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Feedback cooling of a nanomechanical resonator
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Cooled, low-loss nanomechanical resonators offer the prospect of directly observing the quantum dynamics
of mesoscopic systems. However, the present state of the art requires cooling down to the millikelvin regime
in order to observe quantum effects. Here we present an active feedback strategy based on continuous obser-
vation of the resonator position for the purpose of obtaining these low temperatures. In addition, we apply this
to an experimentally realizable configuration, where the position monitoring is carried out by a single-electron
transistor. Our estimates indicate that with current technology this technique is likely to bring the required low
temperatures within reach.
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[. INTRODUCTION teristic frequency of a SET is typically of the order of
10 GHz, so that the rf drive looks constant to the SET, and

Nanomechanical resonators are now being built withthe dc-SET equations can be used.
quality factors in the rang&)~10*, and resonance frequen- ~ We will use a quantum mechanical model of the measure-
cies of up to several hundred MHZhe ground state energy ment and feedback process, but discuss how, in this case,
of these devices can correspond to temperatures in the miguch a description is equivalent to a classical measurement of
likelvin range. As a result, the observation of quantum be-2 noisy classical system. Thus, this paper is intended for both
havior in these devices is becoming a real possibilifp  experimentalists familiar with classical descriptions of noise
detect such behavior, the resonator must be sufficiently coldn systems as well as quantum measurement theorists.
since a quantum harmonic oscillator driven by thermal noise Rather than performing a microscopic analysis of the
behaves as a classical oscillator driven by thermal noise, orf@€asurement process in terms of the interaction of the SET
must ensure that the signatures of quantum effects are ngnd the resonator, we start by introducing equations which
swamped by the thermal behavior. The approach taken so f&€escribe the continuous observation of a quantum observ-
to achieve low temperatures is to place the resonator in able, and show how this includes the shot noise and back-
refrigerator. However, cooling very small devices in this wayaction, these being the key sources of noise in a continuous
is inherently inefficient in that the system becomes weaklyjuantum measurement. This description can then be tailored
coupled to the thermal bath. Here we explore the possibilityo the case of a measurement with a SET by choosing the
of using feedback control to effect an “active” cooling of the parameters so that the noise sources match those calculated
resonator, in order to cool below the possible limits set byin microscopic noise analyses which have been performed
the “passive” refrigeration technique. for the SET>®

To perform such feedback cooling the resonator must be A treatment of the continuous quantum measurement of a
monitored, and the result fed back in real time to affect thewo-state system using a SET has been carried out by
dynamics. A practical method of performing a continuousKorotkov;’ using what might be referred to as a partially
measurement of the position of the resonator is to use a

single-electron transistaiSET).3~° To measure the position Eiianle

of the resonator one locates the central island of the SET electrode |

next to the resonator. When the resonator is charged, and th

SET is biased so that current flows through it, changes in the = Faadback
resonator’s position alter the potential on the central island, S — REscndiDg circuitry
which in turn changes the current. The current therefore pro{y,,, T — i

vides a continuous measurement of the position of the reso | i

nator, and this is just what is required for implementing a Lot N It |

linear feedback cooling algorithfi. A feedback force can be
applied by applying a voltage to a gate capacitively coupled @
to the resonator, and adjusting the voltage so as to damp th
resonator(see Fig. 1, or by passing a variable current

through the oscillator in the presence of a fixed external =
magnetic field. We will analyze the first system, although the FiG. 1. A schematic of the resonator, measuring, and feedback
results should apply to the second as well. In our analysis Wepparatus. As the resonator moves closer to the SET, the current
will use the theory of the dc-SET. While an experimentflowing through the SET changes, and that information is then used
would most likely use a radio-frequency SE® the charac-  to generate a feedback voltage applied to an actuating gate.
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microscopic approach. The equations we use here may hencertainty is not fed back into the observable being mea-
derived by replacing the two-state observable in those equaured, then the measurement is referred to as “back-action
tions by the resonator positidfA full analysis, along the evading.”

lines of those performed for quantum optical systém, Now let us examine the case of a position measurement
can also be expected to produce the same equations undam a harmonic oscillator. To do this, we set=x, and the
reasonable approximations. The form of these equations idamiltonian becomes

determined by how information is obtained, and not by the

specific implementation, which explains why the form of the p? 1 -

equations is similar in optical position measurements and H= 25 T 3 Mwox”, (€)
position measurement using SETs. If the measurement is of a

physical observable, and the resulting error about the expeggherem is the mass of the particley, is the (angulaj fre-
tation value of that observable in a short time intem¥alis  guency of the oscillation, and and p are the position and
Gaussian, then the most straightforward implementation ofnomentum operators, respectively. To make our model suf-
that measurement process has the form used here. ficiently realistic, we need to include two more sources of
_ In Sec. Il we introduce the equations that describe a conngjse: the first is the intrinsic thermal noise of the harmonic
tinuous measurement process, derive the form of the resuliscillator, and the second is the possibility that the oscillator
ing noise, and give the equivalent classical model. We thepyay pe driven by white noise over and above that required
discuss how this model can be applied to position measureyy Heisenberg’s uncertainty principléexcess “technical
ment using a SET, and compare our formulas to those deqgjse”).

rived using a semiclassical treatment of the SR&fs. 3 and The second of these is easily included by adding a term
8) in order to express our results in terms of experimental_ g[x [x 5]] to the equation of motion gf; this describes a
parameters. In Sec. Ill we discuss the implementation of @gjse term identical to the one caused by the back-action, but
feedback algorithm and calculate the minimum achievablgjithout the corresponding dynamics ef associated with
temperature in terms of physical parameters. We then calCysptaining a measurement result which causes the back-

late estimates of realistic achievable temperatures for an agction. It is equivalent to adding a term lineanito Hamil-
experimentally realizable sample system in Sec. IV, and fitgpjan (3) multiplied by white noise.

nally conclude with a summary of the results obtained. The inclusion of thermal fluctuations is only a little more
involved, and can be achieved by coupling the oscillator to a
ll. CONTINUOUS QUANTUM MEASUREMENT thermal bath. In our case the effect of the thermal bath may
OF POSITION be included by adding the “standard Brownian motion mas-

ter equation”(SBMME) (Ref. 15 to our equation of motion
Given a quantum system whose state is specified by thfyr p:
density matrixp, and whose evolution is determined by the
HamiltonianH, then a continuous measurement of the ob- i iT
servableO of that system, which provides the continuous dp=-— g[H,p]dt— ﬁ[X,{p,ph]dt
output resultgmeasurement record

k mwor ﬁwo d
1 —| k+B+ 700”\2'(? [x,[x,p]]dt
dr=(0)dt+ —dW, (1)
V8k +2K(xp+ px—2(x)p)dW, 4)
induces the following evolution of the systéim®* wherel’ = w/Q, Q being the quality factor of the resonator.
The two terms proportional tb are due to the inclusion of

dp=—(i/%)[H,p]dt—k[O,[O,p]]dt the SBMME, the first representing dissipation due to the res-

ervoir while the second is a diffusion term due to environ-
+ \/ﬂ(OerpO—z(O)p)dW. (2 mental fluctuations. Here we are using an approximate form

of the SBMME appropriate for the weak coupling regime
Herek is proportional to the measurement strength, dWd  (smallT", largeQ) but covering all ranges of temperatur8s.
is a Weiner process. The noise contained in the measureme®ince the nanomechanical resonators we consider all have
record is a necessary result of the fact that only a finitdarge values ofQ, the weak coupling requirement is easily
amount of information is obtained regarding the observableatisfied. The temperature dependence of the diffusion coef-
O in afinite time. This direct noise on the record is called theficient is given by coth{wy/2kgT) so that the diffusion does
shot noiseHowever, this is not the only noise resulting from not vanish akgT—0: this correctly accounts for the exis-
the measurement process. As a result of Heisenberg’s uncegence of quantum vacuum fluctuations which exist even at
tainty relation, information about one observable makesero temperature. In the absence of a rigorous characteriza-
other observables less certain. Due to the dynamics, the ution of the dissipation channels of nanomechanical systems
certainty (noise in these observables can feed into the ob-there is as yet no need to include a more sophisticated de-
servable being measured. This source of noise is referred gcription of SBMME environmental effect§.Phenomeno-
asback-action If the Hamiltonian is such that the increased logical corrections to the SBMME such as the temperature
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dependence ofF can be added if needed, but these are not i ir
significant effects in the higk® regime. dp=— 2 [H,pldt=—[x,{p,p}]dt
We also need to include in our model the possibility that
there is noise driving the oscillator which is correlated with Mool hwg
the noise on the measurement rec@ite shot noise This —| k+ B+ —;—cothy, — | [x,[x,p]]dt
can happen if the noisy behavior of the oscillator explicitly B
causes some of the noise in the measurement apparatus, or —iV2kB[X,pldW+ \/ﬂ(Xerpx—Z(x)p)dW.

vice versa. In this situation, the measurement record contains
more information about the oscillator position, so when it (10
comes to adding feedback, we are able to cool the oscillatofhis completes our quantum mechanical description of a
further than would otherwise be expected. In E8). the resonator under continuous observation.
noise driving the oscillator is purely the quantum back- Now that we have an equation that includes all the rel-
action. It may appear from Eqél) and(2) that the quantum evant noise terms, the noise spectrum of the measurement
back-action is correlated with the shot noise due to the factecord can be obtained:
that the same noise ternd{V) appears in both equations.
However, this is not the case. The term proportionad Y&/ Sw)= i Mool hwo
. ; ) ! w)= = +|k+ B+ cot
which appears in the equation fpr describes the random 8k 2h kgT
way in which the measurement changes the observers state
of knowledge about the system. Thus, on average, this noise 2(flm)?
term decreasesthe entropy ofp. The back-action noise, I20?+ (0?2~ wd)?’
which is driving the oscillator and consequenifcreasing . _ _ o _
the entropy ofp, is described by the term proportional ko The f|ret term is the shot noise, which is white, the term
The quantum back-action is, in fact, completely uncorrelatedProportional tok is the quantum back-action, the term pro-
with the shot noise. portional toI" is the effect of the noise from the resonator’s
To drive the oscillator with a random force, one appliesthermal environment, and the term proportionalgayives
the Hamiltonian/ £(t)x, where&(t) is the magnitude of the any excess noise over and above the necessary quantum
random force. We can choogét) to be correlated with the back-action. Note that the last three terms all have the same
shot noise, with the correlation coefficiext by setting form as a function ofw. This is because they are all white
noises filtered through the harmonic oscillator spectral re-
sponse function.
d¢= V2a(ikdW+ 1= «dV), ) While our treatment so far has been fully quantum me-
chanical, it is worth noting that a purely classical model of a
wheredV is a Wiener noise uncorrelated withV. The re-  measured, damped oscillator will completely reproduce the
sulting spectral density of(t) is @, so that(£(t)é(t'))  dynamics of this measured quantum system, no matter how
=ad(t—t"). The Stratonovich equation which describes thecold the resonator, so long as the initial density matrix is

(11)

driving by &(t) is Gaussian inx andp.® Thus, one can understand the behavior
of the oscillator in terms of classical noise and a classical
Py = —i £OX| Y, 6 measurement process. The eguatlons of motion for the posi-
) §0X1 ) C tion X, and momentunp,, of this equivalent classical oscil-
. . . . lator are
and converting this to an Ito equation gives
1
dl ) = —iV2ax| ) dé— ax? g)dt. @ dxe= 1 Pedt, (12
Converting the Ito equation further to an equation goone dp.= —mngcdt—l“pcdtJrﬁ\/ﬂdY@Lh\/Z,BdVC
obtains
+ \/ fagl thzﬁﬂdu (13
m wqo CO cs
dp=—afx,[x,p]]dt—i\2a[x,p]dE. ® keT

where dY,, dV., and dU, are each zero-mean Gaussian
Since the observer has accessW, but not todV, she must  white noise, and mutually uncorrelated. The position of the
average ovedV, and this gives oscillator is then observed by a continuous classical mea-
surement, which generates the output record

dp=—a[x,[X,p]ldt—iy2ka[x,p]dW. 9 1
- - - drCZXCdt"F \/ﬁdzc, (14)

If we allow part of the excess noise given Byin our model

to be due to driving by the shot nois@V (that is, this noise and wheredZ; is zero-mean Gaussian white noise, uncorre-
is correlated with the shot noigsBV with correlation coeffi-  lated withdY,. The noise terndl Y, is what is required in the
cient k) then the equation of motion for the system becomeslassical model to correctly include the back-action of the
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guantum measurement process. It is now explicit that thisising a perturbative quantum calculatioihis ignores the
noise is uncorrelated with the shot noise on the measurgeossibility that electrons will tunnel coherently across both
ment,dZ.. junctions simultaneously, a quantum effect referred toas

In the classical case, the observer’s state of knowledg&unneling This method may be referred to as a “semiclassi-
about the oscillator is given by a joint probability density cal” model for the dynamics of the SET, and it is the model
over X, and p.. This probability density is the classical that we will use here.
equivalent of the density matrix. So long as the initial It is important to note that the above semiclassical method
probability density is Gaussian, it remains Gaussian as timéor calculating the charge fluctuations, does not include the
passes, and as a result the observer’s full state of knowledggiantum back-action noise. This can be seen from the fol-
may be represented by merely five variables: the mean posiewing argument? In the classical treatment, since the fluc-
tion and momentum{x.) and(p.), and the variances and tuating force on the resonator is due to the electrons jumping

covariance, given by on and off the island, in principle the time history of this
force can be known by detecting the electrons flowing in the
Tz =(Xe) = (Xo)%, (15  circuit. In principle, then, the effect of the noise can be
, , known, and if desired, undone. As a result it cannot include
ap=<pc)—<pc>2, (16)  the quantum back-action, since this cannot, even in principle,
be undone. Thus, the charge fluctuations calculated using the
af(p:(xcpc)—(xc)(pC}. (17 semiclassical SET model gives the excess ngisand the

current shot noise givds

The quantum mechanical measurement mojdeds. (1)
and (2)], describe a valid quantum measurement for any
value ofk and 8, However, the classical model of the SET
il only give an accurate description of the dynamics of the

It is the meangx.) and(p.) (being the observer’s best esti-
mates of the value ok. and p;)which are the classical
equivalents of the quantum expectation val(xes and (p).

It turns out that if one writes the classical measuremen

record as SET, and thus of the true values lofand 3, in certain pa-
1 rameter regimes. In fact, it is useful to note that the rkiij®
dre=(xgdt+ —dW,, (18)  provides a diagnostic tool for determining when the classical
V8k calculation breaks down; i/8<1 is not satisfied, then the

classical calculation no longer provides a good estimate of

thendW, is zero-mean Gaussian white noisencorrelated X _
with dZ,. The classical model is then equivalent to the quan-the total force noise on the resonator. Thus it should be noted

tum model if we equatel\W, with the quantum measurement that if k/ 8= 1, then the classical calculation cannot be relied
noise. dW. and correlecxte dV, with dW,, so that uPon. That is, it is possible in this case that the total noise on

(VD)W (') = kS(t—t"). 'éhe resonator is signifi_can_tly larger than our estimafe,e_,
ue to quantum contributions not taken into account in the

classical calculation.

We find that in the regions of best cooling, which we
explore in the followingk is not necessarily much smaller

Having obtained a model which is sufficiently general tothan 8 (although near-optimal cooling can be obtained with
encompass the dynamics of a resonator monitored by a SEf=</, and in particular we will give as an example results
we need to express the theoretical parameteys, andx in for k= B/10). Hence our calculations should be regarded as
terms of the actual experimental parameters of the SETstimates of the performance of the feedback algorithm,
Since it is by measuring current through the SET that weather than exact results. We note, however, that a more so-
measure the resonator position, it is the spectral density dfhisticated analysis using the diagrammatic techniques de-
this current which determines the shot noise of the measura€loped by Schoeller and Sahd might provide analytic, or
ment. The back-action from the measurement is due to theemianalytic results for the parameter regime of most interest
action of the SET on the resonator, which is the force that théor quantum measurement and control, and therefore may
resonator feels from the charge on the SET island. As a resurovide a method for more accurate calculations.
the back-action nois@ can be calculated from the spectral ~ The spectral densities given by the classical calculation
density of the charge fluctuations on the SET island, andre derived in the Appendix. Approximations which are used

hencex is determined by the correlation between the currenin the derivation are detailed there, and come primarily from
and the island charge fluctuations. Zhang and Blencow®The noise spectrum of the displace-

However, the dynamics of the SET are sufficiently com-ment of the resonator due to the shot noise of the SET cur-
plex that analytic results for these spectra have as yet onlient is
been obtained for certain parameter regimes. These calcula-
tions have been performed by Zhang and Blencbwsing | S/(w)
previous results of KorotkoV.The technique used is to ap- SX:(lex)z'
proximate the dynamics of the electron tunneling on and off ds
the SET island by a classical master equation. That is, thehereS,(w) is the spectral density of the shot noise, given in
electrons are assumed to tunnel independently across eachd. (A10), andl is the current through the SET, given in Eq.
the junctions, with certain rate@he rates being obtained (A8). The dependence of the current on the displacement of

IIl. CONTINUOUS MEASUREMENT
WITH A SINGLE-ELECTRON TRANSISTOR

(19
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the resonator comes from its dependence on the gate capatielled case. To derive these equations, we note that the equa-

tance, which can be approximated by tion of motion forp, under feedback, is given by E¢LO),
where one sets
X
Cyg~Cgqo| 1—+]. (20 2
d _p 2,2
H—ﬁJrEmwox —y(mw0<x)+(p>)x (25)

The shot noisés, (w) is, to a very good approximation, fre-
quency independent, as required by our quantum measures include the feedback force. Using the fact thHIO)

ment model. Thus =Tr[Odp], anddW?=dt, one obtains, for the means,
1 Si(w) (p)
| | 2
—= = 21 d(x)=—dt+2y2ko dW, (26)
o NN TINE o &0 %= "

The spectral density of the classical part of the displacement  d{p)=—mw?(x)dt—(p)dt— y(mw(x)+(p))dt
noise due to the fluctuating force on the resonator is

+ \2kphdW+2+2koZ dW, (27)
2
S(w)= Se(w)/m , (22) and, for the covariances,
0w+ (w?- oz)(z))2
where S(w) is the spectral density of the fluctuating force oi= Eﬂip—Sk(Uf)Z, (28)
given in Eq.(A13). Since, once agair§(w) is effectively
frequency independent, we have (',’2;: _2mw20->2(p—8k(0')2(p)2—21—‘0"2)+ 242k
SF Mgl x0)
= . 23 21— 0 0
B 21 (23 +2h% (1= x) B+ —7 cochk? , (29)
The correlation coefficients, between the shot noise and the o2 r
excess back-action is therefore simply the correla@obe- o= Fp —mw?o?— Eaip—Bkaﬁaip— 4k Bkho?.
tweenS, and S, which is given in Eq(Al1). (30
IV. FEEDBACK CONTROL In these equationsr> and US are the variances in position

. . ._and momentum, respectively, and
We wish to cool the dynamics of the resonator by using P 4

the information obtained continuously about the state of the 1
resonator to direct a time-dependent external force. Such a a§p=§<xp+ pX) —(xX){p) (32)
force may be applied, for example, by passing current

through the resonator and immersing it in a magnetic field. lfs he symmetrized covariance. This system of equations is
can also be applied by placing an actuating gate near thg, oy ‘equivalent to Eq(10) as long as the initial state is
resonator, and varying the potential difference between thes, ssian. In order to solve this set of equations most easily,
charged resonator and the actuating gate. we make what we call the truncated Gaussian approximation.
In this case the results of modern optimal control theoryWe assume that the feedback ratés much larger than the
apply, since the dynamics of the resonator are equivalent tgystem's small intrinsic damping, and we therefore drop

that of a classical oscillator driven by Gaussian noise, sq damping terms proportional tB from the above equa-
long as we restrict ourselves to a linear external f6r€e. one “This approximation is easily justified for current ex-

This allows us to obtain the optimal feedback algorithm in aperiments
straightforward manner. Choosing the minimization of the The stéady—state solutions to these equations are
energy of the resonator as the feedback objective it turns out

that as long as the force we apply is sufficiently large, this N

force should be chosen to e U)Z(ZW\/X, (32
F=—y(Mmawx)+{p)), (24

where y is a rate constant Whi_ch d.etermines Fhe overall gf):%[\/qu\wﬂ ﬁmw\/@\/x, (33

strength of the force. This equation gives an optimal perfor- V2k

mance so long ag> wq, which is within reach of current
experiments, as detailed below.

To calculate the average energy of the controlled resona- pr_WA' (34)
tor, we first need the equations of motion for the means and
covariances ok andp in the continually observed and con- where
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A+1 V. ESTIMATES FOR ACHIEVABLE TEMPERATURES

Current refrigeration technology allows experiments on
k# 2| k+ (1— k) B+ ———cot nanomechanical resonators to be performed at temperatures
—|1+16 2h keT ' of about 100 mK. It is therefore sensible to assume that the
m2w? feedback algorithm will be applied to a device which is ini-
(35 tially at this temperature. In such experiments the resonators
typically have fundamental frequencies in the range

In the limit of both large and small values kf A ~Kk. _ 2
The average energy of the resonator under feedback corf19_1_100 MHz. As our example system we take a realistic

trol, being the expectation value of the Hamiltonifiq. resonator withfo=12 MHZ’. which is .6'“m in length,
(25)] averaged over all trajectories, is a linear combination o0 MM Wide, and 150 nm thick. We restrict ourselves to rela-

the variances of andp, since the expectation values of bot '

mwor ﬁwo ) ] 2

h tively low frequencies because of the limits of feedback cir-

x andp are zero. These variances are the sum of the intrinsi€Uitry, which we estimate can easily operate at 50 MHz. The
variances of the Gaussian steady state for each trajectory, affective mass of such a resonator is roughly ¥tkg. An
the variances of the means Bfand p for each trajectory achievable quality factoQ is on the order of 10
(usually referred to as theonditionalmeans across all tra-  Realistic values for the resistances and capacitances of the
jectories. We can calculate these latter variances, which wisinctions of a SET which would be used to monitor the reso-
will denote byof,, anda?,, , by substituting into Eqs(26) nator areR;=R;=50 K} and C,=C,=100 aF, and we
and(27) the solutions for the steady-state values of the variP!ace itd~100 nm from the resonator. We estimate that the
ance&ri and 0)2(’), and solving for the first and second mo- capacitance between the gate of the SET and the resonator
ments of the conditional meaf%One obtains will be roughly C4=50 aF, so thaCs =250 aF Cy=2C;
+Cy). Itis important to note that the analysis we use in the
(Y2 + yo+ v?) V202 3/2 app_end_lx to ob_taln the noise spectra is only a good appro_xi—
= mation in certain parameter regimes. In particular, we require
thatVy, being the drain-source voltage across the SET, sat-

2
o0~ 8ky(w+7y) * 8k(w+ 'y)A

3 K Bh2 isfiesVy4<e/Cs, and thatk/3<1, as discussed in Sec. lll.
+ A%+ To apply the feedback force, we place the resonator
16ky(w+y) Mo y(w+7y) 100 nm from the actuating gate, and allow the controller to
5 \/K_Bk wA vary the voltage difference betvyeen the ga_lte and the resona-
+— | \2A+— (3¢) torfrom—4 to4 V. The capacitance of this arrangement is
2km(w+y) 2y about 50 aF, so the maximum force that can be applied to
) s - ) the resonator is of the order of 1®N. This corresponds to
, Mo’ (oty) m°w A2 kBh y~1.08x 10" s™1, which is much larger tham andI’, as
Tp~ 8ky + 16ky + Y required by the optimal control condition and truncated

, Gaussian approximation used in Sec. IV.
. Mo fi\/K,BkA 37 In evaluating the effectiveness of the feedback loop at
4ky ' cooling the resonator, it should be noted that the concept of
. temperature is only well defined for a system at equilibrium
Thus the average energy of the oscillator, under feedback, {ith a thermal reservoir. While the resonator starts at thermal

. equilibrium, the action of the feedback loop is to reduce the
E= Emw2(0'2+0'2 )+‘7p+"<p> (39) energy of the resonator so that it is far from equilibrium.
2 x 1T 2m Thus, when we quote results for the achievable steady-state

effective “temperature,” we will mean the temperature

mo? 2 . @ Kk Bh? which the resonator would have if it were in thermal equi-
=gk | VAATAT S AT 4_7A " 2my librium and had the average energy achieved by the feedback
loop.
fwkBK I3 Before giving theoretical estimates of the achievable
Yo | VAT Z’A : (39  steady-state effective temperatu@r equivalently, the

steady-state average occupation number of the oscillator,
Here we have used the simplifying assumptigr w, since  (N)=(a'a)), we need to explain two subtleties which affect
this is inherent in the optimal control condition. the presentation of our results. When one examines the de-
It is clear from Egs(35) and(39) that reducing the back- pendence of the steady stad) on the gate voltage, one
ground temperature allows for lower final temperatures. Exfinds that it oscillates very rapidly, with minima occurring in
tremely low values ok lead to heating, as can be seen fromclosely spaced pairs. Sint& is experimentally easy to tune,
the fact thatA ~k. For largek (corresponding to large gate all else being equal it would make sense simply to plot these
voltage, the increased sensitivity of the measurement canminima and ignore the complex structure. However, as dis-

cels the increased disturbance due to the measurement, withissed in Sec. lll, our results are more trustworthy the
the result that the minimal temperature levels offkags ~ smallerk/B, but this quantity is not necessarily small at the
increased. minima. The situation is shown in detail in Fig. 2, in which
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118 FIG. 2. The steady-state aver-
age occupation numbe(iN), as a
- function of the gate voltagésolid
.................................................... 14 E line), plotted along with the ratio

2 k/B (dashed ling and the drain-
........................................................................... - source Current’|ds (dot_dashed
line). The lower dotted line gives
105 the minima of{N), and the upper
dotted line gives the values ON)
whenk/B=0.1.

k/B and {N)

3.9 3.901 3.902 3.903
VvV (V
)

0
3.906

we display, as a function &f;, two pairs of thg/N) minima,  gate voltage aV,~1 V, then the noise sources are
as well ask/B and the currentys. In view of this, when

plotting results in what follows, we will show both the B=1.01x103 m 2571, (40)
minima of the effective temperature with respecMg, and
the (somewhat highgreffective temperature which results if k=0.184 B, (41)

we demand thak/B=<0.1. For clarity the points at which
k/B3=0.1 are also displayed in Fig. 2. As will be clear from 7
Figs. 3 and 4, foilf =100 mK andQ= 10", the effect of the cothzﬂ:9.25 B, (42)
restrictionk/ 8=<0.1 on the achievable temperature is small. 2h kgT

In addition, k/B remains fairly small at the minima. Since
this is the case, when we quote values in the following, we
\év(;llrglsvpeo::j?n\éa\llieljezbfg;zd at the minima, along with thetive temperatureT o, at the minima, we find thah =5.1

As an example of the relative magnitudes of the various® 107>, andTer=2.11 mK. This corresponds to an energy

— — 26 H
noise sources at the minima displayed in Fig. 2, if we set th@f about Es=2.91x10 *J, and an average occupation

drain-source voltage aV=e/(4Cs)=0.16 mV and the number(N)=3.17. While this is very encouraging, ideally

m(,()or

nd the correlation coefficient is=0.638.
Using the above parameter values to calculate the effec-
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FIG. 3. Estimates for the minimum achievable effective tem- FIG. 4. Estimates for the minimum achievable effective tem-
peratures as a function of gate voltage for a range of initial temperatures as a function of gate voltage for a range of resonator
peratures,T. On this plot, the increase in achievable temperaturequality factors and an initial temperature of 100 mK. The dotted
which results from the restrictiok/3=<0.1 is virtually impercep- lines give the minimum temperature under the additional restriction
tible for T above 100 mK. Foff =100 mK the dotted line shows thatk/8<0.1. From top to bottom, the quality factors aré’ 100",
the result under this restriction. From top to bottom, the initial tem-10°, and 16. A quality factor of 16 is achievable with current
peratures are 2 K, 1 K, 500 mK, and 100 mK. technology.
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one wants to cool below the energy of the first excited statewe do not know exactly how our approximations will fail as
and we now examine what is required to do this. Vys approacheg/Cy , and we lack a complete theory of the
While classically an increase in measurement strengtlSET once more than two island states play a significant role
would automatically lead to an improved tracking of thein the dynamics, we have chosen to stay below that limit.
resonator, and therefore a more efficient cooling, quantum We have made a few additional simplifying assumptions,
mechanically the situation is more complex due to the fachs a way to indicate a goal, rather than an immediately
that a more precise measurement also leads to increasadhievable experimental realization. First, we have assumed
heating due to back-action. Nevertheless, in the present caseperfectly efficientand infinite bandwidthmeasurement —
one finds that the increased sensitivity of the measuremettat is, that no electron passes the detector without being
with increasing measurement strength effectively cancels thidetected. While detection efficiency is not as much of a prob-
heating, and as a result a larger valueVgfcorresponds to lem here as in optical experiments, detectors will necessarily
better cooling. However, after a sharp increase in coolinde inefficient to some extent. Second, we have assumed a
with increasingVy, the minimal temperature levels off, so a perfect, noiseless feedback. In reality, the actuating gate ap-
greaterVy no longer provides much benefit. In addition, at plying the feedback will not provide a perfect noiseless volt-
some value ofVy snap-in is likely to occur as the force age. Also, we have assumed that the actuating gate does not
between the SET gate and the resonator becomes too strorajfect the SET. This last assumption is realistic, however, for
This voltage, in our example system, is estimated to bdéwo reasons. First, the resonator itself acts as a shield be-
roughly 4 V. As a result, we limit ourselves ¥g<4 V. At  tween the gate and the SET. Second, since the observer
Vg=4 V the steady-state minimum energfE=9.83 knows the voltage on the feedback gate, she can subtract that
x10727 J, which is below the energy of the first excited effect off the SET signal, albeit with the addition of some
state. This corresponds tB.3=0.71 mK and(N)=0.74, noise.
with k/8=0.28. Thus, if the energy were to be measured As mentioned previously, the dynamics of a quantum me-
directly, immediately after turning off the feedback, energychanical harmonic oscillator and a classical one are indistin-
jumps as a signature of quantum behavior may well be obguishable as long as the wave function is Gaussian, which is
servable. As an indication of the return from increasing thethe case in the present analysis. Therefore, although the os-
gate voltage, the minimum steady-state energ§is1.58  Cillator is near the quantum mechanical ground state, the
X102 for Vg=~2 V, which corresponds t¢N)~1.5, SET measurement of position will not show any quantum
with k/3=0.21. behavior. In the face of these limitations, it is a pleasant

In Fig. 3 we plot the theoretical estimates for the achiev-result that experimentally obtainable situations today allow
able steady-state effective temperature as a functiah éér  for the feedback cooling of a resonator to the point that quan-
a range of starting temperatures. The solid lines correspori@m behavior could become distinguishable from classical
to the absolute minima, and the dotted lines to the minimunPehavior with an appropriate measurement scheme.
values under the restriction thet=<0.1. Of particular in-
te_rest is the fz_ict _that for a star_ting_tgmperature of 2i.K, _ ACKNOWLEDGMENTS
with pumped liquid H& we obtain minimum temperatures in
the range of 50 mK. Thus, even for an initial temperature of The authors would like to thank Miles Blencowe, Alex-

2 K, feedback cooling might well be able to compete with ander Korotkov, Daniel Steck, Howard Wiseman, Bernard
dilution refrigerators. If the resonator is first cooled in a di- Yerke, and Yong Zhang for helpful conversations and sug-
lution refrigerator, and then feedback cooled, the semigestions. Figure 1 is reprinted courtesy of Los Alamos Sci-
classical theory predicts achievable temperatures belownce. This research was supported in part by the Department
1 mK, as discussed above. In Fig. 4 we plot the dependenc® Energy, under Contract No. W-7405-ENG-36.

of the minimum temperature oW, for a range of quality
factors, which shows that somewhat lower final temperatures

. . . APPENDIX: SPECTRA OF THE SET SHOT NOISE
could be achieved by increasiii

AND BACK-ACTION

Here we discuss briefly how the expressions for the shot
noise and back-action of the position measurement via a SET

The results obtained above are consistent with heuristiare obtained. For more details the reader is referred to Zhang
arguments. The response of cooling to the measuremeand Blencow (from which we obtain most of the following
strength is as expected: for very weak continuous measurexpressionsand Korotkov?
ments, we do not learn enough about the state of the system The SET consists of a central island, which electrons tun-
to cool it effectively, and can in fact heat the system due tanel in and out of via junctions on either side. If one requires
acting on our poor information. For very strong continuousthat the spacing between the energy levels of the electron
measurements, we gain sensitivity, but inject more quanturstates on the island are sufficiently large compared to the
back-action, and approach a minimum only asymptoticallyvoltage drop across the SET, then only two island states will
The range of improvement is limited, however, and beyond d&e appreciably populated, these being the states in which
few volts, the benefits may not warrant the additional effort.there aren andn+ 1 electrons on the island, for someThis

Higher drain-source voltages provide a larger signal-tois because the transition rates which connect these states to
noise ratio, and therefore improve cooling. However, sincehe other states are suppressed. The valueaain be set by

VI. DISCUSSION AND CONCLUSION
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biasing the central island. In particular,is determined by (ag+bf)%(a—b)2+ w2(ag—bf)?
the condition C(w)= .
4ablab[(a+Db)2+ w?]+ (f—g)(a?g—b?f)]
Cq (A11)
n< ?)(Vg_vd42)<n+ 1. (A1) The force from the island on the resonator is givefi by
As a result, we can write a master equation for the probabil- F=(A/d)[C(Vys—2Vg) — nej?, (A12)

ity density for the occupation of the two states. Denoting thisyith A=Cg(ZC—Cg)/(ZC§). Thus, using Eq(A9) we have
density bya=[o(n),o(n+1)]7, we have
S(w) 2abeA? [2C(Vys—2Vy) —e(2n+1)]?
w)= .
- (a+b)d? (a+b)?+ w?
a, (A2) (A13)

Recall that in deriving these expressions we require that

wherea(n) is the transition rate fronm to n+1, andb(n  the two-level approximation is valid, and this demands that
+1) is the transition rate from+1 ton.

d?r_(—a(n) b(n+1)
dt | a(n) —b(n+1)

If we denote the tunneling rates into the island across the Vys<elCs, (A14)
source junction and the drain junctigsee Fig. 1asa_(n)
and a_(n), respectively(the plus and minus subscripts KgT<eVs. (A15)

record whether the tunneling event has a positive or negatiwla
contribution to the SET currentand out of the island ds,
andb_, respectively, then (An=V49/(R;Cs)

he tunneling rates are given by

a.(n)= =~ =
a(n)=a.(n)+a_(n), (A3) 1-ex = (An=Ve)/T] a6
(—An=V4)/(R,Cs)
b(n+1)=b,(n+1)+b_(n+1). (A4) b.(n+1)= —
1-exgd —(—AnxtV4)/T]
It is also useful to define where
f(ny=a,(n)—a_(n), (A5) B CgVy CyViys 1
An=——-——-n—3,
e 2e 2
g(n+1)=b,(n+1)—b_(n+1). (AB)
~ GCsV
In what follows we will repress the arguments of these func- Vis= ;eds, (A17)
tions, so thab=a(n), b=b(n+1) etc. The solution to the
master equation is
5 CskgT
B ~ - 2
()= (b b 42 b)e—<a+b>t o© ¢
a a —a b (a+b) Note that the condition which determin@s[Eq. (A1)] is

(A7) equivalent to—0.5<An<0.5.
From the expressions for the noise spectra we see that

From this it is straightforward to calculate the average, . < irces of noise are effectivel whiiedependent of
steady-state current flowing through the SET, the noise spec- y P

2 ; 2
tra of the current,S(w), along with that of an arbitrary w). S0 long asw® is much_ less thaa(n) +b(n+1)]". l.f
function, ¢(n), of the island electron numbeS,(w), and this is the case then the simple quantum theory of continuous

their mutual correlation spectrunG(w). The average cur- position measurement presented in the main body of the pa-
’ per provides a good model for the SET measurement. Note

rent s that the actual back-action noise on the position of the reso-
C \ (ag+bf) nator is the force noise filtered through the resonator spectral
|=e| — (agrol) (Ag)  function. This is therefore
Cy/ (atb) ’
2
and the spectra are S(w)= Sel @)/ Mey (A18)

(w’— wé)z-i- wza)S/Q2 '

2ab [¢(n)—¢(n+1)]?

Sy(w)= (A9) and has the same form as that predicted using the quantum
(a+b)  (a+b)2+ w? mechanical modelEq. (11)], so long as the force noise is
white.
2622 (f—g)(a2g—b2f) We must therefore evaluatga(n)+b(n+1)]? for the
S(w)= >l a PR (A10) range of parameters of interest, and verify that it is much
(a+h)Cs (ath)*+w larger thanw? over the relevant frequency range. First we
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note that the form of the spectral equations is such that they [a(n)+b(n+1)]=2x10% (A18)

are periodic in the gate voltage. That is, the valuea(of)

andb(n+ 1) depend only orAn, not on the particular value

of n in question. As a result we merely need evaluatefor the range of initial temperatures that we consider, and this

[a(n)+b(n+1)]? for a single value ofn, and check all is much greater than the rangewfelevant for the dynamics

values ofAn between—0.5 and 0.5. of the resonator, as required. Thus, we can doofom the
Substituting in realistic parameter valu@hose that we expressions for the specti&gs. (A10), (A13), and(A11)],

use in our examples in the body of papir Egs.(A16) and  and use these to determine the parametefs andx in the

(A17), we find that, regardless of the value &h, model of the quantum position measurement.
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