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First-Principles Computation of the Vibrational Entropy of Ordered and Disordered Ni3Al
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There is increasing evidence that vibrational entropy may significantly contribute to the entropy
difference between the ordered and the disordered states of a compound. Through first-principles
calculations, we investigate the magnitude of this vibrational entropy difference in Ni3Al, a compound
where this effect is believed to be especially large. We find the vibrational entropydifferenceto be
essentially zero and temperature independent. [S0031-9007(98)06236-X]

PACS numbers: 64.70.Kb, 63.20.–e, 65.50.+m
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First-principles theory of order-disorder phase equilibr
is a well-established field [1,2]. Typically, only configu-
rational entropy is accounted for, and the effect of lattic
vibrations on the free energy difference between the o
dered and the disordered states is neglected, although
formal justification of this assumption has ever been pr
sented. On the contrary, recent experimental data [3–
seem to indicate that, in many systems, the vibrational e
tropy difference between the ordered and the disorder
states is comparable to the configurational entropy diffe
ence. An especially striking example is the Ni3Al com-
pound, for which the vibrational entropy difference wa
estimated from experimental observations to be0.2kB [4],
whereas the configurational entropy difference is at mo
0.57kB. If this estimate is correct, it may explain why
most first-principles calculations including only configu
rational entropy consistently overestimate phase transiti
temperatures. Based on the experimental data of Fultz a
co-workers [4], Garbulsky [7] predicted that vibrational ef
fects would shift down the calculated order-disorder tra
sition temperature of Ni3Al by 18% from what it would be
with a configurational-only entropy model.

In order to unambiguously confirm that lattice vibration
indeed play an important role, this experimental eviden
needs to be backed by a suitable theoretical investigati
Unfortunately, highly accurate first-principles calculation
of the vibrational entropy are very computationally inten
sive tasks. In this context, several investigators turned
simplified models to estimate the vibrational entropy. I
some studies [8,9], the complexity of the first-principle
approach was tackled by using a simplified model fo
the vibrational entropy based on the Debye-Gruneis
approximation. All of these results seem to indicate th
vibrational effects can be non-negligible.

Calculations of the vibrational entropy difference be
tween disordered and ordered Ni3Al (hereafter denoted
DSo!d

vib ) has so far been performed using only the sem
empirical embedded atom method (EAM) [10–12]. Al
though the specific result seems to depend somewhat
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the EAM potential used, all authors found values betwe
0.1kB and0.3kB, which corresponds to the range of value
found experimentally.

Although the value ofDSo!d
vib calculated through EAM

agrees with experimental results, there is no consensus
the origin of this difference. The EAM results indicat
that disordering causes a nearly uniform softening of
phonon modes due to an increase in volume. On t
other hand, it has been argued from neutron scatter
experiments [4] that the vibrational entropy increase
mainly due to a significant decrease of the number of hi
frequency vibrational modes. Surprisingly, the sampl
used to measure vibrational entropy differences ev
exhibited adecreasein lattice constant upon disordering
in contrast to the EAM results.

Some EAM investigations [11] found that a large frac
tion of DSo!d

vib is due to thermal expansion difference
between the ordered and the disordered states, while
periments [3,4], as well as some theoretical investigatio
[12], obtained a largeDSo!d

vib without considering this ef-
fect. Finally, recent EAM calculations [13] (which up-
date some of the results found in [10]) found essentia
no contribution from thermal expansion.

The purpose of this paper is to attempt to reco
cile some of these conflicting observations and to ass
the importance of lattice vibrations in the Ni-Al system
through a first-principles calculation of the difference i
vibrational entropy between the ordered and disorder
states for the Ni3Al compound. We find that this entropy
difference is small [s0.00 6 0.05dkB] and essentially tem-
perature independent [s0 6 1d 3 1025kB K21].

The absence of thermal expansion effects in our fin
ings corroborates recent EAM calculations [13] and va
idates the previous investigations which neglected th
effect [3,4,12]. However, the small magnitude of the v
brational entropy difference we predict is in clear contra
with previous semiempirical calculations and experimen
While this result does not rule out the possibility that lattic
vibrations play a significant role in other systems, it do
© 1998 The American Physical Society 4911
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point out that vibrational effects in Ni3Al may be much
smaller than originally claimed.

We will first outline the methodology used in our in-
vestigation, leaving the details of the computations for
forthcoming article. We will then provide plausible ex
planations for the larger value of the vibrational entrop
difference obtained in previous experimental and comp
tational studies.

As in other computational investigations [10], we us
the quasiharmonic approximation [14]: Lattice vibration
are considered harmonic, but their frequencies are volu
dependent. Under these assumptions, the vibratio
entropySvibsV d can be obtained from the phonon densit
of states (DOS)gsV , nd at volumeV . The equilibrium
volume at temperatureT is found by minimizing the free
energy F ­ EsV d 2 TSvibsV d with respect toV . We
thus need to computeSvib from the phonon DOS at
various cell volumes and parametrizeSvib as a function
of V . At each volume, all internal degrees of freedom
as well as the cell shape are relaxed (at constant volum
before computingSvib.

Following the method described in Refs. [15,16], w
compute the phonon DOS of a structure by pertur
ing atoms from their equilibrium position and fitting the
spring constants of a Born–von Kármán model to the r
action forces. The Born–von Kármán model can then
used to compute the phonon DOS. The precision of th
approach can be controlled by gradually including longe
ranged spring interactions until the value of vibrationa
entropy converges (see Table I). In our case, even a fi
nearest neighbor spring model gives us an accuracy
0.025kB. The use of such a small range of interactions
not unusual: It has been observed [15] that even thou
a long-range spring model is required to model all th
features of the phonon DOS, an integrated quantity su
as the vibrational entropy converges much faster with r
spect to the range of interaction included. It is importa
to note that once convergence with respect to interacti
range is reached, this approach should be just as relia
as the well known linear response method [17–19], sin
both methods rely on the same assumption of harmon
ity. We choose to use a Born-von Kármán model becau
it typically has lower computational requirements whe
convergence is reached with a short-range spring mode

Our first-principles computations are performed withi
the local density approximation (LDA), using the sof
pseudopotential approximation and a plane wave ba
[20–24]. Spin polarization is neglected in all calculation

TABLE I. Vibrational Entropy (in kB) as a function of the
number of nearest neighbor (NN) shell included in the Born
von Kármán Model.

Structure First NN shell Second NN shell Third NN shel

L12 25.550 25.576 25.575
SQS-8 25.569
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since the Curie temperature of Ni3Al is only 41 K [25],
while the temperature range of interest is above 600 K.

Figure 1 shows how our calculated phonon DOS of th
L12 structure compares with experimental results [4]. Be
cause of the fact that LDA systematically underestimat
lattice constants, the calculated frequencies are sligh
too high. However, since a similar effect is present fo
both the ordered and the disordered states, this bias is
pected to mostly cancel out. Our model predicts a line
thermal expansion coefficient of13.2 3 1026 K21 for or-
dered Ni3Al in the high-temperature limit. This compares
well with experimental measurements [26] which find i
to vary from 13.9 3 1026 to 14.9 3 1026 K21 between
600 and 900 K.

While the determination of the vibrational entropy o
the ordered L12 structure is straightforward, computa-
tional resources prohibit the use of large supercells to a
proximate the random state. The disordered state is th
approximated by a special quasirandom structure (SQ
[27]. SQS structures are the periodic structures that be
approximate the disordered state in a unit cell of a give
size and have been very successfully used to obtain el
tronic and thermodynamic properties of disordered mat
rials (see, for example, [28]). We use an 8 atom SQS th
possesses the same nearest neighbor pair correlation
the disordered state (see Table II); that is, every Al ato
in the SQS is, on average, surrounded by the same nu
ber of Al atom as in the true disordered state (and sim
larly for Ni atoms). The correlations of the SQS, given
in Table II, are defined as follows: Spinlike variables ar
assigned to each site of the lattice (21 for Ni and 11 for
Al). The correlation associated with a given cluster o
sites (e.g., a pair of neighboring sites) is then obtained
taking the product of the spins of each site of this clust
and by averaging this quantity over all clusters which a
equivalent by the symmetry of the parent lattice.

In order to verify that correlations other than the
nearest neighbor pair do not have a significant influen
on the vibrational entropy, we compute the vibrationa
entropy difference between two structures (L12 and DO22)

FIG. 1. Calculated and experimental phonon DOS of the L12
structures. The experimental phonon DOS is calculated fro
the force constant provided in [4], which are themselves fitte
from previous phonon dispersion measurement [38].
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TABLE II. Correlations of the structures used.pn denotes
the nth nearest neighbor correlation whiletlmn denotes a triplet
made of overlappingpl , pm, andpn pairs.

Structure p1 p2 t111 t112 t113 t114

L12 0 1 1y2 21y2 1y2 21y2
DO22 0 2y3 1y2 21y6 1y6 1y6
SQS-8 1y4 1y3 21y4 0 21y12 21y6
Random 1y4 1y4 21y8 21y8 21y8 21y8

which share the same nearest neighbor correlation b
differ by their other correlations. Our first-principles
calculations show this difference to be at most0.04kB for
temperatures between 600 and 2000 K. The differen
in the correlations between the SQS and the disorder
state are at least a factor of 2 smaller than the differen
in correlation between the L12 and DO22 structures (see
Table II). We can thus reasonably expect that a differen
of 0.04kB between the L12 and DO22 structures translates
into a correspondingly smaller entropy difference betwee
the SQS structure and the disordered state, that is, an e
of at most0.02kB.

The main result of these calculations is that we fin
almost no difference in vibrational entropy between th
ordered and the disordered states [s0.00 6 0.05dkB]. The
error bracket is found by adding the uncertainties due
using only nearest neighbor springs for the SQS (0.025kB)
and due to using a SQS having only the correct nea
est neighbor pair correlations (0.02kB). We do find a
large temperature dependence ofSvib for both the ordered
and the disordered states (about2.4 3 1024kB K21).
However, since thedifference in temperature depen-
dence between the two states is very small (0 6 1 3

1025kB K21), DSo!d
vib remains small at all temperatures.

How can we explain the apparent discrepancy betwe
our findings [s0.00 6 0.05dkB] and results from inelastic
neutron scattering [4] (from0.1kB to 0.3kB)? Although
this range of experimental results is often averaged
give 0.2kB, the true result is probably closer to0.1kB.
The higher bound of0.3kB was obtained using the vir-
tual crystal approximation to analyze the neutron scatte
ing data of the disordered state, while the lower bound
0.1kB was obtained when the DOS of the disordered sta
was assumed to resemble that of the ordered state.
cent EAM calculations [10,11], as well as our own resul
from the SQS calculations (see Fig. 2), clearly show th
latter hypothesis to be the correct one: The DOS of th
disordered state is a broadened version of the DOS
the ordered state. The experimental result is therefo
likely to be close to the lower bound of0.1kB. The re-
maining discrepancy between our calculation and expe
ment can well be accounted for by other sources of entro
in the experiment.

As Ni3Al is ordered up to the melting point, disordered
Ni3Al needs to be produced by vapor deposition [29
or ball milling [30]. Both of these methods produce
ut
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FIG. 2. Calculated phonon DOS of the L12 and SQS-8
structures.

material with a very small grain size (respectively, 4 nm
[29] and 7 nm [31]). When the samples are annealed
reach the ordered state, the grain size inevitably increas
It follows that the ordered and disordered samples diffe
not only by their state of order, but also by their grain
size. Grain size can have a significant effect on th
thermodynamics of nanocrystalline materials. The latte
typically possess higher heat capacities than their coars
grained counterparts due to the large fraction of atom
lying in the grain boundary regions which are typically
softer [31–33]. For example, it has been observed th
the vibrational entropy difference between disordere
Ni3Fe in its nanocrystalline (9 nm average grain size) an
coarse-grained form is about0.18kB [31], which is of the
same order of magnitude asDSo!d

vib in Ni3Al.
This small grain size effect is visible in the vibra-

tional DOS obtained through neutron scattering. It i
responsible for the enhancement of the density of lo
frequency phonon modes [4]. We obtain an estima
of this effect by integrating the experimentally measure
lnsnd f gosnd 2 gdsndg over the low frequency part of the
DOS. To yield a meaningful value, this integral has to
be taken over a range of frequencies which encloses t
same number of modes for both the ordered and the d
ordered states. From the data of Fultzet al. (Ref. [4],
Fig. 4), we obtain a low frequency contribution of abou
0.05kB by integrating from 0 to 22 meV. Frequencies
above 22 meV provide the remaining 0.05kB attributable
to the order-disorder transition. With this new interpre
tation, the neutron scattering results now lie between th
EAM and theab initio predictions.

In calorimetric measurements [3], grain size effect
are expected to be even larger, as the grain size w
only 4 nm (about 20 atomic layers), compared to 7 nm i
neutron scattering experiments. This partly explains th
larger value of the vibrational entropy difference found
with calorimetric measurements.

The effect of small grain size can also explain the dis
agreement between the calculated and experimental latt
parameters. All calculations indicate that the disordere
state has a larger volume than the ordered state (1%–2
larger with EAM, 0.5% larger withab initio). On the
4913
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contrary, some experiments [4] (but not all, see [34]) fin
that the ordered state has the largest lattice constant.
difference arises from the fact that the lattice constant
nanocrystalline materials can often differ by60.3% from
their bulk counterparts [35–37]. This effect can dom
nate over the volume expansion of the bulk material on
if the latter is not too large. In this sense, the small vo
ume expansion upon disordering we obtain is more cons
tent with experimental observations than the EAM resul
This small volume change upon disordering is in part r
sponsible for our small value ofDSo!d

vib .
In conclusion, we find a remarkably small value o

DSo!d
vib , in contrast to interpretations from previous ex

periments and several semiempirical calculations. Ho
ever, in light of our results, the upper and the low
bounds onDSo!d

vib obtained from neutron scattering dat
should be reinterpreted. The upper bound, based on
virtual crystal approximation, is unlikely to be appropr
ate, while the lower bound is probably much closer to t
actual DSo!d

vib . After small grain size effects are take
into account, the resultingDSo!d

vib (about 0.05kB) lies
between the EAM predictions (0.1kB to 0.3kB) and the
ab initio predictions [s0.00 6 0.05dkB]. The difference
between ourab initio calculations and the EAM results
originates from the fact that we find a smaller volume e
pansion upon disordering (0.5%). Finally, we find no si
nificant effect of thermal expansion onDSo!d

vib in Ni3Al.
Understanding the magnitude of the vibrational entro

variations between different states of order remains
central problem in first-principles alloy theory. Thi
variation had been thought to be especially large in Ni3Al,
a perception with which our results disagree. It remai
of interest to evaluate the magnitude of this effect in oth
systems.
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