.doi.org/10.1103/PhysRevA.74.042318
http://dx.doi.org/10.1103/PhysRevA.74.042318
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/RevModPhys.82.1155

CHARLES-EDOUARD BARDYN AND TORSTEN KARZIG PHYSICAL REVIEW B 94, 094303 (2016)

[60] D. T. Gillespie, Exact stochastic simulation of coupled chemical [63] V. Kolmogorov, Blossom V: A new implementation of a
reactions, J. Phys. Chem. 81, 2340 (1977). minimum cost perfect matching algorithm, Math. Prog. Comp.
[61] A. P. J. Jansen, Monte carlo simulations of chemical reactions 1, 43 (2009).
on a surface with time-dependent reaction-rate constants, Comp. [64] E. L. Pedrocchi, N. E. Bonesteel, and D. P. DiVincenzo, Monte
Phys. Comm. 86, 1 (1995). carlo studies of the self-correcting properties of the majorana
[62] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17, 449 quantum error correction code under braiding, Phys. Rev. B 92,
(1965). 115441 (2015).

094303-20


http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1016/0010-4655(94)00155-U
http://dx.doi.org/10.1016/0010-4655(94)00155-U
http://dx.doi.org/10.1016/0010-4655(94)00155-U
http://dx.doi.org/10.1016/0010-4655(94)00155-U
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1103/PhysRevB.92.115441
http://dx.doi.org/10.1103/PhysRevB.92.115441
http://dx.doi.org/10.1103/PhysRevB.92.115441
http://dx.doi.org/10.1103/PhysRevB.92.115441



