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Feedback cooling of a nanomechanical resonator
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Cooled, low-loss nanomechanical resonators offer the prospect of directly observing the quantum dynamics
of mesoscopic systems. However, the present state of the art requires cooling down to the milliKelvin regime
in order to observe quantum effects. Here we present an active feedback strategy based on continuous obser-
vation of the resonator position for the purpose of obtaining these low temperatures. In addition, we apply this
to an experimentally realizable configuration, where the position monitoring is carried out by a single-electron
transistor. Our estimates indicate that with current technology this technique is likely to bring the required low
temperatures within reach.
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I. INTRODUCTION

Nanomechanical resonators are now being built w
quality factors in the range,Q'104, and resonance frequen
cies of up to several hundred MHz.1 The ground state energ
of these devices can correspond to temperatures in the
liKelvin range. As a result, the observation of quantum b
havior in these devices is becoming a real possibility.2 To
detect such behavior, the resonator must be sufficiently c
since a quantum harmonic oscillator driven by thermal no
behaves as a classical oscillator driven by thermal noise,
must ensure that the signatures of quantum effects are
swamped by the thermal behavior. The approach taken s
to achieve low temperatures is to place the resonator
refrigerator. However, cooling very small devices in this w
is inherently inefficient in that the system becomes wea
coupled to the thermal bath. Here we explore the possib
of using feedback control to effect an ‘‘active’’ cooling of th
resonator, in order to cool below the possible limits set
the ‘‘passive’’ refrigeration technique.

To perform such feedback cooling the resonator must
monitored, and the result fed back in real time to affect
dynamics. A practical method of performing a continuo
measurement of the position of the resonator is to us
single-electron transistor~SET!.3–5 To measure the position
of the resonator one locates the central island of the S
next to the resonator. When the resonator is charged, an
SET is biased so that current flows through it, changes in
resonator’s position alter the potential on the central isla
which in turn changes the current. The current therefore p
vides a continuous measurement of the position of the re
nator, and this is just what is required for implementing
linear feedback cooling algorithm.6,7A feedback force can be
applied by applying a voltage to a gate capacitively coup
to the resonator, and adjusting the voltage so as to damp
resonator~see Fig. 1!, or by passing a variable curren
through the oscillator in the presence of a fixed exter
magnetic field. We will analyze the first system, although
results should apply to the second as well. In our analysis
will use the theory of the dc-SET. While an experime
would most likely use a radio-frequency SET,8,20 the charac-
0163-1829/2003/68~23!/235328~10!/$20.00 68 2353
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teristic frequency of a SET is typically of the order o
10 GHz, so that the rf drive looks constant to the SET, a
the dc-SET equations can be used.

We will use a quantum mechanical model of the measu
ment and feedback process, but discuss how, in this c
such a description is equivalent to a classical measureme
a noisy classical system. Thus, this paper is intended for b
experimentalists familiar with classical descriptions of no
in systems as well as quantum measurement theorists.

Rather than performing a microscopic analysis of t
measurement process in terms of the interaction of the S
and the resonator, we start by introducing equations wh
describe the continuous observation of a quantum obs
able, and show how this includes the shot noise and ba
action, these being the key sources of noise in a continu
quantum measurement. This description can then be tailo
to the case of a measurement with a SET by choosing
parameters so that the noise sources match those calcu
in microscopic noise analyses which have been perform
for the SET.3,8

A treatment of the continuous quantum measurement
two-state system using a SET has been carried out
Korotkov,9 using what might be referred to as a partia

FIG. 1. A schematic of the resonator, measuring, and feedb
apparatus. As the resonator moves closer to the SET, the cu
flowing through the SET changes, and that information is then u
to generate a feedback voltage applied to an actuating gate.
©2003 The American Physical Society28-1
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microscopic approach. The equations we use here ma
derived by replacing the two-state observable in those eq
tions by the resonator position.10 A full analysis, along the
lines of those performed for quantum optical systems,11,12

can also be expected to produce the same equations u
reasonable approximations. The form of these equation
determined by how information is obtained, and not by
specific implementation, which explains why the form of t
equations is similar in optical position measurements
position measurement using SETs. If the measurement is
physical observable, and the resulting error about the ex
tation value of that observable in a short time intervalDt is
Gaussian, then the most straightforward implementation
that measurement process has the form used here.

In Sec. II we introduce the equations that describe a c
tinuous measurement process, derive the form of the re
ing noise, and give the equivalent classical model. We t
discuss how this model can be applied to position meas
ment using a SET, and compare our formulas to those
rived using a semiclassical treatment of the SET~Refs. 3 and
8! in order to express our results in terms of experimen
parameters. In Sec. III we discuss the implementation o
feedback algorithm and calculate the minimum achieva
temperature in terms of physical parameters. We then ca
late estimates of realistic achievable temperatures for an
experimentally realizable sample system in Sec. IV, and
nally conclude with a summary of the results obtained.

II. CONTINUOUS QUANTUM MEASUREMENT
OF POSITION

Given a quantum system whose state is specified by
density matrixr, and whose evolution is determined by th
HamiltonianH, then a continuous measurement of the o
servableO of that system, which provides the continuo
output results~measurement record!,

dr5^O&dt1
1

A8k
dW, ~1!

induces the following evolution of the system:6,13,14

dr52~ i /\!@H,r#dt2k@O,@O,r##dt

1A2k~Or1rO22^O&r!dW. ~2!

Herek is proportional to the measurement strength, anddW
is a Weiner process. The noise contained in the measure
record is a necessary result of the fact that only a fin
amount of information is obtained regarding the observa
O in a finite time. This direct noise on the record is called t
shot noise. However, this is not the only noise resulting fro
the measurement process. As a result of Heisenberg’s un
tainty relation, information about one observable mak
other observables less certain. Due to the dynamics, the
certainty ~noise! in these observables can feed into the o
servable being measured. This source of noise is referre
asback-action. If the Hamiltonian is such that the increase
23532
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uncertainty is not fed back into the observable being m
sured, then the measurement is referred to as ‘‘back-ac
evading.’’

Now let us examine the case of a position measurem
on a harmonic oscillator. To do this, we setO5x, and the
Hamiltonian becomes

H5
p2

2m
1

1

2
mv0

2x2, ~3!

wherem is the mass of the particle,v0 is the ~angular! fre-
quency of the oscillation, andx and p are the position and
momentum operators, respectively. To make our model
ficiently realistic, we need to include two more sources
noise: the first is the intrinsic thermal noise of the harmo
oscillator, and the second is the possibility that the oscilla
may be driven by white noise over and above that requi
by Heisenberg’s uncertainty principle~excess ‘‘technical
noise’’!.

The second of these is easily included by adding a te
2b@x,@x,r## to the equation of motion ofr; this describes a
noise term identical to the one caused by the back-action,
without the corresponding dynamics ofr associated with
obtaining a measurement result which causes the b
action. It is equivalent to adding a term linear inx to Hamil-
tonian ~3! multiplied by white noise.

The inclusion of thermal fluctuations is only a little mo
involved, and can be achieved by coupling the oscillator t
thermal bath. In our case the effect of the thermal bath m
be included by adding the ‘‘standard Brownian motion ma
ter equation’’~SBMME! ~Ref. 15! to our equation of motion
for r:

dr52
i

\
@H,r#dt2

iG

2\
@x,$p,r%1#dt

2S k1b1
mv0G

2\
coth

\v0

2kBTD †x,@x,r#‡dt

1A2k~xr1rx22^x&r!dW, ~4!

whereG5v/Q, Q being the quality factor of the resonato
The two terms proportional toG are due to the inclusion o
the SBMME, the first representing dissipation due to the r
ervoir while the second is a diffusion term due to enviro
mental fluctuations. Here we are using an approximate fo
of the SBMME appropriate for the weak coupling regim
~smallG, largeQ) but covering all ranges of temperatures16

Since the nanomechanical resonators we consider all h
large values ofQ, the weak coupling requirement is easi
satisfied. The temperature dependence of the diffusion c
ficient is given by coth(\v0/2kBT) so that the diffusion does
not vanish askBT→0: this correctly accounts for the exis
tence of quantum vacuum fluctuations which exist even
zero temperature. In the absence of a rigorous characte
tion of the dissipation channels of nanomechanical syste
there is as yet no need to include a more sophisticated
scription of SBMME environmental effects.17 Phenomeno-
logical corrections to the SBMME such as the temperat
8-2
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dependence ofG can be added if needed, but these are
significant effects in the high-Q regime.

We also need to include in our model the possibility th
there is noise driving the oscillator which is correlated w
the noise on the measurement record~the shot noise!. This
can happen if the noisy behavior of the oscillator explici
causes some of the noise in the measurement apparatu
vice versa. In this situation, the measurement record cont
more information about the oscillator position, so when
comes to adding feedback, we are able to cool the oscill
further than would otherwise be expected. In Eq.~2! the
noise driving the oscillator is purely the quantum bac
action. It may appear from Eqs.~1! and~2! that the quantum
back-action is correlated with the shot noise due to the
that the same noise term (dW) appears in both equations
However, this is not the case. The term proportional todW
which appears in the equation forr describes the random
way in which the measurement changes the observers
of knowledge about the system. Thus, on average, this n
term decreasesthe entropy ofr. The back-action noise
which is driving the oscillator and consequentlyincreasing
the entropy ofr, is described by the term proportional tok.
The quantum back-action is, in fact, completely uncorrela
with the shot noise.

To drive the oscillator with a random force, one appli
the Hamiltonian\j(t)x, wherej(t) is the magnitude of the
random force. We can choosej(t) to be correlated with the
shot noise, with the correlation coefficientk, by setting

dj5A2a~AkdW1A12kdV!, ~5!

wheredV is a Wiener noise uncorrelated withdW. The re-
sulting spectral density ofj(t) is a, so that ^j(t)j(t8)&
5ad(t2t8). The Stratonovich equation which describes t
driving by j(t) is

uċ&52 i j~ t !xuc&, ~6!

and converting this to an Ito equation gives

duc&52 iA2axuc&dj2ax2uc&dt. ~7!

Converting the Ito equation further to an equation forr one
obtains

dr52a@x,@x,r##dt2 iA2a@x,r#dj. ~8!

Since the observer has access todW, but not todV, she must
average overdV, and this gives

dr52a@x,@x,r##dt2 iA2ka@x,r#dW. ~9!

If we allow part of the excess noise given byb in our model
to be due to driving by the shot noisedW ~that is, this noise
is correlated with the shot noisedW with correlation coeffi-
cientk) then the equation of motion for the system becom
23532
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dr52
i

\
@H,r#dt2

iG

2\
@x,$p,r%1#dt

2S k1b1
mv0G

2\
coth

\v0

2kBTD @x,@x,r##dt

2 iA2kb@x,r#dW1A2k~xr1rx22^x&r!dW.

~10!

This completes our quantum mechanical description o
resonator under continuous observation.

Now that we have an equation that includes all the r
evant noise terms, the noise spectrum of the measurem
record can be obtained:

S~v!5
1

8k
1S k1b1

mv0G

2\
coth

\v0

2kBTD
3

2~\/m!2

G2v21~v22v0
2!2

. ~11!

The first term is the shot noise, which is white, the te
proportional tok is the quantum back-action, the term pr
portional toG is the effect of the noise from the resonator
thermal environment, and the term proportional tob gives
any excess noise over and above the necessary qua
back-action. Note that the last three terms all have the s
form as a function ofv. This is because they are all whit
noises filtered through the harmonic oscillator spectral
sponse function.

While our treatment so far has been fully quantum m
chanical, it is worth noting that a purely classical model o
measured, damped oscillator will completely reproduce
dynamics of this measured quantum system, no matter
cold the resonator, so long as the initial density matrix
Gaussian inx andp.6 Thus, one can understand the behav
of the oscillator in terms of classical noise and a class
measurement process. The equations of motion for the p
tion xc and momentumpc of this equivalent classical oscil
lator are

dxc5
1

m
pcdt, ~12!

dpc52mv0
2xcdt2Gpcdt1\A2kdYc1\A2bdVc

1Am\v0Gcoth
\v0

2kBT
dUc , ~13!

where dYc , dVc , and dUc are each zero-mean Gaussi
white noise, and mutually uncorrelated. The position of
oscillator is then observed by a continuous classical m
surement, which generates the output record

drc5xcdt1
1

A8k
dZc , ~14!

and wheredZc is zero-mean Gaussian white noise, uncor
lated withdYc . The noise termdYc is what is required in the
classical model to correctly include the back-action of t
8-3
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quantum measurement process. It is now explicit that
noise is uncorrelated with the shot noise on the meas
ment,dZc .

In the classical case, the observer’s state of knowle
about the oscillator is given by a joint probability dens
over xc and pc . This probability density is the classica
equivalent of the density matrixr. So long as the initial
probability density is Gaussian, it remains Gaussian as t
passes, and as a result the observer’s full state of knowle
may be represented by merely five variables: the mean p
tion and momentum,̂xc& and ^pc&, and the variances an
covariance, given by

sx
25^xc

2&2^xc&
2, ~15!

sp
25^pc

2&2^pc&
2, ~16!

sxp
2 5^xcpc&2^xc&^pc&. ~17!

It is the meanŝxc& and^pc& ~being the observer’s best est
mates of the value ofxc and pc)which are the classica
equivalents of the quantum expectation values^x& and ^p&.
It turns out that if one writes the classical measurem
record as

drc5^xc&dt1
1

A8k
dWc , ~18!

then dWc is zero-mean Gaussian white noise,7 uncorrelated
with dZc . The classical model is then equivalent to the qu
tum model if we equatedWc with the quantum measureme
noise, dW, and correlate dVc with dWc , so that
^Vc(t)Wc(t8)&5kd(t2t8).

III. CONTINUOUS MEASUREMENT
WITH A SINGLE-ELECTRON TRANSISTOR

Having obtained a model which is sufficiently general
encompass the dynamics of a resonator monitored by a S
we need to express the theoretical parametersk, b, andk in
terms of the actual experimental parameters of the S
Since it is by measuring current through the SET that
measure the resonator position, it is the spectral densit
this current which determines the shot noise of the meas
ment. The back-action from the measurement is due to
action of the SET on the resonator, which is the force that
resonator feels from the charge on the SET island. As a re
the back-action noiseb can be calculated from the spectr
density of the charge fluctuations on the SET island, a
hencek is determined by the correlation between the curr
and the island charge fluctuations.

However, the dynamics of the SET are sufficiently co
plex that analytic results for these spectra have as yet
been obtained for certain parameter regimes. These calc
tions have been performed by Zhang and Blencowe,8 using
previous results of Korotkov.3 The technique used is to ap
proximate the dynamics of the electron tunneling on and
the SET island by a classical master equation. That is,
electrons are assumed to tunnel independently across ea
the junctions, with certain rates~the rates being obtaine
23532
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using a perturbative quantum calculation!. This ignores the
possibility that electrons will tunnel coherently across bo
junctions simultaneously, a quantum effect referred to asco-
tunneling. This method may be referred to as a ‘‘semiclas
cal’’ model for the dynamics of the SET, and it is the mod
that we will use here.

It is important to note that the above semiclassical meth
for calculating the charge fluctuations, does not include
quantum back-action noise. This can be seen from the
lowing argument.18 In the classical treatment, since the flu
tuating force on the resonator is due to the electrons jump
on and off the island, in principle the time history of th
force can be known by detecting the electrons flowing in
circuit. In principle, then, the effect of the noise can
known, and if desired, undone. As a result it cannot inclu
the quantum back-action, since this cannot, even in princi
be undone. Thus, the charge fluctuations calculated using
semiclassical SET model gives the excess noiseb and the
current shot noise givesk.

The quantum mechanical measurement model,@Eqs. ~1!
and ~2!#, describe a valid quantum measurement for a
value ofk andb, However, the classical model of the SE
will only give an accurate description of the dynamics of t
SET, and thus of the true values ofk and b, in certain pa-
rameter regimes. In fact, it is useful to note that the ratiok/b
provides a diagnostic tool for determining when the class
calculation breaks down; ifk/b!1 is not satisfied, then the
classical calculation no longer provides a good estimate
the total force noise on the resonator. Thus it should be no
that if k/b*1, then the classical calculation cannot be reli
upon. That is, it is possible in this case that the total noise
the resonator is significantly larger than our estimatek1b,
due to quantum contributions not taken into account in
classical calculation.

We find that in the regions of best cooling, which w
explore in the following,k is not necessarily much smalle
thanb ~although near-optimal cooling can be obtained w
k!b, and in particular we will give as an example resu
for k5b/10). Hence our calculations should be regarded
estimates of the performance of the feedback algorith
rather than exact results. We note, however, that a more
phisticated analysis using the diagrammatic techniques
veloped by Schoeller and Scho¨n19 might provide analytic, or
semianalytic results for the parameter regime of most inte
for quantum measurement and control, and therefore m
provide a method for more accurate calculations.

The spectral densities given by the classical calculat
are derived in the Appendix. Approximations which are us
in the derivation are detailed there, and come primarily fro
Zhang and Blencowe.8 The noise spectrum of the displac
ment of the resonator due to the shot noise of the SET
rent is

SX
I 5

SI~v!

~dIds/dx!2
, ~19!

whereSI(v) is the spectral density of the shot noise, given
Eq. ~A10!, andI is the current through the SET, given in E
~A8!. The dependence of the current on the displacemen
8-4
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the resonator comes from its dependence on the gate ca
tance, which can be approximated by

Cg'Cg0S 12
x

dD . ~20!

The shot noiseSI(v) is, to a very good approximation, fre
quency independent, as required by our quantum meas
ment model. Thus

1

8k
5SX

I U
v50

5
SI~v!

~dIds/dx!2U
v50

. ~21!

The spectral density of the classical part of the displacem
noise due to the fluctuating force on the resonator is

SX
F~v!5

SF~v!/m2

G2v21~v22v0
2!2

, ~22!

whereSF(v) is the spectral density of the fluctuating forc
given in Eq.~A13!. Since, once again,SF(v) is effectively
frequency independent, we have

b5
SF

2\2U
v50

. ~23!

The correlation coefficient,k, between the shot noise and th
excess back-action is therefore simply the correlationC be-
tweenSI andSF , which is given in Eq.~A11!.

IV. FEEDBACK CONTROL

We wish to cool the dynamics of the resonator by us
the information obtained continuously about the state of
resonator to direct a time-dependent external force. Suc
force may be applied, for example, by passing curr
through the resonator and immersing it in a magnetic field
can also be applied by placing an actuating gate near
resonator, and varying the potential difference between
charged resonator and the actuating gate.

In this case the results of modern optimal control the
apply, since the dynamics of the resonator are equivalen
that of a classical oscillator driven by Gaussian noise,
long as we restrict ourselves to a linear external force6,21

This allows us to obtain the optimal feedback algorithm in
straightforward manner. Choosing the minimization of t
energy of the resonator as the feedback objective it turns
that as long as the force we apply is sufficiently large, t
force should be chosen to be6

F52g~mv0^x&1^p&!, ~24!

where g is a rate constant which determines the ove
strength of the force. This equation gives an optimal per
mance so long asg@v0, which is within reach of curren
experiments, as detailed below.

To calculate the average energy of the controlled reso
tor, we first need the equations of motion for the means
covariances ofx andp in the continually observed and con
23532
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trolled case. To derive these equations, we note that the e
tion of motion forr, under feedback, is given by Eq.~10!,
where one sets

H5
p2

2m
1

1

2
mv0

2x22g~mv0^x&1^p&!x ~25!

to include the feedback force. Using the fact thatd^O&
5Tr@Odr#, anddW25dt, one obtains, for the means,

d^x&5
^p&
m

dt12A2ksx
2dW, ~26!

d^p&52mv2^x&dt2G^p&dt2g~mv^x&1^p&!dt

1 A2kb\dW12A2ksxp
2 dW, ~27!

and, for the covariances,

ṡx
25

2

m
sxp

2 28k~sx
2!2, ~28!

ṡp
2522mv2sxp

2 28k~sxp
2 !222Gsp

212\2k

12\2F ~12k!b1
mv0G

2\
coth

\v0

2kBTG , ~29!

ṡ xp
2 5

sp
2

m
2mv2sx

22
G

2
sxp

2 28ksx
2sxp

2 2 4Akbk\sx
2 .

~30!

In these equations,sx
2 and sp

2 are the variances in positio
and momentum, respectively, and

sxp
2 5

1

2
^xp1px&2^x&^p& ~31!

is the symmetrized covariance. This system of equation
exactly equivalent to Eq.~10! as long as the initial state i
Gaussian. In order to solve this set of equations most ea
we make what we call the truncated Gaussian approximat
We assume that the feedback rateg is much larger than the
system’s small intrinsic dampingG, and we therefore drop
all damping terms proportional toG from the above equa
tions. This approximation is easily justified for current e
periments.

The steady-state solutions to these equations are

sx
25

A2v

8k
AL, ~32!

sp
25

A2m2v3

8k
@AL1L3/2#1

\mv

A2k
AkbAL, ~33!

sxp
2 5

mv2

8k
L, ~34!

where
8-5
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L11

5F 1116

k\2H k1~12k!b1
mv0G

2\
coth

\v0

2kBTD J
m2v4

G 1/2

.

~35!

In the limit of both large and small values ofk, L;k.
The average energy of the resonator under feedback

trol, being the expectation value of the Hamiltonian@Eq.
~25!# averaged over all trajectories, is a linear combination
the variances ofx andp, since the expectation values of bo
x andp are zero. These variances are the sum of the intrin
variances of the Gaussian steady state for each trajectory
the variances of the means ofx and p for each trajectory
~usually referred to as theconditionalmeans! across all tra-
jectories. We can calculate these latter variances, which
will denote bys^x&

2 ands^p&
2 , by substituting into Eqs.~26!

and~27! the solutions for the steady-state values of the v
ancessx

2 andsxp
2 , and solving for the first and second m

ments of the conditional means.22 One obtains

s^x&
2 5

v~g21gv1v2!

8kg~v1g!
L1

A2v2

8k~v1g!
L3/2

1
v3

16kg~v1g!
L21

kb\2

m2vg~v1g!

1
\Akbk

2km~v1g! FA2L1
vL

2g G ~36!

s^p&
2 5

m2v3~v1g!

8kg
L1

m2v4

16kg
L21

kb\2

g

1
mv2\Akbk

4kg
L. ~37!

Thus the average energy of the oscillator, under feedbac

E5
1

2
mv2~sx

21s^x&
2 !1

sp
21s^p&

2

2m
~38!

5
mv3

8k FA2L1L1
A2

2
L3/21

v

4g
L2G1

kb\2

2mg

1
\vAkbk

4k FA2L1
v

2g
LG . ~39!

Here we have used the simplifying assumptiong@v, since
this is inherent in the optimal control condition.

It is clear from Eqs.~35! and~39! that reducing the back
ground temperature allows for lower final temperatures.
tremely low values ofk lead to heating, as can be seen fro
the fact thatL;k. For largek ~corresponding to large gat
voltage!, the increased sensitivity of the measurement c
cels the increased disturbance due to the measurement,
the result that the minimal temperature levels off ask is
increased.
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V. ESTIMATES FOR ACHIEVABLE TEMPERATURES

Current refrigeration technology allows experiments
nanomechanical resonators to be performed at tempera
of about 100 mK. It is therefore sensible to assume that
feedback algorithm will be applied to a device which is in
tially at this temperature. In such experiments the resona
typically have fundamental frequencies in the ran
f 051–100 MHz. As our example system we take a realis
resonator with f 0512 MHz, which is 6mm in length,
50 nm wide, and 150 nm thick. We restrict ourselves to re
tively low frequencies because of the limits of feedback c
cuitry, which we estimate can easily operate at 50 MHz. T
effective mass of such a resonator is roughly 10216 kg. An
achievable quality factorQ is on the order of 104.

Realistic values for the resistances and capacitances o
junctions of a SET which would be used to monitor the re
nator areR15R2550 kV and C15C25100 aF, and we
place itd;100 nm from the resonator. We estimate that t
capacitance between the gate of the SET and the reson
will be roughly Cd550 aF, so thatCS5250 aF (CS52Cj
1Cg). It is important to note that the analysis we use in t
appendix to obtain the noise spectra is only a good appr
mation in certain parameter regimes. In particular, we requ
that Vg , being the drain-source voltage across the SET,
isfiesVds!e/CS , and thatk/b!1, as discussed in Sec. III

To apply the feedback force, we place the resona
100 nm from the actuating gate, and allow the controller
vary the voltage difference between the gate and the res
tor from 24 to 4 V. The capacitance of this arrangement
about 50 aF, so the maximum force that can be applied
the resonator is of the order of 1028 N. This corresponds to
g'1.0831013 s21, which is much larger thanv andG, as
required by the optimal control condition and truncat
Gaussian approximation used in Sec. IV.

In evaluating the effectiveness of the feedback loop
cooling the resonator, it should be noted that the concep
temperature is only well defined for a system at equilibriu
with a thermal reservoir. While the resonator starts at ther
equilibrium, the action of the feedback loop is to reduce
energy of the resonator so that it is far from equilibrium
Thus, when we quote results for the achievable steady-s
effective ‘‘temperature,’’ we will mean the temperatu
which the resonator would have if it were in thermal eq
librium and had the average energy achieved by the feedb
loop.

Before giving theoretical estimates of the achieva
steady-state effective temperature~or equivalently, the
steady-state average occupation number of the oscilla
^N&5^a†a&), we need to explain two subtleties which affe
the presentation of our results. When one examines the
pendence of the steady state^N& on the gate voltage, one
finds that it oscillates very rapidly, with minima occurring
closely spaced pairs. SinceVg is experimentally easy to tune
all else being equal it would make sense simply to plot th
minima and ignore the complex structure. However, as d
cussed in Sec. III, our results are more trustworthy
smallerk/b, but this quantity is not necessarily small at th
minima. The situation is shown in detail in Fig. 2, in whic
8-6
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FIG. 2. The steady-state ave
age occupation number,^N&, as a
function of the gate voltage~solid
line!, plotted along with the ratio
k/b ~dashed line!, and the drain-
source current, I ds ~dot-dashed
line!. The lower dotted line gives
the minima of^N&, and the upper
dotted line gives the values of^N&
whenk/b50.1.
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we display, as a function ofVg , two pairs of thê N& minima,
as well ask/b and the currentI ds. In view of this, when
plotting results in what follows, we will show both th
minima of the effective temperature with respect toVg , and
the ~somewhat higher! effective temperature which results
we demand thatk/b<0.1. For clarity the points at which
k/b50.1 are also displayed in Fig. 2. As will be clear fro
Figs. 3 and 4, forT5100 mK andQ5104, the effect of the
restrictionk/b<0.1 on the achievable temperature is sm
In addition, k/b remains fairly small at the minima. Sinc
this is the case, when we quote values in the following,
will give the values obtained at the minima, along with t
corresponding values fork/b.

As an example of the relative magnitudes of the vario
noise sources at the minima displayed in Fig. 2, if we set
drain-source voltage atVds5e/(4CS)50.16 mV and the

FIG. 3. Estimates for the minimum achievable effective te
peratures as a function of gate voltage for a range of initial te
peratures,T. On this plot, the increase in achievable temperat
which results from the restrictionk/b<0.1 is virtually impercep-
tible for T above 100 mK. ForT5100 mK the dotted line shows
the result under this restriction. From top to bottom, the initial te
peratures are 2 K, 1 K, 500 mK, and 100 mK.
23532
.

e

s
e

gate voltage atVg;1 V, then the noise sources are

b51.0131031 m22s21, ~40!

k50.184 b, ~41!

mv0G

2\
coth

\v0

2kBT
59.25 b, ~42!

and the correlation coefficient isk50.638.
Using the above parameter values to calculate the ef

tive temperature,Teff , at the minima, we find thatL55.1
31025, andTeff52.11 mK. This corresponds to an energ
of about Ess52.91310226 J, and an average occupatio
number^N&53.17. While this is very encouraging, ideall

-
-

e

-

FIG. 4. Estimates for the minimum achievable effective te
peratures as a function of gate voltage for a range of reson
quality factors and an initial temperature of 100 mK. The dott
lines give the minimum temperature under the additional restric
thatk/b<0.1. From top to bottom, the quality factors are 103, 104,
105, and 106. A quality factor of 104 is achievable with current
technology.
8-7
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HOPKINS, JACOBS, HABIB, AND SCHWAB PHYSICAL REVIEW B68, 235328 ~2003!
one wants to cool below the energy of the first excited st
and we now examine what is required to do this.

While classically an increase in measurement stren
would automatically lead to an improved tracking of t
resonator, and therefore a more efficient cooling, quan
mechanically the situation is more complex due to the f
that a more precise measurement also leads to incre
heating due to back-action. Nevertheless, in the present
one finds that the increased sensitivity of the measurem
with increasing measurement strength effectively cancels
heating, and as a result a larger value ofVg corresponds to
better cooling. However, after a sharp increase in coo
with increasingVg , the minimal temperature levels off, so
greaterVg no longer provides much benefit. In addition,
some value ofVg snap-in is likely to occur as the forc
between the SET gate and the resonator becomes too st
This voltage, in our example system, is estimated to
roughly 4 V. As a result, we limit ourselves toVg<4 V. At
Vg54 V the steady-state minimum energyE59.83
310227 J, which is below the energy of the first excite
state. This corresponds toTeff50.71 mK and ^N&50.74,
with k/b50.28. Thus, if the energy were to be measur
directly, immediately after turning off the feedback, ener
jumps as a signature of quantum behavior may well be
servable. As an indication of the return from increasing
gate voltage, the minimum steady-state energy isE51.58
310226 J for Vg'2 V, which corresponds tôN&'1.5,
with k/b50.21.

In Fig. 3 we plot the theoretical estimates for the achie
able steady-state effective temperature as a function ofVg for
a range of starting temperatures. The solid lines corresp
to the absolute minima, and the dotted lines to the minim
values under the restriction thatk/b<0.1. Of particular in-
terest is the fact that for a starting temperature of 2 K~i.e.,
with pumped liquid He!, we obtain minimum temperatures i
the range of 50 mK. Thus, even for an initial temperature
2 K, feedback cooling might well be able to compete w
dilution refrigerators. If the resonator is first cooled in a d
lution refrigerator, and then feedback cooled, the se
classical theory predicts achievable temperatures be
1 mK, as discussed above. In Fig. 4 we plot the depende
of the minimum temperature onVg for a range of quality
factors, which shows that somewhat lower final temperatu
could be achieved by increasingQ.

VI. DISCUSSION AND CONCLUSION

The results obtained above are consistent with heur
arguments. The response of cooling to the measurem
strength is as expected: for very weak continuous meas
ments, we do not learn enough about the state of the sys
to cool it effectively, and can in fact heat the system due
acting on our poor information. For very strong continuo
measurements, we gain sensitivity, but inject more quan
back-action, and approach a minimum only asymptotica
The range of improvement is limited, however, and beyon
few volts, the benefits may not warrant the additional effo

Higher drain-source voltages provide a larger signal-
noise ratio, and therefore improve cooling. However, sin
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we do not know exactly how our approximations will fail a
Vds approachese/CS , and we lack a complete theory of th
SET once more than two island states play a significant
in the dynamics, we have chosen to stay below that limit

We have made a few additional simplifying assumptio
as a way to indicate a goal, rather than an immediat
achievable experimental realization. First, we have assu
a perfectly efficient~and infinite bandwidth! measurement —
that is, that no electron passes the detector without be
detected. While detection efficiency is not as much of a pr
lem here as in optical experiments, detectors will necessa
be inefficient to some extent. Second, we have assume
perfect, noiseless feedback. In reality, the actuating gate
plying the feedback will not provide a perfect noiseless vo
age. Also, we have assumed that the actuating gate doe
affect the SET. This last assumption is realistic, however,
two reasons. First, the resonator itself acts as a shield
tween the gate and the SET. Second, since the obse
knows the voltage on the feedback gate, she can subtrac
effect off the SET signal, albeit with the addition of som
noise.

As mentioned previously, the dynamics of a quantum m
chanical harmonic oscillator and a classical one are indis
guishable as long as the wave function is Gaussian, whic
the case in the present analysis. Therefore, although the
cillator is near the quantum mechanical ground state,
SET measurement of position will not show any quantu
behavior. In the face of these limitations, it is a pleas
result that experimentally obtainable situations today all
for the feedback cooling of a resonator to the point that qu
tum behavior could become distinguishable from class
behavior with an appropriate measurement scheme.
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APPENDIX: SPECTRA OF THE SET SHOT NOISE
AND BACK-ACTION

Here we discuss briefly how the expressions for the s
noise and back-action of the position measurement via a S
are obtained. For more details the reader is referred to Zh
and Blencowe8 ~from which we obtain most of the following
expressions! and Korotkov.3

The SET consists of a central island, which electrons t
nel in and out of via junctions on either side. If one requir
that the spacing between the energy levels of the elec
states on the island are sufficiently large compared to
voltage drop across the SET, then only two island states
be appreciably populated, these being the states in w
there aren andn11 electrons on the island, for somen. This
is because the transition rates which connect these stat
the other states are suppressed. The value ofn can be set by
8-8
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FEEDBACK COOLING OF A NANOMECHANICAL RESONATOR PHYSICAL REVIEW B68, 235328 ~2003!
biasing the central island. In particular,n is determined by
the condition

n,S Cg

e D ~Vg2Vds/2!,n11. ~A1!

As a result, we can write a master equation for the proba
ity density for the occupation of the two states. Denoting t
density bys̃5@s(n),s(n11)#T, we have

ds̃

dt
5S 2a~n! b~n11!

a~n! 2b~n11!
D s̃, ~A2!

wherea(n) is the transition rate fromn to n11, andb(n
11) is the transition rate fromn11 to n.

If we denote the tunneling rates into the island across
source junction and the drain junction~see Fig. 1! asa2(n)
and a1(n), respectively ~the plus and minus subscrip
record whether the tunneling event has a positive or nega
contribution to the SET current!, and out of the island asb1

andb2 , respectively, then

a~n!5a1~n!1a2~n!, ~A3!

b~n11!5b1~n11!1b2~n11!. ~A4!

It is also useful to define

f ~n!5a1~n!2a2~n!, ~A5!

g~n11!5b1~n11!2b2~n11!. ~A6!

In what follows we will repress the arguments of these fu
tions, so thata[a(n), b[b(n11) etc. The solution to the
master equation is

s̃~ t !5F S b b

a aD 1S a 2b

2a b D e2(a1b)tG s̃~0!

~a1b!
.

~A7!

From this it is straightforward to calculate the avera
steady-state current flowing through the SET, the noise s
tra of the current,SI(v), along with that of an arbitrary
function, f(n), of the island electron numberSf(v), and
their mutual correlation spectrum,C(v). The average cur-
rent is

I 5eS C

C S
D ~ag1b f !

~a1b!
, ~A8!

and the spectra are

Sf~v!5
2ab

~a1b!

@f~n!2f~n11!#2

~a1b!21v2
~A9!

SI~v!5
2e2C2

~a1b!C S
2 Fab1

~ f 2g!~a2g2b2f !

~a1b!21v2 G ~A10!
23532
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C2~v!5
~ag1b f !2~a2b!21v2~ag2b f !2

4ab@ab@~a1b!21v2#1~ f 2g!~a2g2b2f !#
.

~A11!

The force from the island on the resonator is given by8

F5~A/d!@C~Vds22Vg!2ne#2, ~A12!

with A5Cg(2C2Cg)/(2CS
3 ). Thus, using Eq.~A9! we have

SF~v!5
2abe2A2

~a1b!d2

@2C~Vds22Vg!2e~2n11!#2

~a1b!21v2
.

~A13!

Recall that in deriving these expressions we require t
the two-level approximation is valid, and this demands th

Vds!e/CS , ~A14!

kBT!eVds. ~A15!

The tunneling rates are given by

a6~n!5
~Dn6Ṽds!/~RjCS!

12exp@2~Dn6Ṽds!/T̃#
,

~A16!

b6~n11!5
~2Dn6Ṽds!/~RjCS!

12exp@2~2Dn6Ṽds!/T̃#
,

where

Dn5
CgVg

e
2

CgVds

2e
2n2

1

2
,

Ṽds5
CSVds

2e
, ~A17!

T̃5
CSkBT

e2
.

Note that the condition which determinesn @Eq. ~A1!# is
equivalent to20.5,Dn,0.5.

From the expressions for the noise spectra we see
both sources of noise are effectively white~independent of
v) so long asv2 is much less than@a(n)1b(n11)#2. If
this is the case then the simple quantum theory of continu
position measurement presented in the main body of the
per provides a good model for the SET measurement. N
that the actual back-action noise on the position of the re
nator is the force noise filtered through the resonator spec
function. This is therefore

SX
F~v!5

SF~v!/meff
2

~v22v0
2!21v2v0

2/Q2
, ~A18!

and has the same form as that predicted using the quan
mechanical model@Eq. ~11!#, so long as the force noise i
white.

We must therefore evaluate@a(n)1b(n11)#2 for the
range of parameters of interest, and verify that it is mu
larger thanv2 over the relevant frequency range. First w
8-9
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note that the form of the spectral equations is such that t
are periodic in the gate voltage. That is, the values ofa(n)
andb(n11) depend only onDn, not on the particular value
of n in question. As a result we merely need evalu
@a(n)1b(n11)#2 for a single value ofn, and check all
values ofDn between20.5 and 0.5.

Substituting in realistic parameter values~those that we
use in our examples in the body of paper! in Eqs.~A16! and
~A17!, we find that, regardless of the value ofDn,
y

o

w
th
th
se
o

v.

23532
y

e

@a~n!1b~n11!#>231010 ~A18!

for the range of initial temperatures that we consider, and
is much greater than the range ofv relevant for the dynamics
of the resonator, as required. Thus, we can dropv from the
expressions for the spectra,@Eqs.~A10!, ~A13!, and~A11!#,
and use these to determine the parametersk, b, andk in the
model of the quantum position measurement.
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