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Robust semidefinite programming approach to the separability problem

Fernando G. S. L. Brand4and Reinaldo O. Vianra
Departamento de Fisica, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30.123-970, Brazil
(Received 4 May 2004; published 9 December 2004

We express the optimization of entanglement witnesses for arbitrary bipartite states in terms of a class of
convex optimization problems known as robust semidefinite progrd@&DP$. We propose, using well
known properties of RSDPs, several sufficient tests for separability of mixed states. Our results are then
generalized to multipartite density operators.
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I. INTRODUCTION In this paper, we show that the search for an EW for

Entanglement, first noticed by Einstein, Podolsky, andg@'bitrary mixed states is mded\d!:’—hard. We introduce, in '
Rosen[1], is at the heart of quantum mechanics. Quantumth_e cc_)ntext of quantum information, a clas_s O.f convex opti-
teleportation, superdense coding, and cryptograjgiyare mization problems known as robust semidefinite programs

achieved only when one deals with inseparable states. ThudXSPP$,_whose NP-hardness in most cases was already

the determination and quantification of entanglement in aproved. This family generalizes the i.mporta.nt semidefin_ite
composite quantum state is one of the most important taskgrograms.(SfDPs), .Wh'Ch t:ave been increasingly used in
of quantum information theory. In the past years a great deéiu‘:"rwum"n ormation pro deng}]'” In Sec. Il briefl

of effort have been made in order to obtain the characteriza- € paper IS organized as Toliows. In Sec. 11 we brietly
tion of separable bipartite mixed statd8]. A finite- recfall the definition of th(_a EW and de_flne our concept of the
dimensional bipartite density operaietg € B(H,® Hg) (the optimal .entanglement wnnes{QEW); in .Sec. Il we state
Hilbert space of bounded operators acting l8g® Hg) is the basic facts about robust semidefinite programs, express

separable if and only if it can be written as a convex sum oithe opt'|m|zt§1t|on c;f the E\thhaS SDIT:SfDP'thand pLolwde ahflrﬁt
separable pure states: approximation in terms of the or the problem, whic

yields a sufficient criterion of separability; in Sec. IV we
pas= 2 Pl Al © | die( il (1)  parametrize all possible approximations of the RSDP in
i terms of a multiplier matrix, reducing the search space of
approximation scenes; in Sec. V we generalize our results to
multipartite states. Finally, in Sec. VI, we present our con-
clusions and suggest directions for further research.

where {p;} is a probability distribution andi;)a,|#;)g are
vectors belonging to Hilbert spackk, andHg, respectively.
Despite the simplicity of this definition, no operational nec-
essary and sufficient criterion has been found for the separa- Il. OPTIMAL ENTANGLEMENT WITNESS
bility problem until now. Moreover, it was shown by Gurvits » )
[4] that this problem iNP-hard. Therefore, we should not A Hermitian operatolV e B(H,® Hg) is an entanglement
expect to find a polynomial-time algorithm which determinesWitness if[5,6] (1) j(¥ ® g(#|W|h)s® )4 =0, for all states
for any statepag, with certainty, if it is possible to decom- |#) € Ha and|¢) e Hg; (2) W has at least one negative eigen-
pose it in the form of Eq(1). value; (3) Tr(W)=1. Condition 1 assures that (Woag) >0

A particularly useful concept is that of the entanglementfor all separable statesr,g. Condition 2 implies that
witness(EW). According to[5], an operatop,g is entangled  Tr(WP) <0 at least for one entangled state, for example, the
if and only if there exists a self-adjoint operatdfe B(H, projector on the eigenspace associated with the negative ei-
®Hg) which detects its entanglement, i.e., such thatgenvalue. The third condition is important in order to com-
Tr(Wpag) <0 and TfWaag) =0 for all o5 Separable. This pare different EWSs.
condition follows from the fact that the set of separable states Definition 1.A Hermitian operatokV, _is an optimal EW
is convex and closed i8(H,® Hg). Therefore, as a conclu- for the density operatgpg if
sion of the Hahn-Banach theorem, for all entangled states -
there is a linear functional which separates it from this set. TrH(Wppepap) < Tr(Wose) @
Unfortunately, it is not known how to construct the EW in a for every EWW.
canonical way and in polynomial time for every entangled Although the above definition of the OEW is different
state. Actually, since such a method would solve the separdrom the one introduced ifi7], the optimal EW’s of both
bility problem, it cannot exist as long as the strong conjeccriteria are equal. According @], W is optimal if and only
ture P# NP is true. if for all P=0, W =(1+e)W-¢€P is not an EW.

Ill. ROBUST SEMIDEFINITE PROGRAMS

*Electronic address: fgslb@ufmg.br In this section we will express the search of an optimal
"Electronic address: reinaldo@fisica.ufmg.br EW for an arbitrary state,g in terms of a robust semidefi-
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nite program. A semidefinite program consists of minimizinglinear in the matrix variabl&V. Thus,(5) can be put in the

a linear objective under a linear matrix inequalitMl ) con-  form (4), whereD in this case i2%. We know that a state
straint, precisely, pag IS entangled if and only if there exists an entanglement
witnessW such that TéWpag) <O. It is clear that ifW is an

. . . T .
minimize ¢'x subject to EW, then »(¢/W¢)5 has to be semidefinite positive for all

m |pa € Ha. Conversely, if J(AWypa=0 for all | e Ha,
F(X)=Fo+2XiFi>0, 3) then W is an EW, ie., THNA®|es(d® A(PIW)
i=1 =Trg(| W ee( AWM ) =0 for all [haeHa and [h)g

e Hg. Thus, letting|/)a=2;a;|j)a, Where|j), is an orthonor-
mal base ofH,, it is straightforward to see that the optimal
W given by (5) is the OEW ofppg. QED.

In spite of the similarity betwee(B) and(4), RSDPs are
fh general very hard optimization problems. Actually, it was
proved that robust semidefinite programs likB) are
NP-hard[12].

Corollary 1. The determination of the OEW for an arbi-

wherec e C™ and the Hermitian matriceB;=F] e C™" are
given andxe(C™ is the vector of optimization variables.
F(x)=0 meang~(x) is Hermitian and positive semidefinite.
SDPs are global convex optimization programs and can b
solved in polynomial time with interior-point algorithnii8].
For instance, if there am optimization variables anB(x) is
annXxn matrix, the number of operations scales with prob-
lem size aD(m?n?). SDPs have alrgady been used in d!ffer- trary statepag is anNP-hard problem.

ent problems of quantum-information thed®j and also in Although this corollary is in complete accordance with
the separability problerfl.0]. An important generalization of e \work of Gurvits[4], it cannot be considered a different

(3) is when the data matrice§ are not constant, i.e., they an5rgach leading to the same results, asNRehardness of
depend on a parameter that varies within a certain subspacge optimization of entanglement witnesses does not rule out
This family of problems, known as robust semidefinite pro-yhe existence of a polynomial-time algorithm capable of dis-

grams, is given by tinguishing entangled from separable states.

minimize c'x subject to Since (5) is computationally intractable, it is natural to
search for approximations of it in terms of SDPs, which are
m very efficiently solved. These relaxations of RSDPs have

F(x,A)=FyA)+ 2 xF(A)=0, O AeD (4 been intensively studiefll3] in the past years and can be
i=1 classified as probabilistic or deterministic. In this paper we

will focus in the deterministic relaxations, whe¢é) is re-

; 2. ; ) placed by an inner convex approximation described by a
4 IS more difficult to solve thar3), SInce oné must f',nd an Jinear matrix inequality constraint. This inner approximation
optimization vectorx such that=(x,A) is positive semidefi- g then ysed to find an upper bound to the optimal value of
nlte: to allA eD. O.ne often gncoqnters S'DPs |n'wh|Ch the(4)_ The probabilistic approach, which yields outstanding re-
variables are matrices and in which the inequality depends,is on the separability problem, will be reported elsewhere.
affinely on those matrices. These problems can be readily ps 5 first example of such relaxations, consider the following
in the form(3) by introducing a base of Hermitian matrices adaptation of14.

to each matrix variable. However, since most optimization Theorem 2A density operatop,g is entangled and the
solvers[11] admit declaration of problems in this most gen- optimal value ofW is an EW for it if the result of the fol-
eral form, it is not necessary to write out the LMI explicitly lowing SDP is negative:

as(3), but instead make clear which matrices are variables.
Equality constraints involving the optimization variables can
also appear in Eq$3) and(4) without any further computa-
tional effort. We can now enunciate the main result of this

whereD is a given vectorialsubspace. Note that problem

minimize TiWpag) Subject to

paper.
Theorem 1A state page B(H,® Hg) is entangled, i.e.,
cannot be decomposed @3 if and only if the optimal value () W=0, k=1,2,..,ds,

of the following RSDP is negative:

minimize T(Wp,g) Subject to

1 7
da da (2) d——]_Wkki \?(ij+\/\/“<) =0, 1sk#]j=<d,,
> XaaW; =0, T(W=1 forallaeC (5 A
i=1 j=1
where d, is the dimension ofH,, Wj; = x(i|Wj)a € B(Hg),
and|j), is an orthonormal base . If p,g is entangled, 1

V2 .
the matrix W which minimizes T¢Wp,g) is the OEW for ) dp— ]_W""J‘r E(Wki “Wi =0, 1sk#j<da

PAB: . ] ) (6)
Proof. First we have to show th&b) is a genuine RSDP.

Note thatWj; = (i|W|j), and the objective TkVp,g) are both Proof. Note that
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s |2

1<ks<j=dp da-1

> aaW; = |8y *Wig + aiay W + a;akVij
kj

+

L jadow } =0
da-1 kk .

Thus, a sufficient condition t(b) is

W,
g _gle  (Emile

M(le)) = W =0,
(e|Wle) <e|d—f—1le>
A

O |e> € HB'
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13 00 0
o o0 o0
7710 00 0

0 00 23

The positive partial transpose criterion shows that is en-
tangled, whileo g is separable. Using the SOB), we have
found the following EW forpag:

0.1752 0 0 0
0 0.1752 -0.2478 0
W= )
0 -0.2478 0.0513 0
0 0 0 0.5982

This matrixM(|e)) is positive semidefinite if and only if its | here T(Wpag) =-0.0313. The method has also succeeded
diagonal entries and determinant are greater than or equal {§ the stateoas, as the optimal value for TWo,g) found

zero. From condition 1 it follows tha?,;,=0 andM,,=0.
From conditions 2 and 3,

Wik Wi
e e} e e
( |dA_1| ) |dA—1| )

2 2 2
= 2|:max{<e|\?(wkj + V\/jk)|e>,<e|\2_i(ij - \Njk)|e>}:|
= (e|Wle)(e|Wixle)

0 detM(|e)) > 0. QED.

We present now the first example of our methodology. we©
usedvATLAB and the packagsebumi [11] to implement and

solve the SDP.

A. Bell state
We consider the Bell statel)=(|0)® [0)+|1) @ |1))/\2.
It is well known that (W|Wyy(|¥)=-1/2 [15], where
Wiy =—3(J00X11]+|11)(00]) + 5(]01)(01 +[10)(10)) is the

was 2.733x 10°°.

IV. COMPLETE FAMILY OF PARAMETRIZED
RELAXATIONS

It must be stressed that Theorem 2 is only one of the
possible approximations db). In fact, every relaxation of
the RSDP constitutes a different method of EW construction
and, therefore, a new sufficient criterion of separability. In
this section we will show that all these possible relaxations
can be parametrized in terms of a family of matrices. How-
ever, in order to provide such a method, it is necessary first
introduce some standard results concerning robust
semidefinite programs. One particularly important represen-
tation of robust linear matrix inequalities is the linear frac-
tion representatioflLFR) [13,1§. It was shown that every
matrix F e C"*¢ which depends rationally on a varying pa-
rameters e CX can be expressed §56]

F(8)=A+BA(l -DA)™'C, (8)

whereA e C™*¢, Be C™N, C e CN*¢, andD e CN*N are con-
stant matricestq,...,r, andN=r,+---+r, are integer num-

OEW for this state. Solving the SDP of Theorem 2, the fo"bers, and\ is the following diagonal matrix:

lowing EW was found:

0.1057 0 0 —-0.288
0 0.3943 0 0
W=
0 0 0.3943 0
-0.2887 0 0 0.1057

Since program6) is only a relaxation of5), W is not the
OEW for [¥), (¥|W,,{¥)=-0.1835.

B. Isospectral states

We now consider the two isospectral matrices

13 0 0 0
o w3 w3o
Pre=l o0 13 13 of

0O 0 00

A=diad8il, ... 8d,).

We can now express proble(B) in terms of a LFR.

Theorem 3A statep,g is entangled and the optimal value
of W is the OEW for it if and only if the result of the fol-
lowing RSDP is negative:

minimize TWpag) Subject to

F(A)=BA(I-DA)'C>0, O AeD, (9)
where
B= [Wll' o Wnl W12 T Wnn OdA;dAdB]- (10)
C= [OdA;dédA L® IdA:IT, (11)
Og,a2d,2 LT ® 144
D= 'adgidady W | (12)
Oddgidac?  Odpdgidady
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A= diaqalldAdB, ey adAldAdB, a.;_ldA, ...,a:jAIdA), (13)
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the simplest family of matrice® for which (16) holds. In
quantum mechanics one usually deals with normalized states

and D is the subspace of diagonal matrices in the form of(y|y)=1. Therefore, the matrid satisfiesATA<I. In this

(12) wherea; e C. 0,4 andl, stand for thep X q zero matrix
and thep X p identity matrix, respectivelyl is an auxiliary
matrix given by

L=[1,1,..,1] € Hg.
Proof. We must show that the LMI of8) is equivalent to

the LMI of (5). In order to do that, we will use constructive
formulas of addition and multiplication of LFRs presented in

the Appendix. Each quadratic term from the LMI @) can
be written as

aaW; ={0+1xa(1-0xa)" x 1
X{0+W; x & (1-0x &)™ X1}

A LFR to each term and then to the whole expression can

case, the following matri®P gives an approximation ab):
P= .
0 1

V. MULTIPARTITE ENTANGLEMENT

So far we have only considered the bipartite case. In this
section we generalize the previous results to multipartite
states. A density operatgn,  ,eB(H;® - ®H,) is sepa-
rable if it can be decomposed as

(18

now be obtained using the addition and the multiplication

formulas, respectively. QED.

Since the set of multipartite mixed separable states is also

There are several approximations for robust linear matrix¢ONVeX, it is possible to apply the Hahn-Banach theorem and

inequalities(RLMIs) which are described as LFR$3]. One

of particular importance is the full block procedureg17].
Theorem 4 (full block S procedurgl?]). The matrix

F(A)=A+BA(1-DA)™'C is well posed and satisfies

['H”]['}o DaeD, (14
FA) | [x ollFay| = b, (14

if and only if there exists a multiplier

=[S 1
s R

(15
with
AlT 1A
| PI =0, 0O AeD, (16)
such that
I oo x o oflr o
A B||X0O0O AB<0 an
o1 ||looQ s|lo 1|
cD||looOoS R|[cD

We can now express all possible relaxationg5fin terms
of the multiplier matrixP as follows.

Theorem 5A state pag is entangled if and only if there
exists a multiplier matrix15) such that(16) and(17) hold,
with X=-I. The matrices appearing in the LML7) are
given by Eqs(10)<12) and the matrixA is given by(13).

Proof. Noticing thatF(8) =0 is equivalent to(14) if X

=-I, the result follows easily from the application of the full

block S procedurgTheorem 4 in the RSDP(9). QED.
The families of matrice® such that(16) is satisfied pa-
rametrize all possible relaxations (). Although the deter-

establish the concept of the EW in a straightforward manner
[18].

Theorem 6A statep; . e B(H;® -+ ®H,) is entangled,
i.e., cannot be decomposed(@s) if and only if the optimal
value of the following RSDP is negative:

minimize T(Wp; ) subject to

dn dn dn dn
333 3 @ e a e

i1=1j;=1 in-1=1jp-1=1

X VV|1 ..... (Y P ln-1) =0,

TrW)y=1, O aikeC, l<k=n, (19
where d, is the dimension ofH,, Wi i . . =i

@ @ (iWjn-1® - ®]j)1 e BH;® -+ ®@Hg) and|j)y

P1,..n
Proof. We know that a statp,g is entangled if and only if
there exists an operatd such that T¢Wp, ,)<O and

(@@ (YW@ @ |y)=0 for all states [y
eHy. Thus, the matrix (Y@ @ (YW1 ® -+
®|#»1=0 has to be semidefinite positive for ai), e Hx.
Letting |¢)k:E]-a}(|j)k, where|j), is an orthonormal base of
'H,, it is straightforward to show that the optimal given by
(19) is the OEW ofp, . QED.

Relaxations fo19) can be obtained using the same argu-
ments exposed before. Since the RLMI(@9) is polynomial
in the varying parameters, it can be expressed as a LFR and
we can apply the full blocks procedure to the multipartite
case. Therefore, all possible deterministic approximations of

mination of all such matrices is not a trivial problem, it is a (19) can also be parametrized by the matFx Further re-

lot easier thar{14) and it is the current subject of intensive sults concerning the application of possible families of pa-
research. Further information on possible choices of the maametrizations ofP in the optimization of the EW will be
trix P can be found iff17]. As an example, we consider now reported elsewhere.
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VI. CONCLUSION APPENDIX: COMBINATION OF LFRS

In this paper we have introduced, in the context of quan- We providgl in this appe_ncjix SOme simple combjnatipn
tum information, a class of optimization prograRSDP3 rules for addition and multiplication of LFRs used in this
showing that the determination of the OEW for an arbitrarypaper' Consider two matrices described by the LFR format
state isNP-hard. Several possible deterministic approxima- Fi(8)=A +BA(l -DA)IC.
tion scenarios have been proposed to it, yielding sufficient
criteria of separability. Our results were then straightfor-The sum off; andF; has the LFR
wardly generalized to multipartite states. It was also shown — A+ _ -1
that all sufficient criteria of separability might be param- F(§)=A+BA(I-DA)C (A)
etrized by a matrix which satisfies a much simpler linearwith
matrix inequality. Therefore, a systematic study of all pos-
sible families of parametrizations for this matrix is of great
importance.

A=A +A, B=[B;B,], C=[C,C,",

D=diagD;,D,), A=diagA,A,).
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