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The photoionization of molecular nitrogen has been studied using a frozen-core
Hartree-Fock final-state wave function with a correlated intitial-state wave function. The
final-state wave function was obtained using the iterative Schwinger variational method.
The effects of initial-state correlation were studied by comparing cross sections obtained
using a configuration-interaction-type initial-state wave function with those obtained using
a Hartree-Fock initial-state wave function. In this paper we compare our accurate
single-center expansion results with other theoretical results. We find that earlier single-
center cross sections were not well converged with respect to their expansion parameters.
The results of the continuum multiple-scattering method and the Stieltjes-Tchebycheff
moment-theory approach are found to be in qualitative but not quantitative agreement
with the present results. We also compare our computed total cross sections as well as
integrated target angular distributions with experimental results for photoionization lead-
ing to the X 2=}, A ’1,, and B *Z] states of N;*. We find generally good agreement,
which is improved by the inclusion of initial-state correlation effects, especially in the
resonant photoionization channel leading to the X =] state of N,*. We also report in-
tegrated detector angular distributions for these three channels.

I. INTRODUCTION

The photoionization of molecular systems is a
topic of much current theoretical interest.! As a
prototypical system, the photoionization of molecu-
lar nitrogen has been studied using several different
methods including the continuum multiple-scat-
tering method (CMSM),? the Stieltjes-Tchebycheff
moment-theory approach (STMT), both in the
Hartree-Fock (HF) approximation®* and the
random-phase approximation with exchange
(RPAE),’ and several numerical single-center ex-
pansion methods.® The single-center expansion
methods applied to the photoionization of molecu-
lar nitrogen have treated the interaction potential
in several different ways. There have been static
and static-plus-orthogonalization calculations,’
static-plus-model-exchange calculations,® and exact
static-exchange calculations.”!® Most previous
studies have attempted to obtain the continuum
solution for the final state using the frozen-core
Hartree-Fock (FCHF) approximation.’ The present
study is directed at obtaining accurate and con-
verged FCHF solutions for the final-state wave
function, using the body-fixed frame, fixed nuclei
approach.> We compare our results with some of
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the other theoretical results mentioned above and

with the experimental results of continuous source
experiments by Plummer et al.!! and Marr et al."?
using synchrotron radiation, and by Hamnett

et al.® and Wight et al.'* obtained using an (e,2e)
technique.

We have considered the photoionization leading
to the X 23}, 4 °I1,, and B3] states of N,*.
Both total and partial photoionization cross sec-
tions and angular distributions for these states are
reported. Following the suggestion of Wallace and
Dill,’> we give both the asymmetry parameter for
the usual integrated target angular distribution
(ITAD), denoted here by B, and the integrated
detector angular distribution (IDAD), denoted by
B;. In combination with accurate FCHF final-
state wave functions, we have considered the effect
of initial-state correlation by comparing the results
obtained using both HF and configuration-inter-
action-type (CI) initial-state wave functions. The
difference between the dipole length and dipole
velocity forms of the cross sections is used to esti-
mate the remaining final-state correlation effects.

We solve the static-exchange continuum equa-
tions using the iterative Schwinger method.'®!’
This method is essentially a single-center expansion
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technique comparable to the methods used by
Raseev et al.’ and Robb and Collins.!® The itera-
tive Schwinger method has been earlier applied to
the photoionization of H, and CO, (Refs. 18 and
19) as well as to electron-molecule collisions for the
e-H,, e-LiH, and e-CO, systems.'%?%2! We find in
this study of the photoionization of N, that the
iterative Schwinger method converges rapidly.

The present results are compared with the re-
sults of other single-center expansion methods. We
find that, for the shape resonance in the photoioni-
zation channel leading to the X 22; state of N,*,
the previous results of Raseev et al.” and Robb
et al.'® are not well converged. In particular, their
peak cross section occurs at a photon energy of 31
eV which differs from the present result of 29 eV.
In this regard, we have determined empirically that
the energy of the peak cross section in this shape
resonance, for which the continuum function is of
o, symmetry, converges as

E £nax —E ;ax «< 1_3
where / is the maximum / included in the partial-
wave expansion of the continuum function. We
also compare our accurate static-exchange results
with the results obtained using the CMSM and
STMT methods.>~* This comparison shows that
the CMSM and STMT results are qualitatively
similar to accurate static-exchange results but nei-
ther the CMSM nor STMT is in quantitative
(better than 10%) agreement with the present resu-
Its. Finally, the comparison with experimental
results'! ~'* shows that the FCHF final-state model
reproduces the experimental cross section well ex-
cept in the energy regions where two-electron reso-
nances, such as autoionization, are important.

We find that the inclusion of initial-state correla-
tion brings the dipole length and velocity forms of
the photoionization cross section into better agree-
ment with experimental results. This result for
molecular systems is similar to that found by
Swanson and Armstrong for atomic systems.?? In
the region of the shape resonance leading to the
X 22; state of N,*, the combination of the corre-
lated intitial-state wave function and the FCHF
final-state wave function is found to be particularly
effective.

) (1)

II. METHOD
A. Iterative Schwinger variational method

We compute the final-state photoionization wave
functions using the FCHF approximation.” This

implies that the final state is described by a single
electronic configuration in which the ionic core or-
bitals are constrained to be identical to the HF or-
bitals of the neutral molecule. The Schrodinger
equation for the remaining continuum orbital is
then (in atomic units)

2
_gvz_}wm_% vWim=0, @
where V(T) is the short-range portion of the
static-exchange potential, and K is the momentum
of the continuum electron. By using the FCHF
approximation, the final-state photoionization
problem is reduced to solving a single-particle po-
tential scattering problem.

The Schrodinger equation given in Eq. (2) is
equivalent to the Lippmann-Schwinger equation

(+)__ gf(£) () rrgld)
Wi’ "‘I’T{ +G°¢ U\lli- R (3)

where U(T)=2V(T), and G‘*) is the Coulomb
Green’s function defined by
-1

G H= @

V2+%+kziie

The function \l/%i) is the pure Coulomb scattering
function and is given in terms of its partial-wave
expansion as
172

3 G TIY(Qg) , (5)
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where ¢°*) is the partial-wave Coulomb function
defined by

+ia, Fi(y;kr)
kr

The function Fy(y;kr) is the regular Coulomb func-
tion, with y= —1/k, and o, is the Coulomb phase
shift defined as o; =arg[T(/ +1+iy)].%

The wave function ‘Il(f ), which represents the
ejected electron with momentum K, is then expand-
ed in the partial-wave series

b (T =e Yim(Qp) . (6)

W =| 2

l/21
ﬁ S i (DY (),

1=0 ,y—_+!

@)

where an infinite sum over I’s has been truncated
at / =1,. Computing the wave function in the
partial-wave form allows the dependence of the
scattering solution on the target orientation to be
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treated analytically. The Lippmann-Schwinger
equation for the partial-wave states is then

Yiim (D)= (D) (F| G U |9y - (®)
We solve Eq. (8) using an iterative procedure.'®
The iterative method begins by approximating the
short-range potential by a separable potential of the
form

(F1U™|7)

= 2

ai,ajER

(F|U |a)pUyle; | U [T ),

9)
where R is some initial set of expansion functions
and [U —1],-]- is the matrix inverse of U;;. Inserting
this approximation to U in to Eq. (8) allows the
Lippmann-Schwinger equation to be solved since
the kernel of the integral equation is now separ-
able.* The solution to Eq. (8) with the potential
approximated by U %o i

(—)S, _. IR
¢k1m o(r): lil(m )(I')

+ X (F] GC(_)U|ai>[D_l]ij

a;,a;E€R
X{a; | U | dim ) (10)
where
D;j={a; | U-UG*~'U|a;) . (11)

The use of a separable potential of the form given
in Eq. (9) to solve the Lippmann-Schwinger equa-
tion is known to be identical to the use of the
Schwinger variational expression,25°27 and hence
we call this method the iterative Schwinger varia-
tional method.

The iterative method is continued by augmenting
the expansion set R, of Eq. (9), by the set of func-
tions

-S, S S
SO={¢kI(:m, 'Z'kl(;m’---:'/}klim} ’ (12)

which are the scattering solutions given by Eq.
(10), and where I, is the maximum / included in
the expansion of the scattering solution as given in
Eq. (7). Using this augmented set of functions, a
second set of scattering solutions

S 5
SI = {l/JkI]my- . ~’¢k1pm}

is obtained using Eq. (10). In general, the set of
scattering solutions at the nth iteration

s s
Su =i, m>- - -+ ¥iym ) (13)

is obtained from the previous set of solutions S, _,
from
(=S _, IR
Yim "(F)=fhm (T)
+ 2
X X;ERUS, _,
X{(T| G U X)) [D™ "]y
XX | U | i) -
(14)

This iterative procedure is continued until the wave
functions converge. When the wave functions do
converge, it can be shown that they are solutions of
the Lippmann-Schwinger equation for the exact
potential U.!'®

B. Frozen-core Hartree-Fock static-exchange
potential

In this section we will discuss the form of the
static-exchange potential, obtained from the FCHF
approximation, which describes the interaction of
the ionized electron with the open-shell ionic
core.”® First consider the HF wave function of a
closed-shell molecule such as N,. The HF wave
function is simply written as a single Slater deter-
minant

V= |dad\B: - - dpad,B]| . (15)

The photoionization final-state wave function in
the FCHF approximation, where the ionized elec-
tron is removed from orbital ¢,, is written as

We=(1)'"2{ | $1aiB - - - bnadyB]
+ | padB- - - drad.Bl}, (16)

assuming that ¢, is a nondegenerate orbital. Then
the correct single-particle equation for the continu-
um electron is obtained from

(8Wp |H—E |¥e)=0, 17
where
Se=(3)"*{|$1ad:B " - - duadbyB|
+ | padB - - - dppad,B|] ,
(18)

and where Eq. (17) holds for all possible 8¢
The electronic Hamiltonian can be written as
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N N 1
H=3 fh+ 3 —, (19)
i=1 i<jlij
with
y4
fly=—5Vi—-3 —ri , (20)

where Z, are the nuclear charges, and N =2n is
the number of electrons. The one-electron HF
Hamiltonian can be written in this form as

|

n
HHF=f+ EZJ,-—K,- Py (21)
i=1
where f is the one-electron operator defined in Eq.
(20), and J; and K; are the usual Coulomb and ex-
change operators.” Thus the HF orbitals satisfy

HHF¢n =€,0, - (22)
If we assume that the orbitals ¢ and 8¢ are
not necessarily orthogonal to each other nor to the

orthonormal set of occupied HF orbitals, then Eq.
(17) can be expanded to give

0=((P8¢7) | H—€+Jy+K, | Poy) +2(8¢7 | dn ) bp | H—€+Jy |0 )by |b3)

+2(867 |6 ) (bn | H+Jy | POT) +2((POST) | H+J, | 60) (S0 | 63, 23)
[

where form of the scattering equation is entirely equi-

N n—1 valent to the standard undetermined Lagrange

H=f+ 3 2,—-K; (24) multiplier form!'%3!

i=1
- n
and (H—6+J,, +K,, )¢'|‘(’= 2 )\'i¢i , (30)
i=1
P=1— é | i) (i | - (25) where A; are undetermined multipliers, and ¢y is

i=1
The energy of the continuum electron is
e=E — E¢ore , (26)

where E is the Koopman’s theorem energy of
the ionic core

Ec—EHF ¢ 27

The fact that ¢, is an eigenfunction of H"F [Eq.
(22)], reduces Eq. (23) to*

0=((P8¢) | H—€+J, +K, | Pé7)

which must hold for all 8¢. If we consider the
case where 8¢ =4¢,, then it follows that if e~¢,
then (¢ |, )=0. Thus, if ¢7 satisfies

0=((P8¢%) | H—e+J,+K, | P$7) (29)

for all 8¢7 and with es%4¢,, then ¢ =P satisfies
Eq. (28). So, solving Eq. (29) will give us the
correct continuum wave function in the FCHF ap-
proximation.

There are several points to note about Eq. (29).
First, Eq. (29) constrains the solution P¢% to be
orthogonal to the occupied orbitals. Thus, this

subject to the condition
(¢71¢:)=0, i=12,...,n. 31

Secondly, the continuum solution must be con-
strained to be orthogonal to the doubly occupied
orbitals since, unlike in the electron-neutral
closed-shell HF scattering case, the continuum or-
bital and the occupied orbitals are not eigenfunc-
tions of the same one-electron Hamiltonian. Last-
ly, the general open-shell scattering problem would
require the solution of Eq. (23), but as we have
seen, since we are using the FCHF approximation,
the scattering equations can be simplified to yield
Eq. (29).

A scattering equation of the form of Eq. (2) can
be obtained from Eq. (29) giving

(—3V24 Vot _€)pe=0 . (32)
The potential V°™ is a generalized Phillips-
Kleinman pseudopotential®?:

yorth—y _LQ—QL+QLQ , (33)
where L, Q, and V are defined by

L=—3Vi—e+V, (34)

0=3 14, 39)

i=l1
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and

n—1
V=3 (J;—K;)+J, +K, 2— 36)

i=1 a Tia

Thus, we us the pseudopotential ¥°™" to treat both
the static-exchange interaction and the effects of
constraining the continuum solution to be orthogo-
nal to the occupied bound orbitals.

C. Photoionization cross sections and
asymmetry parameters
The photoionization cross section for going from

an initial bound state ¥; to the continuum state
¥, i due to linearly polarized light in the dipole
length and dipole velocity approximations is pro-
portional to the square of the dipole matrix ele-
ments

Ik =)V | TR |V, 7 (37)
for the dipole length form, and
72
1”_("’ RARZIL 7o (38)

for the velocity form. In Egs. (37) and (38), E is
the photon energy, 7 is the direction of polariza-
tion of the light, and K is the momentum of the
photoelectron. The factor of (k)!/? in Egs. (37)
and (38) is required to change the normalization of
the continuum functions, \I'f,_—k*), from momentum to
energy normalized. The doubly differential pho-
toionization cross sections in the body-fixed frame
is then

d*bV _ 4r’E
dQedQ, ¢

PARE (39)

If the wave functions used to calculate the pho-
toionization cross section were exact eigenfunctions
of the electronic Hamiltonian, then the dipole
length and dipole velocity forms of the cross sec-
tion would be equivalent. Thus, the equality of
these two forms is a necessary but not sufficient
condition that the computed cross sections are ac-
curate. In this sense, the difference between the
length and velocity forms can be viewed as an esti-
mate of the minimum error in the calculation.?>33

To treat the angular dependence of the cross sec-
tion on the target orientation, the dipole matrix
elements are expanded in terms of spherical har-
monics
172

Iz I Yim (Q0)Y1,(Q) . (40)

mp

The partial-wave matrix elements are then given by

I =YW, |7, | wfk,,,, (41)
for the dipole length form, and
(k)" —
I == W | V| ¥} ) (42)

for the dipole velocity form, where

, _l;(xiriy)/Zl/2 forpy=+1,
=

z foru=0, (43)
and
d 9
_( 9 9 | 12 —
o F( o )+i 3 / foru=+1,
B P (44)
e for u=0

The total photoionization cross section averaged
over all polarizations and photoelectron directions
is then

V=4 [21),,] : (45)
3c Iz
where
D ZIIlAm yplz- (46)

Note that for linear molecules we have
Am=m(¥;)—m()=pu+ms), (47)

where . represents ion core and /4 represents the
photoelectron. There are two other averaged pho-
toionization cross sections of interest as suggested
by Wallace and Dill."> The first is the usual in-
tegrated target angular distribution (ITAD). The
ITAD corresponds to the photoionization experi-
ment where the target orientation is not resolved.
This is the form of the photoionization cross sec-
tion measured in the usual gas phase experiment.
When the cross section in Eq. (39) is averaged over
all target orientations the ITAD is found to be of
the form

WV ,V
‘fi‘;: =%[1+B§"VP2(0056)] : (48)
3

The angle 6 is the angle between the direction of
polarization of the light and the momentum of the
electron, and P,(cos 0) is the Legendre polynomial
of degree 2. The asymmetry parameter B¢ is given
by34
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X (1100 | 20)(11 —pp’ | 206" W' —m —m" | 2—p"") (49)

where (j;j,m m, | jsm,) is a Clebsch-Gordan coef-
ficient. Note that the asymmetry parameter B¢
depends only on the photon energy and that the
subscript k implies only that B¢ describes the dis-
tribution of the photoelectrons and not that B¢
depends on their direction. The second averaged
photoionization cross section we will consider is
the integrated detector angular distribution
(IDAD). The IDAD corresponds to the experi-
ment where the target orientation is fixed in the la-
boratory frame of reference and the cross section is
then integrated over all possible directions of emis-
sion of the photoelectron. Wallace and Dill'* have
suggested that the IDAD cross section would be
useful in determining the orientation of a photoion-
ized target in the laboratory frame. When the
cross section given in Eq. (39) is integrated over all
photoelectron directions, the IDAD is found to be
of the form

T it

o =?[1+3;*sz(cos 0)]. (50)
i

The angle 6 in this case is the angle between the
direction of the polarization of the light and the
molecular z axis. The asymmetry parameter B, is
given by

BEY=[2Dy—(D_,+D,,)] / [%D#] . (5D)

III. RESULTS AND DISCUSSION
A. Final-state wave functions

The final-state wave functions used in this study
of photoionization are constructed using the FCHF
approximation. The bound orbitals in this approx-
imation come from the HF wave function of the
neutral molecule. We have constructed a HF wave
function for the neutral N, molecule using a
double-zeta plus d functions contracted Gaussian
basis of the form (9s 5p 2d /4s 3p 2d).3>3 The d-
function exponents are 1.5836 and 0.4691 which
are the exponents appropriate to representing a
Slater function with exponent £=2.20.3¢ The bond

I
length was taken as 2.068 a.u. The HF energy for
this basis set is E = —108.973 235 a.u., and the
quadrupole moment for the neutral N, molecule in
the basis set is 0, = —0.9923 a.u. (Ref. 36).

To compute the final-state continuum wave
function we must evaluate the various matrix ele-
ments given in Eq. (14). We have used a single-
center expansion approach to evaluate all such ma-
trix elements.*3%37 The use of single-center tech-
niques implies that all functions (e.g., scattering
functions, occupied orbitals, 1/7,, G ¢(=)) are ex-
panded about a common origin (taken to be the
bond center for N,) as a sum of spherical harmon-
ics times radial functions. The radial integrals are
computed by putting the radial functions on a grid
and then using Simpson’s rule. The angular in-
tegrals can then be done analytically. Actual cal-
culations use standing-wave boundary conditions
thus allowing radial wave functions to be represent-
ed by real-valued functions.

There are several parameters which describe the
maximum / included in such spherical harmonic
expansions. Using a notation similar to that of
Robb and Collins,!*3® we define our expansion
parameters as follows:

(1) 1,, = maximum / included in the expansion of
scattering functions [X;’s of Eq. (14)], of the
Coulomb Green’s function, and of the projection
orbitals [¢; of Eq. (35)].

(2) ;"= maximum [ included in the expansion
of the scattering functions in the exchange terms.

(3) If*= maximum [ included in the expansion
of the occupied orbitals in the exchange terms.

(4) 18" = maximum [ included in the expansion
of the occupied orbitals in the direct potential.

(5) Ao" = maximum [ included in the expansion
of 1/ry, in the exchange terms.

(6) A8"= maximum / included in the expansion
of 1/r, in the direct potential (not including the
nuclear terms).

Also note that we always include terms up to
A=2Il,, in the expansion of the nuclear potential.
We have expanded all radial integrands on a grid
of 800 points extending to r =64.0 a.u. The small-
est step size in this grid is 0.01 a.u. which is used
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out to r=2.0 a.u. The largest step size is 0.16 a.u.
For the purposes of this study we have grouped
the six parameters listed above as follows:

.y gdir dir 4 dir ,
(l) lmax:Im»li ’}\'m )

(i) 1S =15 A

For all calculations on N, considered here we have
fixed [{™ to be [{*=16(10,), 10(20,), 10(30,),
15(10,), 9(20,), 9(11,). These values correspond
to having normalized the expansions of the various
orbitals to better than 0.99.

To study the general convergence in this system
we have intitially considered four sets of parame-
ters:

(A) 18 =20, 19,=20,
(B) 19 =30, 19¢.=20,
(C) 197 =40, 1%, =20,
(D) 18 =30, 19,=30.

We have used these four sets of parameters to cal-
culate the photoionization cross section in the

30y —ko, channel of N,. This channel was
chosen since it contains a shape resonance which
makes the computed cross section more sensitive to
the parameters of the potential than in a non-
resonant channel. The results for parameter sets
A, B, and C are shown in Fig. 1. On the scale

Cross Section (Mb)

0 ! L L 1
15 20 25 30 35 40

Photon Energy (eV)

FIG. 1. Convergence of the 30,— ko, photoioniza-
tion cross section of N, with varying potential parame-
ters: — — — parameter set A (/97 =20); —-—- param-
eter set B (/47, =30); parameter set C (/3¢ =40).
For all three sets /5, =20. These are results of noni-
terative calculations using the o, basis set of Table I in
Eq. (10). One megabarn (Mb) is 10~'¥ cm?.

shown in Fig. 1, the cross section with parameter
set D cannot be distinguished from that of set B.
The difference between sets B and C is less than
5% in the cross section. We consider the accuracy
of set B to be adequate considering the FCHF ap-
proximation within which we are computing these
cross sections. Thus, except where noted, we have
used this set of parameters with /3 =30 and 19,
=20 for all other calculations in this study. A
more detailed discussion of the convergence of the
energy peak cross sections in the 30, —ko, chan-
nel is given in Sec. III C of this paper.

The scattering basis sets, corresponding to the
set R of Eq. (10), which were used to obtain
scattering solutions of the various possible sym-
metries, are given in Table I. The basis sets are
constructed both from Cartesian Gaussian func-
tions which are of the form

¢( F)a,l,m,n, A

i

=N(x —A )y —4,)"(z—A, e~ T= A1
(52)

centered at the nuclei, and spherical Gaussians of
the form

¢( i:')a, ILm, A

=N |T—A|le~eIT-Aly, Q. 2) (53
centered at the expansion origin. We have exam-
ined the rate of convergence of the iterative
Schwinger variational method with basis sets of
this size. In Fig. 2 we present the results of pho-
toionization calculations in the 30, —~ko, channel
using the o, basis set given in Table I. The cross
section without iteration [Eq. (10)] and from the
first iteration [Eq. (14) with n =1] are both given
in Fig. 2. The cross section obtained from the
second iteration is indistinguishable from that
given for the first iteration on the scale presented
in Fig. 2. Thus, for all other channels we have
only presented cross sections from the results of the
first iteration. We have assured the adequacy of
the basis sets for the other scattering symmetries,
given in Table I, by comparing the zero-iteration
cross section to the one-iteration cross section. In
all the other channels considered here, this differ-
ence is small and of the same order as that we have
obtained in the 30, —ko, channel.

B. Initial-state wave function

Swanson and Armstrong?? found that inclusion
of correlation effects in the initial-state wave func-
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TABLE I. Scattering basis sets used with the Schwinger variational expression.®

Symmetry of Type of Gaussian
continuum solution function® Exponents
oy Cartesian s 16.0,8.0,4.0,2.0,1.0,0.5
z 1.0,0.5
Spherical /=0 2.0,1.0,0.5
1=2 2.0,1.0,0.5
oy Cartesian s 16.0,8.0,4.0,2.0,1.0,0.5
z 1.0,0.5
Spherical /=1 4.0,2.0,1.0,0.5
1=3 4.0,2.0,1.0,0.5
=5 1.0,0.5
Ty Cartesian x 8.0,4.0,2.0,1.0,0.5
b 74 0.5
Spherical /=1 1.0
=3 1.0
g Cartesian x 8.0,4.0,2.0,1.0,0.5
Xz 0.5
Spherical [ =2 1.0
=4 1.0
L Cartesian xy 4.0,2.0,1.0,0.5,0.25
Spherical =2 1.0
1=4 1.0

*These basis sets correspond to the set R of Eq. (10).

®The basis functions are symmetry adapted functions constructed from either Cartesian or
spherical Gaussian functions, as defined in the text, of the given type. Cartesian functions
are centered at the nuclei and spherical functions are centered at the bond midpoint.
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FIG. 2. Convergence of the 30, —ko, photoioniza-
tion cross section of N, using the iterative Schwinger
method: — — — —, iteration zero using Eq. (10); ,
iteration one using Eq. (14).

tion while using only the FCHF approximation for
the final state, significantly improved the computed
cross section when compared to using only a HF
initial-state wave function. In this study we have
examined effects of initial-state correlation on the
computed photoionization cross sections of molecu-
lar nitrogen. As initial-state wave functions we
have used the HF wave function described in the
previous section and a CI wave function containing
“singles-plus-doubles” excitations.*

In order to limit the size of the CI wave func-
tion, the virtual orbital space was taken to be a re-
stricted set of orbitals. The virtual orbitals were
obtained by performing a separated-pair-type MC-
SCF calculation.?>* The orbital occupation in the
HF wave function is

(104)(204 (304 )(10,)2(20, ) (11, (1)

(54)
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Note that we have performed the initial-state cal-
culations in D,; symmetry. In the separated-pair
calculation the valence electron pairs are expanded

in orthogonal natural orbitals. The wave function
we used for N, may be represented as

(105)X(20,,504,50,)2(304,404,30,,40,,3T 0, 3Ty, 3gx, 370, )7 (10,)4(20,,604,60, ) (177, 17gy, 27, 27g )

(17, 17y, 2, 270, )2

where the orbital listed within each pair of
parentheses represents the natural orbitals of a par-
ticular pair function. The energy of this separated-
pair wave function for N, is —109.054 489 a.u.
The orbitals in each pair function which are dou-
bly occupied in the HF approximation were not al-
lowed to vary from their HF form. This con-
straint made the evaluation of the photoionization
cross sections simpler since in matrix elements of
the form of Egs. (41) and (42), this restriction al-
lows only the continuum orbital in the final state
to be nonorthogonal to the orbitals in the correlat-
ed initial-state wave function. Having only one
nonorthogonal orbital in the final state, causes the
configurations in the initial-state wave function,
differing from the reference HF configuration by
three or more spin-orbitals, not to contribute to the
photoionization cross section. Hence we have
chosen a linear combination of configurations
differing from the HF configuration by no more
than two orbitals to represent the correlated
initial-state wave function. The virtual orbital
space was taken to be the set of orbitals deter-
mined in the separated-pair calculation. We have
also restricted the calculation by requiring the lo,
and lo, orbitals to remain doubly occupied in all
configurations. The resulting wave function has
386 spatial configurations in D,, symmetry, from
which 570 spin eigenfunctions are constructed.
The energy of this CI wave function is

—109.173 549 a.u.

C. Photoionization leading to the X 22} state of N,*

Photoionization leading to the X 22;’ state of
N, 7 is of primary interest due to the appearance of
a shape resonance in the cross section. In the one-
electron picture used here this channel corresponds
to photoionization from the 30, orbital into a con-
tinuum orbital of either o, or 7, symmetry. The
maximum / included in the expansion of the
scattering solution [Eq. (7)] is /[, =7 for the contin-
uum solutions of o, symmetry and /, =35 for con-

(55)

I

tinuum solutions of 7, symmetry. The ionization
potential we used for this channel was IP=15.6
RVERY

There have been several studies of the shape res-
onance in this channel using the FCHF approxima-
tion.>*1% Among these studies there is a disagree-
ment of about 3 eV in the position of the peak
photoionization due to the resonance. For the
30, — ko, channel alone, Rescigno et al.? obtained
a peak cross section at a photon energy of ~28 eV,
whereas both Raseev et al.® and Robb and Col-
lins'® obtained the peak cross section at ~31 eV.
Figure 2 shows that the peak cross section in our
calculation is at ~29 eV.

The discrepancy between our peak cross-section
energy and those of Raseev et al. and Robb and
Collins could be due either to the different targets
used or the different expansion parameters used.
To see if the difference in the targets is important,
we have performed a calculation in which we used
similar expansion parameters to those used by
Raseev et al.’ For this calculation we have taken
as our expansion parameters l,, =13, [;*=9, [[*=7
for all i, IF*=50, A& =5, A3T=14. Using these
parameters we obtain the peak cross-section energy
at 30.7 eV. Thus, the difference between using a
target wave function constructed from Gaussian
functions as in the present study or from Slater-
type functions as in the studies by Raseev et al.’
and Robb and Collins'” is seen to be small. Thus,
most of the difference between the results of Raseev
et al.’ and Robb and Collins'® and our present
results must be due to the lack of convergence of
the expansion parameters in the earlier studies.

In order to examine the behavior of the peak
cross section with respect to the / expansion used,
we have performed an additional set of calcula-
tions. The very small difference between the B and
D calculations discussed in Sec. III A indicates that
the exchange potential is converged with /5y = 30.
Thus, the only variations in / that we will consider
here are those in /3,. We have thus performed
calculations with /737, =30 and
1dir —34,38,42,46,50. We have computed the
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photoionization cross section for the 30, —ko,
channel at three photoelectron energies, 0.47, 0.50,
and 0.53 a.u., which corresponds to photon ener-
gies of 28.4, 29.2, and 30.0 eV. Using these three
energies we then used polynomial interpolation to
obtain the photon energy of the peak cross section.
We have plotted the resulting energies against
1/(1%F )} in Fig. 3. As can be seen from Fig. 3,
the peak energies fall on a straight line when plot-
ted against 1/(19° )3, Thus, we have empirically
determined the relationship given in Eq. (1), i.e,,

® 1

Efnax"Emax « _1'3_ .

The extrapolated energy for the peak cross section
is then 28.7 eV.

We believe that this functional dependence of the
resonance energy on /37 is due to the interaction
of resonant function of o symmetry, which satisfies
the appropriate cusp condition at a nucleus, and
the nuclear potential at that point. To test this
conjecture we computed the potential integral of an
s-type Slater function of exponent £=2.0, which
has the correct cusp condition at its origin, with a
point charge at the center of the Slater function.
This integral was performed using a single-center
expansion about an origin 1.034 a.u. away from the
center of the Slater function.*! Note that this dis-
tance is the same as the distance from the expan-
sion center to the nuclei in nitrogen. The conver-

28.95 T T T

28.90

28.85

Peok Energy (eV)

zs,ao(—

28.75

28.70

1 I

L L L
oo 50 46 42 38 34

Expansion t (1/13)

FIG. 3. Dependence of the energy of the peak pho-
toionization cross section on /4, for the 3o,—ko,

channel of N,.

gence of this integral with /,,, was also found to
obey the law given in Eq. (1), suggesting that this
1/13 convergence could be general for all o shape
resonances, although we do not have a rigorous
proof of this. We have also observed this rate of
convergence in the 40, —ko, photoionization res-
onance in CO,.!”® Note that for resonances with
m=0 (m,8, etc.) the convergence behavior will be
different, and one would expect these resonance en-
ergies to converge faster with increasing / than did
the o resonance discussed here.

In Fig. 4 we give the total cross section leading
to the X 227 state of N,*. We have plotted the
computed dipole length and dipole velocity cross
sections, using both the HF and CI intitial-state
wave functions, along with the experimental results
of Plummer et al.'' and of Hamnett et al.'> As in
studies of atomic photoionization by Swanson and
Armstrong,22 the correlated intitial-state wave
function brings the length and velocity forms of the
cross section closer together in better agreement
with the experimental results.

The feature at 23 eV in the experimental cross
section has been attributed to autoionization from
Rydberg states leading to the C 22} state of

Cross Section (Mb)

0 1 1 1 1 1
15 20 25 30 35 40 45

Photon Energy (eV)

FIG. 4. Photoionization cross section for the produc-
tion of the X >Z} state of N;": HFL, in the dipole
length approximation using a Hartree-Fock initial-state
wave function; HFV, in the dipole velocity approxima-
tion using a Hartree-Fock initial-state wave function;
CIL, in the dipole length approximation using a
configuration-interaction intitial-state wave function;
CIV, in the dipole velocity approximation using a con-
figuration initial-state wave function; @, experimental re-
sults of Plummer et al. (Ref. 11); B, experimental re-
sults of Hamnett et al. (Ref. 13).
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N, *.1:42 To obtain such autoionization features,
theoretically, one would have to include final-state
effects not present in the FCHF model used here.
In Fig. 5 we present our computed ITAD and
IDAD asymmetry parameters. The effect of
initial-state correlation on the computed B’s is
small. Thus, for all the asymmetry parameters re-
ported here, we will only present our most reliable
results obtained using the CI initial-state wave
function. The computed ITAD asymmetry param-
eters agree well with the experimental results of
Marr et al.,'? except for the values around the
feature at 23 eV and at lower energies where au-
toionization features are important. We note that
there are no dramatic changes in the B¢ values in
the resonance region in contrast to the significant
B effects which have been predicted in the 40,
— ko, photoionization resonance in CO,.!9(b).43
The results for the IDAD asymmetry parameter
show that above the resonance energy the contribu-
tion from the ko, continuum channel drops off
rapidly leaving only the contribution from the km,
continuum.

2 T T T T T

N (@) ITAD X 2z

L 1 1 1 i

(b) IDAD X 213

Asymmetry Parameter
N

-1 1 Il i 1
15 20 25 30 35 40 45

Photon Energy (eV)

FIG. 5. Photoionization asymmetry parameters for

the production of the X 23} state of N,*:

(a) ITAD asymmetry parameter Sz; (b) IDAD asym-
metry parameter [3;; , dipole length approximation
using a correlated initial state; — — — —, dipole velocity
approximation using a correlated initial-state wave func-
tion; @, experimental B of Marr et al. (Ref. 12).

D. Photoionization leading to the 4 2II, state of N,*

The photoionization channel leading to the
AT, state of N,* corresponds in the one-electron
picture to ejecting an electron from the 1, orbital
into a continuum orbital having o, 7, or 8, sym-
metry. For the ionization potential of this channel
we have used IP=16.7 eV.>!! The maximum / in-
cluded in the expansion of the scattering solution
[Eq. (7)] was [, =6 for continuum solutions of o,
g, and 8, symmetries.

There is a well-known difficulty associated with
using the FCHF approximation for the 17, —km,
channel.** If the straightforward FCHF potential
is used, the photoionization cross section is un-
physically large as shown in Fig. 6(a). The poten-
tial used in this calculation was the usual singlet-
coupled potential for the 7, kg configuration

Vi= (2, —K,)+2 _+J_,
o
+K_+—K__+28,.-S7 , (56)
where J and K are the usual Coulomb and ex-
change operators, and S’ and S” are defined by
ﬁ—(?z)]‘¢._(?2)

Syt (F)=mt(T) [d’r, [ p (57)
12

and

(T)*rH(T)
S;,'¢+(f'1)=¢_(f'1)fd3r2 [7T 2r] il 2 . (58)
12

The origin of the unphysical result presented in
Fig. 6(a) is that the HF potential given in Eq. (56)
places the strong valence mw—7* transition above
the ionization threshold. This transition then ap-
pears as a large feature in the photoionization pro-
file. If the appropriate c— o™ correlations were in-
cluded in the final-state wave function, then this
transition would be brought below the ionization
threshold in better agreement with experiment.’
Instead of including final-state correlation in our
calculation, we have chosen to modify the HF po-
tential so that the m—7* oscillator strength is re-
moved from the continuum.* We have tried three
different ways of removing this deficiency of the
HF potential.

The first two methods are based on the observa-
tion that if an appropriate representation could be
found for the 7* orbital, then the continuum solu-
tions could be obtained using the singlet potential
given in Eq. (56), with the additional condition
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FIG. 6. Photoionization cross sections in the
l7,—kmy channel of N, using various forms for the
scattering potential: (a) unmodified potential compared
with modified forms; (b) expanded scale showing modi-
fied potentials; ——, the cross section obtained using
continuum solutions which are eigenfunctions of the
triplet Hartree-Fock potential; —- —-, using eigenfunc-
tions of the singlet Hartree-Fock potential constrained
to be orthogonal to a valence 7, eigenfunction of the
triplet Hartree-Fock potential, — — — —, using eigen-
functions of the singlet Hartree-Fock potential con-
strained to be orthogonal to a valence 7, eigenfunction
of the singlet Hartree-Fock potential; ----- , using eigen-
functions of the unmodified singlet Hartree-Fock poten-
tial.

that the continuum solution be orthogonal to the
valence 7* orbital.* The orthogonality condition is
imposed by using the appropriate Phillips-Klein-
man potential. We have obtained the valence 7*
orbital using two methods. The first method used
was to obtain eigenfunctions 