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Measurements of Cylindrical Ice Crystal Growth Limited by

Combined Particle and Heat Diffusion
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Abstract. We present measurements of the growth of long columnar ice crystals from water
vapor over a broad range of temperatures and supersaturation levels in air. Starting with thin, c-
axis ice needle crystals, we observed their subsequent growth behavior in a vapor diffusion chamber,
extracting the initial radial growth velocities of the needles under controlled conditions. Approxi-
mating the hexagonal needle crystals as infinitely long cylinders, we created an analytical growth
model that includes effects from particle diffusion of water molecules through the surrounding air
along with the diffusion of heat generated by solidification. With only minimal adjustment of model
parameters, we obtained excellent agreement with our experimental data. To our knowledge, this is
the first time that the combined effects from particle and heat diffusion have been measured in ice
growth from water vapor. This analysis further provides an accurate method for calibration of the
water-vapor supersaturation levels in experimental growth chambers.

1 Introduction

We recently developed a novel dual diffusion chamber for observing the growth of ice crystals from
water vapor in air, which allows us to create slender needle crystals and measure their subsequent
growth behavior under carefully controlled conditions. The experimental apparatus is described in
some detail in [1]. Figure 1 shows an example of a thin, plate-like ice crystal growing on the end of a
long ice needle at a temperature of -15 C. Our overarching goal with these observations is to develop
a comprehensive model of ice crystal growth from water vapor that can reproduce quantitative
growth rates as well as growth morphologies over a broad range of circumstances. Although ice
crystal formation has been studied extensively for many decades, our understanding of the physical
effects governing growth behaviors at different temperatures and supersaturations is still rather poor
[2, 3, 4, 5, 6, 7, 8].

Determining the water vapor supersaturation in ice growth experiments done in air has long been
a challenge, and it remains a significance hindrance to making accurate, quantitative ice growth
measurements. While a small thermistor probe can easily determine air temperatures with excellent
absolute accuracy and little perturbation of the surrounding environment, water vapor probes (hy-
grometers) are typically bulky and quite limited in absolute accuracy. Moreover, in a supersaturated
environment, water vapor condenses on solid surfaces, and the presence of unwanted ice surfaces can
greatly affect the supersaturation field in their vicinity. As a result, one often resorts to modeling
of the experimental chamber to determine the supersaturation within.

The second diffusion chamber in our dual-chamber apparatus was carefully designed to facilitate
accurate modeling of the water vapor supersaturation [1]. The top and bottom surfaces have con-
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stant, well controlled temperatures, and the side walls were constructed to maintain a simple, linear
vertical temperature gradient throughout the chamber. All walls of the chamber are coated with ice
crystals during operation, thus providing well-defined boundary conditions for constructing a heat
and water vapor diffusion model of the interior of the chamber.

Figure 1: This photograph shows a typical c-axis ice needle crystal growing at -15 C. The supporting
wire substrate is seen in the lower left of the photo, covered with a large number of frost crystals.
Several thin, c-axis ice needles grew out from the wire tip, and one was brought into focus with the
entire needle in the image plane. After 95 seconds of growth at a water-vapor supersaturation of
σcenter ≈ 11 percent (in this particular example) a thin ice plate can be seen growing on the tip of
the ice needle, here seen in side view. The ice plate diameter, ice needle diameter below the plate,
and the overall needle length can be extracted from a set of similar calibrated images.

1.1 Supersaturation in the Diffusion Chamber

The temperatures of the top and bottom of the second diffusion chamber were defined by Ttop,bottom =
Tset ±∆T, so Ttop − Tbottom = 2∆T (see [1] for the chamber dimensions), and the temperatures of
the four walls were maintained at Twalls(z) = Tbottom + 2∆T (z − zbottom)/(ztop − zbottom). Solving
the heat diffusion equation within the chamber then yields the air temperature Tair(z) = Twalls(z),
and in particular we have Tcenter = (Ttop + Tbottom)/2 at the center of the chamber. Moreover, the
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temperature gradient inhibits convective air currents within the chamber. A shutter on one wall of
the chamber is opened briefly to allow the transport of crystals into the chamber, but it is otherwise
kept closed to maintain a stable temperature profile within the chamber.

If we first imagine moving the side walls of the chamber out to infinity, then we can use a plane-
parallel approximation to estimate the water-vapor supersaturation at the chamber center, where
test crystals are positioned. Solving the diffusion equation for water vapor density c(z) yields a linear
function with a constant gradient dc/dz and ccenter = (ctop+cbottom)/2, yielding the supersaturation
at the center of the chamber

σcenter =
ccenter − csat(Tcenter)

csat(Tcenter)
(1)

=
1

2

csat(Ttop)− 2csat(Tcenter) + csat(Tbottom)

csat(Tcenter)

where csat(T ) is the saturated vapor pressure above an ice surface. This expression gives the exact
value for σcenter in the plane-parallel approximation (ignoring small changes in the diffusion constant
with temperature).

For small ∆T , we expand the above expression to obtain the simpler expression

σcenter ≈
1

2

1

csat(Tcenter)

d2csat
dT 2

(Tcenter) (∆T )
2

(2)

≈ Cdiff (Tcenter) (∆T )
2

The function Cdiff (T ) can be calculated using csat(T ) ∼ exp(−6150/TK) to good accuracy, where
TK is the temperature in Kelvin. In practice, we have found that the quadratic expansion is usually
accurate enough for our purposes, as it differs from the exact expression for σcenter by less than a
percent when ∆T < 6 C, and it is only a few percent high when ∆T = 10 C.

To see how the chamber walls and the crystal support structure affected the supersaturation field,
we examined a range of computational models of the diffusion chamber under different conditions,
with one example shown in Figure 2. In these models we solved the dual-diffusion problem (tem-
perature and water-vapor density) numerically in three dimensions. We found that, over a broad
range of conditions near Tcenter ≈ −15 C, the side walls reduced σcenter by a factor of approximately
0.8 compared to the plane-parallel approximation, and an ice-covered central stem further reduced
σcenter by a factor of approximately 0.9. Combined, our models indicated that these effects lowered
the supersaturation at the center by a constant geometrical factor of Gmod ≈ 0.72 compared with
the plane-parallel approximation, so that Equation 2 becomes

σcenter(Tcenter,∆T ) ≈ GmodCdiff (Tcenter) (∆T )
2

(3)

Our models also indicated, however, that there remained significant uncertainty in our ability
to calculate Gmod, arising mostly from difficulties in accurately modeling effects from the crystal
support structure and from a microscope objective placed inside the chamber about 90 mm away
(horizontally) from the growing crystals.

1.2 Modeling Cylindrical Crystal Growth

As we began measuring crystal growth rates with this apparatus, we soon realized that the radial
growth of the ice needles could be used to calibrate the supersaturation σcenter as a function of Tcenter
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Figure 2: An example numerical model of the second diffusion chamber described in [1], showing a
contour plot of the water vapor supersaturation within the chamber. The edges of the plot represent
the outer walls of the chamber, and the observation point is at the geometrical center of the chamber,
marked here with a round dot. Note that the supersaturation drops to zero at the chamber walls
(dark), and reaches its maximum value (white) below the center of the chamber. In this particular
model, the supersaturation also goes to zero near an ice-covered central post that supports the test
crystals.

and ∆T. In essence, the prism surfaces of the columnar needles serve as “witness” surfaces, providing
a fairly accurate measure of the surrounding water vapor supersaturation. As we will see below,
this calibration works because the radial growth of the needles is limited primarily by particle and
heat diffusion, and is nearly independent of the attachment coefficient αprism at the needle surface.
Therefore we do not need to know αprism with great accuracy to calibrate σcenter(Tcenter,∆T ).

To see this, consider the growth of an infinitely long cylindrical ice crystal. Ignoring latent heat
generation for the moment, we can solve the particle diffusion equation in cylindrical coordinates to
yield the general solution σ(r) = C1 + C2 log(r), where C1 and C2 are constants to be determined
by the boundary conditions in the equation. Here we have approximated the diffusion equation by
Laplace’s equation, which is quite accurate in this situation, as the dimensionless Peclet number is
much less than unity [8].

At the outer boundary of this model we assume a constant supersaturation σ(Rfar) = σfar, where
Rfar is the outer boundary of the cylindrically symmetric diffusion field, and σfar is essentially equal
to σcenter described above. (Note that Rfar cannot be set to infinity in cylindrical coordinates,
as is commonly done in spherical coordinates.) Equating σfar with σcenter ignores the particle
density gradient dc/dz in the diffusion chamber, which is justified by the observation that vertical
asymmetries in crystal growth rates are generally quite small.

At the inner boundary Rin, equal to the surface of the cylindrical crystal, we write the radial
growth velocity

v =
dRin

dt
=

csatD

cice

dσ

dr
(Rin) = αprismvkinσ(Rin) (4)
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where D ≈ 2× 10−5 m/sec2 is the particle diffusion constant, cice is the number density of ice, and
vkin(T ) is the kinetic velocity defined in [8]. Including these boundary conditions in the solution for
σ(r) then gives

v =
αprismαdiffcyl

αprism + αdiffcyl

vkinσfar (5)

where

αdiffcyl =
1

B

X0

Rin

, (6)

with B = log(Rfar/Rin) and X0 = csatD/cicevkin ≈ 0.145 µm. This cylindrical solution is similar
to the spherical case presented in [8].

Using typical numbers (as we will see below) of Rin = 5 µm and Rfar = 2 cm, we obtain the
rather small value

αdiffcyl ≈ 0.0035

Comparing this αdiffcyl with the αprism measurements presented in [9], we find that αdiffcyl ≪

αprism in most circumstances, allowing us to write

v ≈ αdiffcylvkinσfar (7)

and we see that this growth velocity is independent of αprism as long as αdiffcyl ≪ αprism. Combining
Equations 3, 6, and 7 then yields the radial growth rate of the cylinder

v(Rin) ≈
Gmod

B

X0

Rin

vkinCdiff (T ) (∆T )
2

(8)

This equation gives us a good prediction for v(Rin), as all the parameters are rather tightly
constrained except for Gmod (which is determined roughly by our modeling of the experimental
chamber, as described above) and B = log(Rfar/Rin). However, Equation 8 only applies in the
absence of crystal heating from solidification, which produces a significant perturbation of v(Rin),
so we next examine thermal considerations in our cylindrical crystal model.

Heating occurs because the growth of the cylindrical crystal releases a latent heat per unit length
of

dQ

dLdt
= 2πλρvRin

where λ = 2.8× 106 J/kg is the latent heat for the vapor/solid transition and ρ = 917 kg/m3 is the
ice density. This generated heat must then be removed via conduction through the air surrounding
the crystal (ignoring convective air currents). Solving the heat diffusion equation in cylindrical
coordinates is similar to solving the particle diffusion equation described above, and doing so yields
a temperature rise of the crystal (relative to the air temperature at r = Rfar) given by

δT =
BλρvRin

κ
(9)

where κ = 0.025 W m−1 K−1 is the thermal conductivity of air. The temperature rise increases the
equilibrium vapor pressure of the ice to

c(Rin) ≈ csat(Tfar) [1 + ηδT ]
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where η = d log (csat) /dT , and a bit of algebra reveals that this reduces the growth rate to (see [8])

v(Rin) ≈
1

1 + χ0

Gmod

B

X0

Rin

vkinCdiff (∆T )
2

(10)

where

χ0 =
ηDλρ

κ

csat
cice

This result is an extension of Equation 8, and v (Rin, T,∆T ) in Equation 10 provides our final
theoretical prediction for the growth rates of cylindrical crystals in our diffusion chamber. Our next
step is to compare these predicted growth rates with experimental data.

Figure 3: The top panel shows a composite image of the tip of a single ice needle crystal as it grew.
The graph below it shows the needle radius at a location 100 µm below the needle tip, as indicated
by the white horizontal line in the composite image. The images correspond to the first ten points
in the graph. The needle grew in our diffusion chamber at a center temperature of Tcenter = −2 C
with ∆T = 7 C.
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2 Comparison with Crystal Growth Measurements

For all the crystal growth data presented here, we first measured the needle radius as a function
of time Rneedle(t), at a location L = 100 µm below the needle tip, starting from images similar to
that shown in Figure 1. Figure 3 shows one example crystal grown at a temperature of T = −2 C
and ∆T = (Ttop − Tbottom)/2 = 7 C. This choice of L was something of a compromise, being close
enough to the needle tip to be relevant for subsequent observations of ice structures at the tip, while
far enough below the tip that these same structures did not greatly influence Rneedle(t) for small
Rneedle.

The optical microscope used to photograph the crystal had a resolving power of 2.5 µm, and the
image pixels measured 0.85 µm. Our diameter resolution was therefore about ±2 µm, giving radial
measurements that were accurate to about ±1 µm. We then fit the Rneedle(t) data to a smooth
curve to determine v = dRneedle/dt at a time when Rneedle = 5 µm, as shown in Figure 3. We
chose the smallest practical Rneedle for which we could accurately measure dRneedle/dt, because the
tip structures more greatly perturbed the cylinder growth at later times, when the tip structures
(especially plates) were larger in size. We did observe some variation in the measured dRneedle/dt
with changing L, with different tip structures, and between different crystals grown in ostensibly the
same conditions. But these variations were at roughly the ±20 percent level, so they did not alter
our analysis greatly.

Figure 4 shows the resulting radial growth velocity v5(T,∆T ) = v(Rneedle = 5 µm) measured at
two representative growth temperatures as a function of ∆T. These data, along with similar data
at other temperatures, were well fit with simple quadratic functions v5(T,∆T ) = A5(T )∆T 2. The
measured fit coefficients A5(T ) were then compared with calculated A5(T ) from Equation 10, and
the results are summarized in Figure 5. The theory curves used Gmod = 0.72, and Rfar was adjusted
to fit the particle+heat diffusion curve to the data, yielding a best fit Rfar = 2 cm. As can be seen
in Figure 5, our data are in excellent agreement with the expected particle+heat diffusion prediction
over the entire temperature range tested, with a physically reasonable choice for Rfar.

From this comparison between theory and experiment, we can extract a prediction for σfar(T,∆T ),
essentially equal to σcenter , the supersaturation at the center of the diffusion chamber in the absence
of any test crystals. Parameterizing this as σfar(T,∆T ) = Aσ(T )∆T 2, the lower theory curve in
Figure 5 becomes the Aσ(T ) curve shown in Figure 6. The calculated σfar(T,∆T ) = Aσ(T )∆T 2,
using Rfar = 2 cm extracted from the data, then replaces Equation 3 as our best estimate of the
supersaturation at the center of our diffusion chamber, now calibrated using experimental data.

In summary, we have modeled the early growth of ice needle crystals in a vapor diffusion chamber
using a cylindrically symmetric approach that approximates the needles as infinitely long cylinders.
The largely analytical model (with the geometrical correction factor Gmod provided by numerical
simulations) then yielded Equation 10, which gives the radial growth velocity v(Rin) as a function
of T, ∆T, and other experimental parameters. Comparing this predicted v(Rin) with measurements
at Rin = 5 µm, we found excellent agreement using a sensible value of Rfar = 2 cm for the outer
boundary in the model.

The data clearly indicate that both heat diffusion and particle diffusion limit the crystal growth
rates, as theory predicts. To our knowledge, this is the first time that ice growth experiments have
achieved sufficient absolute accuracy to verify this basic theoretical prediction. Having a reliable
understanding of the supersaturation and resulting crystal growth behavior for this simple cylindrical
geometry is a major step forward in producing accurate, quantitative measurements and models of
more complex ice crystal growth behaviors.
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Figure 4: The upper graph shows measurements of v5 = dRneedle/dt when Rneedle = 5 µm, from
data taken at a temperature of T = −2 C, as described in the text. The lower graph shows similar
data taken at T = −15 C. Both data sets were fit to quadratic functions v5 = A5∆T 2, shown as
solid lines. This functional form is expected if the growth is predominantly limited by diffusion, and
not by attachment kinetics. The dotted lines in both graphs show models of what the velocities
would be if the growth were limited instead by attachment kinetics.
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Figure 5: The points show the measured velocity fit coefficient A5(T ) as a function of the crystal
growth temperature. For comparison we show calculated A5(T ) for particle diffusion only (upper
curve, Equation 8) and for combined particle diffusion and heat diffusion (lower curve, Equation
10). Both curves used Gmod = 0.72 and Rfar = 2 cm, after adjusting Rfar so the lower curve best
fit the observational data.
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