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We express the optimization of entanglement witnesses for arbitrary bipartite states in terms of a class of
convex optimization problems known as robust semidefinite programs(RSDPs). We propose, using well
known properties of RSDPs, several sufficient tests for separability of mixed states. Our results are then
generalized to multipartite density operators.
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I. INTRODUCTION

Entanglement, first noticed by Einstein, Podolsky, and
Rosen[1], is at the heart of quantum mechanics. Quantum
teleportation, superdense coding, and cryptography[2] are
achieved only when one deals with inseparable states. Thus,
the determination and quantification of entanglement in a
composite quantum state is one of the most important tasks
of quantum information theory. In the past years a great deal
of effort have been made in order to obtain the characteriza-
tion of separable bipartite mixed states[3]. A finite-
dimensional bipartite density operatorrABPBsHA ^ HBd (the
Hilbert space of bounded operators acting onHA ^ HB) is
separable if and only if it can be written as a convex sum of
separable pure states:

rAB = o
i

piucilAkciu ^ ufilBkfiu s1d

where hpij is a probability distribution anducilA, ufilB are
vectors belonging to Hilbert spacesHA andHB, respectively.
Despite the simplicity of this definition, no operational nec-
essary and sufficient criterion has been found for the separa-
bility problem until now. Moreover, it was shown by Gurvits
[4] that this problem isNP-hard. Therefore, we should not
expect to find a polynomial-time algorithm which determines
for any staterAB, with certainty, if it is possible to decom-
pose it in the form of Eq.(1).

A particularly useful concept is that of the entanglement
witness(EW). According to[5], an operatorrAB is entangled
if and only if there exists a self-adjoint operatorWPBsHA

^ HBd which detects its entanglement, i.e., such that
TrsWrABd,0 and TrsWsABdù0 for all sAB separable. This
condition follows from the fact that the set of separable states
is convex and closed inBsHA ^ HBd. Therefore, as a conclu-
sion of the Hahn-Banach theorem, for all entangled states
there is a linear functional which separates it from this set.
Unfortunately, it is not known how to construct the EW in a
canonical way and in polynomial time for every entangled
state. Actually, since such a method would solve the separa-
bility problem, it cannot exist as long as the strong conjec-
ture PÞNP is true.

In this paper, we show that the search for an EW for
arbitrary mixed states is indeedNP-hard. We introduce, in
the context of quantum information, a class of convex opti-
mization problems known as robust semidefinite programs
(RSDPs), whose NP-hardness in most cases was already
proved. This family generalizes the important semidefinite
programs (SDPs), which have been increasingly used in
quantum-information problems[9].

The paper is organized as follows. In Sec. II we briefly
recall the definition of the EW and define our concept of the
optimal entanglement witness(OEW); in Sec. III we state
the basic facts about robust semidefinite programs, express
the optimization of the EW as a RSDP, and provide a first
approximation in terms of the SDP for the problem, which
yields a sufficient criterion of separability; in Sec. IV we
parametrize all possible approximations of the RSDP in
terms of a multiplier matrix, reducing the search space of
approximation scenes; in Sec. V we generalize our results to
multipartite states. Finally, in Sec. VI, we present our con-
clusions and suggest directions for further research.

II. OPTIMAL ENTANGLEMENT WITNESS

A Hermitian operatorWPBsHA ^ HBd is an entanglement
witness if[5,6] (1) Akcu ^ BkfuWuflB ^ uclAù0, for all states
uclPHA anduflPHB; (2) W has at least one negative eigen-
value; (3) TrsWd=1. Condition 1 assures that TrsWsABd.0
for all separable statessAB. Condition 2 implies that
TrsWPd,0 at least for one entangled state, for example, the
projector on the eigenspace associated with the negative ei-
genvalue. The third condition is important in order to com-
pare different EWs.

Definition 1.A Hermitian operatorWrAB
is an optimal EW

for the density operatorrAB if

TrsWrAB
rABd ø TrsWrABd s2d

for every EWW.
Although the above definition of the OEW is different

from the one introduced in[7], the optimal EW’s of both
criteria are equal. According to[7], W is optimal if and only
if for all Pù0, W8=s1+edW−eP is not an EW.

III. ROBUST SEMIDEFINITE PROGRAMS

In this section we will express the search of an optimal
EW for an arbitrary staterAB in terms of a robust semidefi-
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nite program. A semidefinite program consists of minimizing
a linear objective under a linear matrix inequality(LMI ) con-
straint, precisely,

minimize c†x subject to

Fsxd = F0 + o
i=1

m

xiFi ù 0, s3d

where cPCm and the Hermitian matricesFi =Fi
†PCnxn are

given andxPCm is the vector of optimization variables.
Fsxdù0 meansFsxd is Hermitian and positive semidefinite.
SDPs are global convex optimization programs and can be
solved in polynomial time with interior-point algorithms[8].
For instance, if there arem optimization variables andFsxd is
an n3n matrix, the number of operations scales with prob-
lem size asOsm2n2d. SDPs have already been used in differ-
ent problems of quantum-information theory[9] and also in
the separability problem[10]. An important generalization of
(3) is when the data matricesFi are not constant, i.e., they
depend on a parameter that varies within a certain subspace.
This family of problems, known as robust semidefinite pro-
grams, is given by

minimize c†x subject to

Fsx,Dd = F0sDd + o
i=1

m

xiFisDd ù 0, ∀ D P D s4d

whereD is a given vectorial(sub)space. Note that problem
(4) is more difficult to solve than(3), since one must find an
optimization vectorx such thatFsx,Dd is positive semidefi-
nite to all DPD. One often encounters SDPs in which the
variables are matrices and in which the inequality depends
affinely on those matrices. These problems can be readily put
in the form (3) by introducing a base of Hermitian matrices
to each matrix variable. However, since most optimization
solvers[11] admit declaration of problems in this most gen-
eral form, it is not necessary to write out the LMI explicitly
as (3), but instead make clear which matrices are variables.
Equality constraints involving the optimization variables can
also appear in Eqs.(3) and(4) without any further computa-
tional effort. We can now enunciate the main result of this
paper.

Theorem 1.A state rABPBsHA ^ HBd is entangled, i.e.,
cannot be decomposed as(1) if and only if the optimal value
of the following RSDP is negative:

minimize TrsWrABd subject to

o
i=1

dA

o
j=1

dA

ai
*ajWij ù 0, TrsWd = 1 for all ai P C s5d

where dA is the dimension ofHA, Wij =Aki uWu jlAPBsHBd,
and u jlA is an orthonormal base ofHA. If rAB is entangled,
the matrix W which minimizes TrsWrABd is the OEW for
rAB.

Proof. First we have to show that(5) is a genuine RSDP.
Note thatWij =Aki uWu jlA and the objective TrsWrABd are both

linear in the matrix variableW. Thus,(5) can be put in the
form (4), whereD in this case isCdA. We know that a state
rAB is entangled if and only if there exists an entanglement
witnessW such that TrsWrABdø0. It is clear that ifW is an
EW, thenAkcuWuclA has to be semidefinite positive for all
uclAPHA. Conversely, if AkcuWuclAù0 for all uclAPHA,
then W is an EW, i.e., TrsuclA ^ uclBBkcu ^ AkcuWd
=TrBsuclBBkcuAkcuWuclAdù0 for all uclAPHA and uclB

PHB. Thus, lettinguclA=o jaju jlA, whereu jlA is an orthonor-
mal base ofHA, it is straightforward to see that the optimal
W given by (5) is the OEW ofrAB. QED.

In spite of the similarity between(3) and (4), RSDPs are
in general very hard optimization problems. Actually, it was
proved that robust semidefinite programs like(5) are
NP-hard [12].

Corollary 1. The determination of the OEW for an arbi-
trary staterAB is anNP-hard problem.

Although this corollary is in complete accordance with
the work of Gurvits[4], it cannot be considered a different
approach leading to the same results, as theNP-hardness of
the optimization of entanglement witnesses does not rule out
the existence of a polynomial-time algorithm capable of dis-
tinguishing entangled from separable states.

Since (5) is computationally intractable, it is natural to
search for approximations of it in terms of SDPs, which are
very efficiently solved. These relaxations of RSDPs have
been intensively studied[13] in the past years and can be
classified as probabilistic or deterministic. In this paper we
will focus in the deterministic relaxations, where(4) is re-
placed by an inner convex approximation described by a
linear matrix inequality constraint. This inner approximation
is then used to find an upper bound to the optimal value of
(4). The probabilistic approach, which yields outstanding re-
sults on the separability problem, will be reported elsewhere.
As a first example of such relaxations, consider the following
adaptation of[14].

Theorem 2.A density operatorrAB is entangled and the
optimal value ofW is an EW for it if the result of the fol-
lowing SDP is negative:

minimize TrsWrABd subject to

s1d Wkk ù 0, k = 1,2,…,dA,

s2d
1

dA − 1
Wkk ±

Î2

2
sWkj + Wjkd ù 0, 1ø k Þ j ø dA,

s3d
1

dA − 1
Wkk ±

Î2

2i
sWkj − Wjkd ù 0, 1ø k Þ j ø dA.

s6d

Proof. Note that
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o
k,j

ak
*ajWkj = o

1økø jødA

F 1

dA − 1
uaku2Wkk + ak

*ajWkj + aj
*akWjk

+
1

dA − 1
uaku2WkkG ù 0.

Thus, a sufficient condition to(5) is

Msueld = 3keu
Wkk

dA − 1
uel keuWkjuel

keuWjkuel keu
Wjj

dA − 1
uel 4 ù 0, ∀ uel P HB.

This matrixMsueld is positive semidefinite if and only if its
diagonal entries and determinant are greater than or equal to
zero. From condition 1 it follows thatM11ù0 andM22ù0.
From conditions 2 and 3,

keu
Wkk

dA − 1
uelkeu

Wjj

dA − 1
uel

ù 2FmaxHkeu
Î2

2
sWkj + Wjkduel,keu

Î2

2i
sWkj − WjkduelJG2

ù keuWkjuelkeuWjkuel

⇒detsMsueld.0. QED.
We present now the first example of our methodology. We

usedMATLAB and the packageSEDUMI [11] to implement and
solve the SDP.

A. Bell state

We consider the Bell stateuCl=su0l ^ u0l+ u1l ^ u1ld /Î2.
It is well known that kCuWuClkCuuCl=−1/2 [15], where
WuClkCu=−1

2su00lk11u+ u11lk00ud+ 1
2su01lk01u+ u10lk10ud is the

OEW for this state. Solving the SDP of Theorem 2, the fol-
lowing EW was found:

W= 3
0.1057 0 0 − 0.2887

0 0.3943 0 0

0 0 0.3943 0

− 0.2887 0 0 0.1057
4 .

Since program(6) is only a relaxation of(5), W is not the
OEW for uCl , kCuWoptuCl=−0.1835.

B. Isospectral states

We now consider the two isospectral matrices

rAB = 3
1/3 0 0 0

0 1/3 1/3 0

0 1/3 1/3 0

0 0 0 0
4 ,

sAB = 3
1/3 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2/3
4 .

The positive partial transpose criterion shows thatrAB is en-
tangled, whilesAB is separable. Using the SDP(6), we have
found the following EW forrAB:

W= 3
0.1752 0 0 0

0 0.1752 − 0.2478 0

0 − 0.2478 0.0513 0

0 0 0 0.5982
4 , s7d

where TrsWrABd=−0.0313. The method has also succeeded
in the statesAB, as the optimal value for TrsWsABd found
was 2.7330310−5.

IV. COMPLETE FAMILY OF PARAMETRIZED
RELAXATIONS

It must be stressed that Theorem 2 is only one of the
possible approximations of(5). In fact, every relaxation of
the RSDP constitutes a different method of EW construction
and, therefore, a new sufficient criterion of separability. In
this section we will show that all these possible relaxations
can be parametrized in terms of a family of matrices. How-
ever, in order to provide such a method, it is necessary first
to introduce some standard results concerning robust
semidefinite programs. One particularly important represen-
tation of robust linear matrix inequalities is the linear frac-
tion representation(LFR) [13,16]. It was shown that every
matrix FPCn3c which depends rationally on a varying pa-
rameterdPCk can be expressed as[16]

Fsdd = A + BDsI − DDd−1C, s8d

whereAPCn3c, BPCn3N, CPCN3c, andDPCN3N are con-
stant matrices,r1,… ,rk andN=r1+¯ +rk are integer num-
bers, andD is the following diagonal matrix:

D = diagsd1Ir1
,…,dkIrk

d.

We can now express problem(5) in terms of a LFR.
Theorem 3.A staterAB is entangled and the optimal value

of W is the OEW for it if and only if the result of the fol-
lowing RSDP is negative:

minimize TrsWrABd subject to

FsDd = BDsI − DDd−1C . 0, ∀ D P D, s9d

where

B = fW11¯ Wn1 W12¯ Wnn 0dA;dAdB
g, s10d

C = f0dA;dB
2dA

L ^ IdA g†
, s11d

D =F0dAdB
2;dAdB

2 L†
^ IdAdB

0dAdB;dAdB
2 0dAdB;dAdB

G , s12d
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D = diagsa1IdAdB
, …, adA

IdAdB
, a1

* IdA
, …,adA

* IdA
d, s13d

and D is the subspace of diagonal matrices in the form of
(12) whereaj PC. 0p;q andIp stand for thep3q zero matrix
and thep3p identity matrix, respectively.L is an auxiliary
matrix given by

L = f1,1,…,1g P HB.

Proof. We must show that the LMI of(8) is equivalent to
the LMI of (5). In order to do that, we will use constructive
formulas of addition and multiplication of LFRs presented in
the Appendix. Each quadratic term from the LMI of(5) can
be written as

ai
*ajWij = h0 + 13 ai

*s1 − 03 ai
*d−1 3 1j

3 h0 + Wij 3 ai
*sI − 0 3 ai

*d−1 3 Ij.

A LFR to each term and then to the whole expression can
now be obtained using the addition and the multiplication
formulas, respectively. QED.

There are several approximations for robust linear matrix
inequalities(RLMIs) which are described as LFRs[13]. One
of particular importance is the full blockS procedure[17].

Theorem 4 (full block S procedure[17]). The matrix
FsDd=A+BDsI −DDd−1C is well posed and satisfies

F I

FsDd G†F0 X

X 0
GF I

FsDd G ø 0, ∀ D P D, s14d

if and only if there exists a multiplier

P = FQ S

S† R
G s15d

with

FD

I
G†

PFD

I
G ù 0, ∀ D P D, s16d

such that

3
I 0

A B

0 I

C D
4

†

3
0 X 0 0

X 0 0 0

0 0 Q S

0 0 S† R
43

I 0

A B

0 I

C D
4 ø 0. s17d

We can now express all possible relaxations of(5) in terms
of the multiplier matrixP as follows.

Theorem 5.A staterAB is entangled if and only if there
exists a multiplier matrix(15) such that(16) and (17) hold,
with X=−I. The matrices appearing in the LMI(17) are
given by Eqs.(10)–(12) and the matrixD is given by(13).

Proof. Noticing that Fsddù0 is equivalent to(14) if X
=−I, the result follows easily from the application of the full
block S procedure(Theorem 4) in the RSDP(9). QED.

The families of matricesP such that(16) is satisfied pa-
rametrize all possible relaxations of(5). Although the deter-
mination of all such matrices is not a trivial problem, it is a
lot easier than(14) and it is the current subject of intensive
research. Further information on possible choices of the ma-
trix P can be found in[17]. As an example, we consider now

the simplest family of matricesP for which (16) holds. In
quantum mechanics one usually deals with normalized states
kc ucl=1. Therefore, the matrixD satisfiesD†D, I. In this
case, the following matrixP gives an approximation of(5):

P = F− I 0

0 I
G .

V. MULTIPARTITE ENTANGLEMENT

So far we have only considered the bipartite case. In this
section we generalize the previous results to multipartite
states. A density operatorr1,…,nPBsH1 ^ ¯ ^ Hnd is sepa-
rable if it can be decomposed as

r1,…,n = o
i

piucil1kciu ^ ¯ ^ ucilnkciu. s18d

Since the set of multipartite mixed separable states is also
convex, it is possible to apply the Hahn-Banach theorem and
establish the concept of the EW in a straightforward manner
[18].

Theorem 6.A stater1,…,nPBsH1 ^ ¯ ^ Hnd is entangled,
i.e., cannot be decomposed as(18) if and only if the optimal
value of the following RSDP is negative:

minimize TrsWr1,…,nd subject to

o
i1=1

dn

o
j1=1

dn

¯ o
in−1=1

dn

o
jn−1=1

dn

sai1
*
¯ ain−1

* aj1
¯ ajn−1

3 Wi1,…,in−1j1,…,jn−1
d ù 0,

TrsWd = 1, ∀ aik
P C, 1 ø k ø n, s19d

where dn is the dimension ofHn, Wi1,…,in−1j1,…,jn−1
=1ki u

^ ¯ ^ n−1ki uWu jln−1 ^ ¯ ^ u jl1PBsH1 ^ ¯ ^ Hn−1d and u jlk

is an orthonormal base ofHk. If r1,…,n is entangled, the
matrix W which minimizes TrsWr1,. . .,nd is the OEW for
r1,…,n.

Proof.We know that a staterAB is entangled if and only if
there exists an operatorW such that TrsWr1,…,ndø0 and

1kcu ^ ¯ ^ nkcuWucln ^ ¯ ^ ucl1ù0 for all states uclk

PHK. Thus, the matrix 1kcu ^ ¯ ^ n−1kcuWucln−1 ^ ¯

^ ucl1ù0 has to be semidefinite positive for alluclkPHK.
Letting uclk=o jaj

ku jlk, where u jlk is an orthonormal base of
Hk, it is straightforward to show that the optimalW given by
(19) is the OEW ofr1,…,n. QED.

Relaxations for(19) can be obtained using the same argu-
ments exposed before. Since the RLMI of(19) is polynomial
in the varying parameters, it can be expressed as a LFR and
we can apply the full blockS procedure to the multipartite
case. Therefore, all possible deterministic approximations of
(19) can also be parametrized by the matrixP. Further re-
sults concerning the application of possible families of pa-
rametrizations ofP in the optimization of the EW will be
reported elsewhere.
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VI. CONCLUSION

In this paper we have introduced, in the context of quan-
tum information, a class of optimization programs(RSDPs)
showing that the determination of the OEW for an arbitrary
state isNP-hard. Several possible deterministic approxima-
tion scenarios have been proposed to it, yielding sufficient
criteria of separability. Our results were then straightfor-
wardly generalized to multipartite states. It was also shown
that all sufficient criteria of separability might be param-
etrized by a matrix which satisfies a much simpler linear
matrix inequality. Therefore, a systematic study of all pos-
sible families of parametrizations for this matrix is of great
importance.
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APPENDIX: COMBINATION OF LFRS

We provide in this appendix some simple combination
rules for addition and multiplication of LFRs used in this
paper. Consider two matrices described by the LFR format

Fisdd = Ai + BiDisI − DiDid−1Ci .

The sum ofF1 andF2 has the LFR

Fsdd = A + BDsI − DDd−1C sA1d

with

A = A1 + A2, B = fB1 B2g, C = fC1 C2g†,

D = diagsD1,D2d, D = diagsD1,D2d.

The product ofF1 andF2 is given by Eq.(A1) with

A = A1A2, B = fB1 A1B2g, C = fC1A2 C2g†

D = FD1 C1B2

0 D2
G, D = diagsD1,D2d.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev.47, 777
(1935).

[2] M. A. Nielsen and I. L. Chuang,Quantum Computation and
Quantum Information(Cambridge University Press, Cam-
bridge, U.K., 2000).

[3] A. Peres, Phys. Rev. Lett.77, 1413(1996); M. Lewenstein, B.
Kraus, J. I. Cirac, and P. Horodecki, e-print quant-ph/0005112;
M. Horodecki and P. Horodecki, Phys. Rev. A59, 4206
(1999); B. M. Terhal, e-print quant-ph/9911057.

[4] L. Gurvits, inProceedings of the 35th ACM Symposium on the
Theory of Computing(ACM Press, New York, 2003), pp. 10–
19.

[5] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A
223, 8 (1996).

[6] B. M. Terhal, e-print quant-ph/9810091.
[7] M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, e-print

quant-ph/0005014.
[8] Y. Nesterov and A. Nemirovskii,Interior Point Polynomial

Methods in Convex Programming: Theory and Applications,
Studies in Applied Mathematics Series(SIAM, Philadelphia,
PA, 1994).

[9] Y. C. Eldar, IEEE Trans. Inf. Theory49, 446(2003); M. Jezek,

J. Rehacek, and J. Fiurasek, Phys. Rev. A65, 060301(2002).
[10] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev. A

69, 022308(2004).
[11] See, for example,SEDUMI, http://fewcal.kub.nl/sturm/software/

sedumi.html
[12] A. Ben Tal and A. Nemirovski, Math. Op. Res.23, 769

(1998).
[13] P. Apkarian and H. D. Tuan, SIAM J. Control Optim.38, 1241

(2000); L. El Ghaoui and H. Lebret, SIAM J. Matrix Anal.
Appl. 18, 1035(1997).

[14] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, IEEE
Trans. Fuzzy Syst.9, 324 (2001).

[15] O. Guehne, P. Hyllus, D. Bruss, A. Ekert, M. Lewenstein, C.
Macchiavello, and A. Sanpera, Phys. Rev. A66, 062305
(2002).

[16] K. Zhou, J. Doyle, and K. Glover,Robust and Optimal Control
(Prentice-Hall, Upper Saddle River, NJ, 1995).

[17] C. W. Scherer, inProceedings of IEEE Conference on Deci-
sion and Control, San Diego, 1997(unpublished), pp. 2602–
2607.

[18] M. Horodecki, P. Horodecki, and R. Horodecki, e-print quant-
ph/0006071.

ROBUST SEMIDEFINITE PROGRAMMING APPROACH TO… PHYSICAL REVIEW A 70, 062309(2004)

062309-5


