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First-Principles Computation of the Vibrational Entropy of Ordered and Disordered Ni3Al
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There is increasing evidence that vibrational entropy may significantly contribute to the entropy
difference between the ordered and the disordered states of a compound. Through first-principles
calculations, we investigate the magnitude of this vibrational entropy difference;&l,Ni compound
where this effect is believed to be especially large. We find the vibrational enttifigyenceto be
essentially zero and temperature independent. [S0031-9007(98)06236-X]

PACS numbers: 64.70.Kb, 63.20.—e, 65.50.+m

First-principles theory of order-disorder phase equilibriathe EAM potential used, all authors found values between
is a well-established field [1,2]. Typically, only configu- 0.1kg and0.3kg, which corresponds to the range of values
rational entropy is accounted for, and the effect of latticsfound experimentally.
vibrations on the free energy difference between the or- Although the value ofAS%,¢ calculated through EAM
dered and the disordered states is neglected, although agrees with experimental results, there is no consensus on
formal justification of this assumption has ever been prethe origin of this difference. The EAM results indicate
sented. On the contrary, recent experimental data [3—@hat disordering causes a nearly uniform softening of all
seem to indicate that, in many systems, the vibrational erphonon modes due to an increase in volume. On the
tropy difference between the ordered and the disorderedther hand, it has been argued from neutron scattering
states is comparable to the configurational entropy differexperiments [4] that the vibrational entropy increase is
ence. An especially striking example is the;Alicom-  mainly due to a significant decrease of the number of high
pound, for which the vibrational entropy difference wasfrequency vibrational modes. Surprisingly, the samples
estimated from experimental observations tdi¥5 [4], used to measure vibrational entropy differences even
whereas the configurational entropy difference is at moséxhibited adecreasen lattice constant upon disordering,
0.57kg. If this estimate is correct, it may explain why in contrast to the EAM results.
most first-principles calculations including only configu- Some EAM investigations [11] found that a large frac-
rational entropy consistently overestimate phase transitioion of AS%;“ is due to thermal expansion differences
temperatures. Based on the experimental data of Fultz arigbtween the ordered and the disordered states, while ex-
co-workers [4], Garbulsky [7] predicted that vibrational ef- periments [3,4], as well as some theoretical investigations
fects would shift down the calculated order-disorder tran{12], obtained a largeA S5 without considering this ef-
sition temperature of NAl by 18% from what it would be  fect. Finally, recent EAM calculations [13] (which up-
with a configurational-only entropy model. date some of the results found in [10]) found essentially

In order to unambiguously confirm that lattice vibrationsno contribution from thermal expansion.
indeed play an important role, this experimental evidence The purpose of this paper is to attempt to recon-
needs to be backed by a suitable theoretical investigatiorile some of these conflicting observations and to assess
Unfortunately, highly accurate first-principles calculationsthe importance of lattice vibrations in the Ni-Al system
of the vibrational entropy are very computationally inten-through a first-principles calculation of the difference in
sive tasks. In this context, several investigators turned tgibrational entropy between the ordered and disordered
simplified models to estimate the vibrational entropy. Instates for the NiAl compound. We find that this entropy
some studies [8,9], the complexity of the first-principlesdifference is small([.00 + 0.05)kz] and essentially tem-
approach was tackled by using a simplified model forperature independento[ + 1) X 10 %kz K™ 1].
the vibrational entropy based on the Debye-Gruneisen The absence of thermal expansion effects in our find-
approximation. All of these results seem to indicate thaings corroborates recent EAM calculations [13] and val-
vibrational effects can be non-negligible. idates the previous investigations which neglected that

Calculations of the vibrational entropy difference be-effect [3,4,12]. However, the small magnitude of the vi-
tween disordered and ordered;Nli (hereafter denoted brational entropy difference we predict is in clear contrast
ASﬁifd) has so far been performed using only the semiwith previous semiempirical calculations and experiments.
empirical embedded atom method (EAM) [10-12]. Al- While this result does not rule out the possibility that lattice
though the specific result seems to depend somewhat aiibrations play a significant role in other systems, it does
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point out that vibrational effects in B\l may be much since the Curie temperature of A is only 41 K [25],
smaller than originally claimed. while the temperature range of interest is above 600 K.
We will first outline the methodology used in our in-  Figure 1 shows how our calculated phonon DOS of the
vestigation, leaving the details of the computations for &1, structure compares with experimental results [4]. Be-
forthcoming article. We will then provide plausible ex- cause of the fact that LDA systematically underestimates
planations for the larger value of the vibrational entropylattice constants, the calculated frequencies are slightly
difference obtained in previous experimental and computoo high. However, since a similar effect is present for
tational studies. both the ordered and the disordered states, this bias is ex-
As in other computational investigations [10], we usepected to mostly cancel out. Our model predicts a linear
the quasiharmonic approximation [14]: Lattice vibrationsthermal expansion coefficient #8.2 X 10~¢ K~! for or-
are considered harmonic, but their frequencies are voluméered NiAl in the high-temperature limit. This compares
dependent. Under these assumptions, the vibrationalell with experimental measurements [26] which find it
entropyS.;»(V) can be obtained from the phonon densityto vary from13.9 X 107 to 14.9 X 107% K~! between
of states (DOSk(V,») at volumeV. The equilibrium 600 and 900 K.
volume at temperaturg is found by minimizing the free While the determination of the vibrational entropy of
energy F = E(V) — TS,;p(V) with respect toV. We the ordered L1 structure is straightforward, computa-
thus need to computé,;;, from the phonon DOS at tional resources prohibit the use of large supercells to ap-
various cell volumes and parametrifg;, as a function proximate the random state. The disordered state is thus
of V. At each volume, all internal degrees of freedomapproximated by a special quasirandom structure (SQS)
as well as the cell shape are relaxed (at constant volum§27]. SQS structures are the periodic structures that best
before computing.ip. approximate the disordered state in a unit cell of a given
Following the method described in Refs. [15,16], wesize and have been very successfully used to obtain elec-
compute the phonon DOS of a structure by perturbironic and thermodynamic properties of disordered mate-
ing atoms from their equilibrium position and fitting the rials (see, for example, [28]). We use an 8 atom SQS that
spring constants of a Born—von Karman model to the repossesses the same nearest neighbor pair correlation as
action forces. The Born—von Karman model can then béhe disordered state (see Table II); that is, every Al atom
used to compute the phonon DOS. The precision of thign the SQS is, on average, surrounded by the same num-
approach can be controlled by gradually including longerber of Al atom as in the true disordered state (and simi-
ranged spring interactions until the value of vibrationallarly for Ni atoms). The correlations of the SQS, given
entropy converges (see Table ). In our case, even a firéh Table II, are defined as follows: Spinlike variables are
nearest neighbor spring model gives us an accuracy a@fssigned to each site of the lattice I( for Ni and +1 for
0.025kp. The use of such a small range of interactions isAl). The correlation associated with a given cluster of
not unusual: It has been observed [15] that even thoughites (e.g., a pair of neighboring sites) is then obtained by
a long-range spring model is required to model all thetaking the product of the spins of each site of this cluster
features of the phonon DOS, an integrated quantity suchnd by averaging this quantity over all clusters which are
as the vibrational entropy converges much faster with reequivalent by the symmetry of the parent lattice.
spect to the range of interaction included. It is important In order to verify that correlations other than the
to note that once convergence with respect to interactionearest neighbor pair do not have a significant influence
range is reached, this approach should be just as reliabten the vibrational entropy, we compute the vibrational
as the well known linear response method [17-19], sincentropy difference between two structures{lahd DQ),)
both methods rely on the same assumption of harmonic-
ity. We choose to use a Born-von Karman model because

it typically has lower computational requirements when A0.9 , , ' ' , '
convergence is reached with a short-range spring model. 5 98 experimental | 1
, L . s £ 0.7 calculated ! 1
Our first-principles computations are performed within S 06 Ty
the local density approximation (LDA), using the soft 50'5: |
pseudopotential approximation and a plane wave basis % ,| |
[20—24]. Spin polarization is neglected in all calculations, 5 03l i
a .
w02} 1
TABLE I. Vibrational Entropy (inkg) as a function of the 8 0.1r )
number of nearest neighbor (NN) shell included in the Born- 0 ) il 01214

6
von Karman Model. v
Structure First NN shell Second NN shell Third NN shell FIG. 1. Calculated and experimental phonon DOS of th@ L1
L1, —~5.550 ~5.576 —5575 structures. The experimental phonon DOS is calculated from
SQS-8 —5.569 the force constant provided in [4], which are themselves fitted
- from previous phonon dispersion measurement [38].
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TABLE Il. Correlations of the structures usedp, denotes 08 [ . . x ™
the nth nearest neighbor correlation whilg,, denotes a triplet E 07} L1 i 4
made of overlapping;, p.., andp, pairs. g o6l 2T i i
Structure  p, P2 fi iz 113 li14 é gi' SQS-8 — /i i |
L1, 0 1 12 -1/2 12 -1)2 2 sl Y 2 B |
DO, 0o 2/3 1/2 -1/6 1/6 1/6 - 0'2 A
SQS-8 1/4 1/3 -—1/4 0 -1/12  -1/6 2 T ‘ j 1
Random 1/4 1/4 —1/8 —1/8 —1/8 —1/8 ROl L \ \

0 I \\ 1

0 2 4 6 &8 10 12 14

v (THz)
which share the same nearest neighbor correlation b
9 LIJ:tIG. 2. Calculated phonon DOS of the Jlland SQS-8

differ by their other correlations. Our first-principles
calculations show this difference to be at mo$uky for
temperatures between 600 and 2000 K. The difference
in the correlations between the SQS and the disordereaiaterial with a very small grain size (respectively, 4 nm
state are at least a factor of 2 smaller than the differenci29] and 7 nm [31]). When the samples are annealed to
in correlation between the Lland DQ, structures (see reach the ordered state, the grain size inevitably increases.
Table I1). We can thus reasonably expect that a differencé follows that the ordered and disordered samples differ
of 0.04kp between the Liand DQ, structures translates not only by their state of order, but also by their grain
into a correspondingly smaller entropy difference betweersize. Grain size can have a significant effect on the
the SQS structure and the disordered state, that is, an errbirermodynamics of nanocrystalline materials. The latter
of at most0.02kp. typically possess higher heat capacities than their coarse-
The main result of these calculations is that we findgrained counterparts due to the large fraction of atoms
almost no difference in vibrational entropy between thelying in the grain boundary regions which are typically
ordered and the disordered statés(J0 = 0.05)kg]. The  softer [31-33]. For example, it has been observed that
error bracket is found by adding the uncertainties due tehe vibrational entropy difference between disordered
using only nearest neighbor springs for the SQ825kz)  NisFe in its nanocrystalline (9 nm average grain size) and
and due to using a SQS having only the correct neareoarse-grained form is abo01t18kz [31], which is of the
est neighbor pair correlation$).02kz). We do find a same order of magnitude as5%, ¢ in NisAl.
large temperature dependencesSaf, for both the ordered This small grain size effect is visible in the vibra-
and the disordered states (abolitt X 10 *kz K™').  tional DOS obtained through neutron scattering. It is
However, since thedifference in temperature depen- responsible for the enhancement of the density of low
dence between the two states is very small=(1 X  frequency phonon modes [4]. We obtain an estimate
10-5kz K1), ASS, ¢ remains small at all temperatures. of this effect by integrating the experimentally measured
How can we explain the apparent discrepancy betweem(v)[ g°(v) — g?(»)] over the low frequency part of the
our findings [0.00 * 0.05)kp] and results from inelastic DOS. To yield a meaningful value, this integral has to
neutron scattering [4] (fron8.1kp to 0.3kg)? Although be taken over a range of frequencies which encloses the
this range of experimental results is often averaged tsame number of modes for both the ordered and the dis-
give 0.2kg, the true result is probably closer thlkg.  ordered states. From the data of Fudiiz al. (Ref. [4],
The higher bound 0f).3kz was obtained using the vir- Fig. 4), we obtain a low frequency contribution of about
tual crystal approximation to analyze the neutron scatter.05kz by integrating from 0 to 22 meV. Frequencies
ing data of the disordered state, while the lower bound ofbove 22 meV provide the remaining Ok@5attributable
0.1k was obtained when the DOS of the disordered statéo the order-disorder transition. With this new interpre-
was assumed to resemble that of the ordered state. R&tion, the neutron scattering results now lie between the
cent EAM calculations [10,11], as well as our own resultsEAM and theab initio predictions.
from the SQS calculations (see Fig. 2), clearly show the In calorimetric measurements [3], grain size effects
latter hypothesis to be the correct one: The DOS of there expected to be even larger, as the grain size was
disordered state is a broadened version of the DOS ainly 4 nm (about 20 atomic layers), compared to 7 nm in
the ordered state. The experimental result is thereforeeutron scattering experiments. This partly explains the
likely to be close to the lower bound 6flkz. The re- larger value of the vibrational entropy difference found
maining discrepancy between our calculation and experiwith calorimetric measurements.
ment can well be accounted for by other sources of entropy The effect of small grain size can also explain the dis-
in the experiment. agreement between the calculated and experimental lattice
As NisAl is ordered up to the melting point, disordered parameters. All calculations indicate that the disordered
NisAl needs to be produced by vapor deposition [29]state has a larger volume than the ordered state (1%—2%
or ball milling [30]. Both of these methods produce alarger with EAM, 0.5% larger withab initio). On the

structures.
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