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Adaptive optics systems for future large optical telescopes may require thousands of sensors and actuators.
Optimal reconstruction of phase errors using relative measurements requires feedback from every sensor to
each actuator, resulting in computational scaling for n actuators of n2. The optimum local reconstructor is
investigated, wherein each actuator command depends only on sensor information in a neighboring region.
The resulting performance degradation on ‘‘global’’ modes is quantified analytically, and two approaches are
considered for recovering global performance. Combining local and global estimators in a two-layer hierarchic
architecture yields computations scaling with n4/3; extending this approach to multiple layers yields linear
scaling. An alternative approach that maintains a local structure is to allow actuator commands to depend on
both local sensors and prior local estimates. This iterative approach is equivalent to a temporal low-pass filter
on global information and gives a scaling of n3/2. The algorithms are simulated by using data from the Palo-
mar Observatory adaptive optics system. The analysis is general enough to also be applicable to active optics
or other systems with many sensors and actuators. © 2003 Optical Society of America

OCIS codes: 010.1080, 350.1260.
1. INTRODUCTION
Many large optical telescopes have adaptive optics (AO)
systems that compensate for constantly changing atmo-
spheric distortion by using wave-front information feed-
back to a deformable mirror (DM).1 Current AO systems
generally involve hundreds of actuators and sensors,
while future telescopes may require many more actuators
and sensors [e.g., California Extremely Large Telescope
(CELT)].2 The optimal control algorithm feeds back ev-
ery sensor to every actuator, resulting in a potentially un-
acceptable computational burden for future systems. A
similar issue also arises for active optics systems [active
control system (ACS)] for future segmented extremely
large telescopes.3

The AO and ACS problems motivate development of
computationally efficient control algorithms for systems
with many sensors and actuators. Both problems re-
quire global feedback because relative sensor measure-
ments are used to reconstruct (estimate) absolute dis-
placements. This paper analyzes the optimal local
(hence sparse) reconstructor and develops hierarchic and
iterative approaches for recovering the resulting loss of
performance on ‘‘global’’ modes, focusing on AO to moti-
vate and validate the design approaches.

In AO, the sensors typically do not directly measure the
atmospheric phase error but instead measure the slope of
the wave-front error, e.g., with a Shack–Hartmann sen-
sor. The wave-front phase at the actuator location, and
therefore the desired actuator command, are estimated
from the sensor measurements through a weighted
pseudoinverse of the sparse influence matrix from actua-
tor displacements to sensor measurements (see, e.g.,
Hardy).1 This reconstruction matrix is in general fully
populated; hence the entire sensor vector is required to
give a good estimate of global wave-front error at any
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point. Control of segmented mirror telescopes similarly
uses relative measurements to estimate segment dis-
placement, resulting in a fully populated reconstruction
matrix.

One approach to reducing computation is based on us-
ing spatial Fourier transforms4–6; with n actuators, the
resulting computations are of order n log n rather than n2

for the full-matrix computation. Similar approaches can
be developed for any circulant system.

Several approaches exist to reduce computation by re-
lying only on sparse-matrix operations. The exact solu-
tion to the least-squares estimate can be obtained more
efficiently through Cholesky factorization and backsubsti-
tution using the sparse Cholesky factors; this approach
avoids ever directly computing the reconstructor matrix.
This approach has been extended to the multiconjugate
adaptive optics case and to include atmospheric
statistics.7 A conjugate gradient approach can also solve
the problem by using only sparse-matrix operations.
Convergence is obtained through iteration and can be im-
proved by using preconditioning.8 The multigrid precon-
ditioning method used in Gilles et al.8 is related to the hi-
erarchic estimation approach developed herein. More
general iterative approaches are briefly discussed in
Hardy1 and form the basis of the sparse-matrix approach
of Wild et al.9 Other sparse-matrix approaches have also
been suggested10; however, the reconstructors are not in
general optimal. Decentralized controllers have been
studied for telescope active control systems,11 and for gen-
eral applications.12 The emphasis in these papers is
typically on designing decentralized controllers in the
presence of dynamic coupling between subsystems, not on
coupling through the measurement.

The sparse reconstructors developed herein are optimal
given the restricted available information. Performance
2003 Optical Society of America



Douglas G. MacMartin Vol. 20, No. 6 /June 2003/J. Opt. Soc. Am. A 1085
on low-spatial-wave-number ‘‘global’’ modes is degraded,
and two approaches are considered to recover global per-
formance.

A global estimator can be combined with the local esti-
mate in a hierarchic architecture; this approach is devel-
oped herein for the AO problem. The extent of the local
control can be optimized to minimize the total computa-
tional burden of the combined hierarchic system. By
maintaining geometric similarity in developing the global
layer, the approach is readily extended to multiple layers,
analogous to multigrid approaches, yielding computations
linear in the number of actuators n.

An alternative, iterative approach to recover global per-
formance with small computational burden is to allow
each actuator command to depend not only on local sensor
information but also on prior local displacement esti-
mates. This approach maintains a purely local informa-
tion flow and thus is amenable to a decentralized hard-
ware implementation. With actuator commands based
only on local sensor information, global displacement in-
formation propagates across the array at a rate depen-
dent on the control bandwidth; including local displace-
ment estimates allows this propagation speed to be
dependent on the sample rate or the communication rate
instead. For quasi-steady disturbances, this algorithm is
equivalent to the iterative approaches in Young.13 The
dynamic performance is equivalent to that of a low-pass
filter on global information whose corner frequency de-
pends on the spatial extent of the local control.

This paper develops local, hierarchic, and iterative re-
construction approaches and compares them for AO. The
AO problem assumes a Shack–Hartmann-type wave-
front sensor with a Fried geometry. The analysis as-
sumes a frozen turbulence model, resulting in global dis-
turbances changing more slowly than high-wave-number
disturbances. Simulations use the actuator/sensor con-
figuration of the Palomar Observatory AO system; the lo-
cal and hierarchic algorithms have also been experimen-
tally validated at Palomar.14 The approach is also
applicable to a broader class of problems involving many
sensors and actuators, including control of a segmented
primary mirror.

2. CONTROL PROBLEM
A. Actuators and Sensors
For analysis, consider a single DM with n actuators in a
grid of size (D 1 1) 3 (D 1 1) and a Shack–Hartmann
wave-front sensor with D 3 D subapertures aligned with
the DM actuators in a Fried geometry. Each element of
these sensors provides a measure of the average atmo-
spheric tip and tilt over the region bounded by the neigh-
boring actuators. Only those subapertures within the
boundaries defined by the included actuators are used;
otherwise, the estimation process described in Subsection
2.B becomes ill conditioned. In the limit of many actua-
tors, there are twice as many sensors as actuators; the ap-
proximation ns . 2n will be used in comparing computa-
tions of different algorithms. The number of actuators is
approximately n . (p/4)D2; however, the factor of p/4
will not always be included in approximating computa-
tions. Flexible modes are typically at much higher fre-
quencies than the control bandwidth and can therefore be
ignored. Furthermore, assume that the motion at one ac-
tuator location does not depend on any other actuator
command and that the actuator displacement equals the
command u.

Assuming frozen turbulence, disturbances of large spa-
tial scale change more slowly than those of small scale.
With an infinite aperture and a single turbulent layer of
velocity v, disturbances of wave number k then have tem-
poral frequency v 5 kv. With finite aperture, a given
mode includes all wave numbers and thus has energy at
all frequencies, but the bandwidth required for a given
mode is still proportional to the wave number.

Performance is simulated by using telemetry data
obtained at Palomar.15 This system has 241 actuators
and a 256-element Shack–Hartmann wave-front sensor
(D 5 16); the actuator and sensor geometry is shown in
Fig. 1. There are 192 subapertures (giving 384 sensor
measurements) that are within the diameter of the mirror
and not obscured by the telescope secondary mirror.

The system state is described by the displacements
x P Rn at the actuator locations:

x 5 u 1 w (1)

for some disturbance vector w and control u. The sensor
measurements y are related to the displacements x
through

y 5 Ax 1 h, (2)

where h is sensor noise. The ns 3 n influence matrix A
is sparse, since it is assumed that each sensor is influ-
enced only by neighboring actuators.

Denote M as the dimension of the null space of A. For
any estimation problem using relative measurements,
piston motion (same displacement at every location) is
unobservable. For the Fried AO wave-front sensor geom-

Fig. 1. Actuator (s) and sensor (1) layout for Palomar adaptive
optics (AO). The circles indicate the outer edge of the mirror
and the region obscured by the telescope secondary mirror.
Only those subapertures used in reconstruction are shown.
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etry in Fig. 1, a ‘‘waffle’’ mode is also unobservable,
wherein neighboring displacements have equal magni-
tude but alternating sign.

B. Baseline Control Algorithm
The baseline disturbance rejection control algorithm1 can
be divided into two steps, shown in Fig. 2. The first step
is to estimate the displacements at the actuator locations
given the sensor information, and the second step is to
minimize this error by using a controller C(s) (typically
proportional-integral), assumed to be the same for each
actuator. Actuator dynamics can be included in C(s) for
notational simplicity. The computations are dominated
by the estimation, which is of the form x̂ 5 Ky for a re-
constructor matrix K.

In the absence of sensor noise, the optimal estimator is
x̂ 5 Ky, K 5 A#, where the pseudoinverse is given by

A# 5 lim
r → 0

~ATA 1 rI !21AT. (3)

Despite A being sparse, A# is in general fully populated.
The physical interpretation of this result is that the abso-
lute displacement can be estimated from relative mea-
surements only by integrating those measurements to the
boundary of the domain.

The error is given by

x̂ 2 x 5 ~KA 2 I !x 1 Kh (4)

5 2(
m51

M

mm~mm
T x ! 1 Kh, (5)

where mm P Rn, m 5 1,..., M, are an orthonormal basis
for the null space of A. The error is the sum of all unob-
servable modes of x plus sensor noise; this result will be
used in the subsequent sections.

With sensor noise covariance ^hhT& 5 R and distur-
bance covariance ^wwT& 5 Q, the optimal reconstructor
is given by the weighted pseudoinverse4

K 5 QAT~AQAT 1 R !21 (6)

5 ~ATR21A 1 Q21!21ATR21. (7)

A higher ratio of disturbance to sensor noise results in
higher singular values of K. For simplicity, the remain-
der of this paper will focus on the form of the reconstruc-
tor in Eq. (3).

Tip and tilt are typically controlled separately by a fast-
steering mirror and can be projected out of either the sen-
sor measurement y or the estimate x̂. Define f t as the
tip or tilt mode shape; then the remaining estimate after
projection is x̂ 5 x̂ 2 f t(f t

Tx̂). This requires 4n multi-
plies and thus can be ignored in the operation count for

Fig. 2. Control block diagram. Displacement x is influenced by
control u and disturbance w. Control consists of estimation
x̂ 5 Ky and control u 5 C(s) x̂.
large systems. The computations of this baseline algo-
rithm are C(n) 5 nns . 2n2.

Transforming into and out of a modal basis allows the
loop gain to be tuned independently for different modes16;
this requires two matrix multiplies with computations
nz 3 ns to estimate nz modes and n 3 nz to compute con-
trol commands for total computations that scale with
3nnz . Thus there is also a small computational savings
if the number of modes kept is less than 2/3 the number of
actuators.

A significant reduction in the total computations can be
obtained by using approaches based on the fast Fourier
transform (FFT). Sensor measurements need to be ex-
tended from the circular to a square geometry. The esti-
mate is then obtained through a two-dimensional spatial
FFT of the sensor information, a spatial filter, and an in-
verse FFT. The operation count is roughly 5n̄ log2 n̄,
where n̄ . (4/p)n. The multigrid preconditioned conju-
gate gradient approach8 also has n log2 n computational
scaling.

C. Performance Assessment
The loop transfer function is C(s)(KA). The matrix
L 5 KA determines the closed-loop behavior; with the op-
timal least-squares pseudoinverse, then, L 5 I. The
loop gain along directions of interest gives an assessment
of the relative performance of any reconstructor K. For
an orthonormal basis set given by j 5 f Tx, compute the
modal loop gain Lf 5 f TLf; herein Zernike polynomi-
als17 are used. With the optimal reconstructor in Eq. (3),
every mode is independent. With a general reconstructor
K, there is coupling between modes, so noise in mode j j
can affect the residual energy in j i . Thus an accurate
assessment of performance requires a model of the distur-
bance energy in every mode and computation of the re-
sulting closed-loop performance. For all of the recon-
structors developed herein, the coupling between modes
remains small, and the modal loop gains (Lf) ii can be
used as a rough guide to the expected behavior. With an
integral controller C(s), a gain reduction for a given spa-
tial mode corresponds directly to a bandwidth reduction.

The reconstructor also affects sensor noise propagation;
for a reconstructor K, unit-covariance uncorrelated noise
on each sensor yields rms noise on the estimate given by
the noise multiplier6 @Tr(KKT)/n#1/2.

3. LOCAL CONTROL
We seek a local controller structure wherein each state es-
timate and hence control output depend only on informa-
tion within a given region around the actuator location.
Initially, consider estimators dependent only on local sen-
sor measurements; this will be generalized in later sec-
tions. The best possible estimate of the displacement at
each location given the sensor information available (or
conditioned optimal estimate) results in a local least-
squares problem. Note that truncating the optimal con-
troller by zeroing elements of K 5 A# corresponding ei-
ther to distant sensors or to those with small gain is
suboptimal and in general may give arbitrarily poor per-
formance.
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At each actuator location i, define V i
s as the subset of

sensors to be used in computing the estimate x̂ i and the
corresponding actuator command ui . Choose regions
that include all sensors within distance d/2, i.e.,

yj P V i
s ⇔ ix~ yj! 2 x~xi!i , d/2,

where x( • ) denotes spatial location (representing the
two axes by a complex number) and i•i denotes distance.
Herein ixi 5 max(uR(x)u, uI(x)u), so the regions are
square of size d 3 d. Define V i

a by xj P V i
a if 'k such

that yk P V i
s and Akj Þ 0; this is the set of states that in-

fluence any sensor in V i
s . For actuators with a local in-

fluence, then, Va has roughly the same spatial extent as
that of Vs. Define Ãi 5 AVi

s ,Vi
a, where the notation indi-

cates that rows in V i
s and columns in V i

a are kept.
Define d 5 d/D; the computations will scale as C(n)

5 2d 2n2. The computation time will not scale as effi-
ciently as the number of multiplies because of the addi-
tional overhead required to implement the sparse-
matrix–vector multiply. However, since the sparse
matrices maintain some structure, the additional over-
head is small.18

Given the subset V i
s of available information, the opti-

mal estimate of the overall state x̂uyPVi
s is obtained from

the pseudoinverse as in Eq. (3), where only the rows of A
corresponding to V i

s are kept. State estimates not in V i
a

will be zero; hence the nonzero elements of x̂uy P Vi
s can be

computed from the pseudoinverse of the truncated matrix
Ãi . The ith row of the resulting sparse reconstructor has
nonzero elements only for sensors in V i

s ; Ki,Vi
s is

the row of (Ãi)
# corresponding to the ith column of A.

The optimal estimate given V i
s , i 5 1,..., n, is denoted

x̂uV 5 Ky. If A and V are spatially invariant away from
the boundary, then K will also be spatially invariant.

This local, sparse estimator can be interpreted as a spa-
tial high-pass filter. For each actuator location i, define a
set of Mi vectors m̃m

i P Rn, m 5 1,..., Mi , such that the
elements corresponding to the actuators in V i

a form an or-
thonormal basis for the null space of Ãi . The estimation
error for the ith element of x̂ that results from using only
the information in V i

s can then be written, as in Eq. (5), as

x̂ iuyPVi
5 x̂ iuy 2 (

m51

Mi

~m̃m
i !i@~m̃m

i !Tx# 1 Kh. (8)

The local estimate is the global estimate minus the locally
unobservable modes. Because of the geometric similar-
ity, Mi 5 M and the vectors m̃m

i correspond to mm of the
full A matrix (piston and waffle). For d 5 2, the dimen-
sion of V i

a exceeds that of V i
s , but by less than Mi 5 M,

and thus the system is still effectively overdetermined
(the number of degrees of freedom that are possible to de-
termine is fewer than the number of sensor measure-
ments).

Using relative measurements such as slope within a
bounded domain V results in the average displacement
over V being unobservable. Local waffle motion is also
unobservable; this contribution to the error is not signifi-
cant for low spatial frequencies but does affect the perfor-
mance at high spatial frequencies. Thus the local esti-
mate at low spatial frequencies is approximately equal to
the global estimate minus the average displacement over
V i

a . For V square of size d 3 d, the high-pass spatial-
frequency response is given by

g~kx , ky! 5 1 2 sinc~kxd !sinc~kyd !. (9)

With the use of a Fourier basis, the displacements can be
represented by kx 5 mxp/D, ky 5 myp/D, and thus the
gain on the lowest-spatial-frequency mode is

g11 5 1 2 sinc2~pd!

. p2d 2/3. (10)

Even for modest d, there is a significant reduction in low-
frequency gain. For general problems, the spatial-
frequency response can be derived from Eq. (8).

While the sparse reconstructor maintains good perfor-
mance on high-spatial-wave-number displacements, the
gain is reduced on the lowest nj 5 (D/d)2 wave-number
global modes with half-wavelength between d and D.
The following sections explore alternative approaches for
recovering global performance without losing the compu-
tational savings of the local controllers. Both of the ap-
proaches considered are based on estimating the coeffi-
cients corresponding to m̃m

i in Eq. (8).

4. HIERARCHIC ESTIMATION
A. Two-Layer Hierarchy
Performance at low spatial frequencies can be improved
by estimating the information m̃m

i that the local estimator
does not, using global measurements. This consists of
three steps: spatial filtering the sensor information and
condensing it into a reduced set of data, estimating global
parameters from these condensed data, and expanding
these global parameters over the domain. Although it is
not the only option, the global parameterization taken
herein is chosen to be geometrically similar to that of the
full problem, making the addition of further layers of hi-
erarchy a simple extension. The ‘‘superelements’’ of the
global layer have size equal to that of the local regions V.

With geometric similarity, the three steps are as fol-
lows:

1. Define ỹ 5 Cy as the average tip and tilt over su-
perelements of size V.

2. Define a set of global variables j as the displace-
ments at the corners of the super elements; so j and ỹ
5 Ajj are the displacements and the sensor measure-

ments of a similar AO geometry with resolution larger by
a factor of d, and ĵ 5 Ajỹ.

3. Define the global component of the state x as xg
5 Fj to estimate the piston mode (m̃1

i ) i@(m̃1
i )Tx# through

interpolation and spatial averaging over V i
a , as described

below.

The superelements are illustrated schematically in Fig. 3.
Note that with these superelements, variables of the glo-
bal layer j are sampled values of the state x without the
spatial filtering necessary to avoid (spatial) aliasing.
Some filtering will be obtained through F; each compo-
nent of xg is obtained by first interpolating j to estimate
the displacement at each location and then averaging the
interpolated state over the region V i

a . This region in
general overlaps four superelements, and thus the nine
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global variables j at the corners of these superelements
are used to construct each component of xg . The spatial
aliasing yields an estimation error that leads to some per-
formance degradation; quantifying the magnitude of this
error will be discussed in the context of the simulation re-
sults in Section 6.

The combined local and global estimator is therefore

x̂ 5 x̂, 1 x̂g 5 Ky 1 F@Aj
#~Cy !#. (11)

A different control bandwidth can be obtained for dif-
ferent spatial scales (e.g., to compensate for different dis-
turbance covariances) by computing the control as the
sum of contributions from the different hierarchic layers.
Thus, rather than u 5 C(s) x̂, choose u 5 C,(s) x̂,

1 Cg(s) x̂g .
With this global parameterization, both F and C are

sparse; each sensor is in a single superelement, and each
global displacement estimate is interpolated from at most
nine global variables ĵ; hence these calculations scale lin-
early with n. The hierarchic controller computations are
the sum of contributions from the global and local layers;
with the use of nj . d 22, then, C(n) 5 2d 24 1 2d 2n2

1 O(n). Optimizing with respect to d (or d) gives d2

5 (2n)1/3 and computations C(n) 5 6(n/A2)4/3. The de-
pendence on n is slow; requiring d even (V symmetric)
gives d 5 4 for roughly 200 , n , 6500. If one also
takes advantage of the lower bandwidth required for
larger spatial scales, the global computations can be done
at 1/d times the rate of the local computations. Includ-
ing this factor in the optimization yields d2 5 (5n/2)2/7

and computational scaling of n9/7.

B. Multiple Hierarchic Layers
The above approach for two hierarchic layers is readily
extended to multiple layers. With D 3 D Shack–
Hartmann subapertures, up to log2 D layers of hierarchy
can be included. Each layer, denoted ( • )(,), involves
three steps similar to those described for the two-layer
approach:

1. Obtain the sparse local least-squares estimator K (,)

to efficiently estimate the behavior appropriate to the ,th
scale by using aggregate information from the next-finer
scale.

Fig. 3. Hierarchy schematic for AO geometry with d 5 4. Glo-
bal superelements are shaded, and global displacements are in-
dicated with solid circles.
2. Average the information y (,) available to the ,th
scale through an aggregation matrix C (,).

3. Interpolate and average the estimate from the
next-coarser scale through F (,) to correct the global be-
havior of the local estimate at the current scale.

Each of the matrices K (,), C (,), and F (,) is obtained as de-
scribed in Subsection 4.A. This multiple-layer hierarchic
approach is illustrated for a one-dimensional geometry in
Fig. 4.

For the coarsest layer, then, the optimal estimate is the
full least-squares solution:

x̂ ~1 ! 5 K ~1 !y ~1 !, K ~1 ! 5 ~A ~1 !!#. (12)

For each finer layer, the estimates are

x̂ ~, ! 5 K ~, !y ~, ! 1 F~, !x̂ ~,21 !, (13)

y ~, ! 5 C~,11 !y ~,11 !, (14)

where, for the finest layer, yL 5 y.
With the maximum layers of L 5 log2 D, this algorithm

has linear computational scaling with n. The finest
layer, with n ; (p/4)D2 subapertures, requires four
neighboring subapertures (eight sensors) for the sparse
calculation, the computations involving C use each sensor
only once, and the computations involving F use at most
nine estimates from the next-coarser layer. Thus the to-
tal computations for this layer are (8 1 2 1 9)n 5 19n.
For each finer layer, the number of subapertures, the el-
ements in x (,), and the number of computations all de-
crease by a factor of 4. If we note that

(
k50

` 1

4k 5
4

3

then the total computations for this algorithm are C(n)
, (4/3)19n . 25n. With multiple layers of d 5 4, the
local least-squares solution requires 16 subapertures (32
sensors). The computations now decrease by a factor of
16 for each coarser layer. The computational scaling in-
creases to C(n) , (16/15)(32 1 2 1 9)n . 46n, but bet-
ter performance should be obtained.

Fig. 4. Schematic of multiple-layer hierarchy in one spatial di-
mension. Each layer , aggregates information y (,21)

5 C (,)y (,) to pass up to the next-coarser layer and uses interpo-
lation and averaging of the estimate from the next-coarser layer,
x̂g

(,) 5 F (,)x̂ (,21), to correct the information missing from the lo-
cal estimate x̂ l

(,) 5 K (,)y (,) at layer ,.
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5. LOCAL CONTROL REVISITED
An alternative approach toward recovering the global per-
formance of the optimal controller is to use prior state es-
timates to estimate the information m̃m

i that is missing
from the local estimate. This results in an iterative ap-
proach and maintains the decentralized structure of the
local controller. The estimate at a given location will de-
pend not only on the sensor measurements Vs but also on
the displacement estimates within Va. If the hardware
implementation were decentralized, then each local con-
troller would communicate with its neighbors; similar ar-
chitectures have appeared for distributed control
systems.12

The dependence at time step k is of the form

x̂k 5 Kyk 1 Gx̂k21 , (15)

where both K and G are sparse, containing nonzero en-
tries only for sensor or actuator locations, respectively,
within Vs or Va. Multiple subiterations can be included
between time steps k:

z1 5 Kyk 1 Gx̂k21 ,

jm11 5 Kyk 1 Gzm , m 5 1,..., N 2 2,

x̂k 5 Kyk 1 GzN21 . (16)

This dependence is the same as that of iterative algo-
rithms for solving the matrix pseudoinverse problem13;
these algorithms are discussed briefly for AO applications
in Hardy.1 Young13 gives the conditions on the matrix G
for x̂ in the above equation to converge to A#y:

G 5 I 2 KA. (17)

Note that Gij Þ 0⇔'k such that Kik Þ 0 and Akj Þ 0;
that is, G contains nonzero elements only for actuators in
Va defined earlier. With roughly twice as many sensors
in Vs as actuators in Va, the total computations per time
step for N subiterations are C(n) 5 (2 1 N)d 2n2.

For the local least-squares solutions considered in Sec-
tion 3, the structure of G follows from Eq. (8); since KA
has unity gain in directions where Ã is nonsingular, G
contains information only in directions where Ã is singu-
lar:

~Gx̂ !i 5 (
m51

M

~m̃m
i !i@~m̃m

i !Tx̂#. (18)

Thus, for AO, Gx̂ corresponds to the average of the esti-
mates x̂ within Va plus an additional contribution due to
local waffle.

The condition in Eq. (17) ensures that the estimate x̂ in
Eq. (15) converges to the correct value in steady state.
Taking the z transform of Eq. (15) yields a temporal filter
interpretation:

x̂~z ! 5 ~I 2 Gz21!21KAx~z ! 5 H~z !x~z !. (19)

Substituting a singular-value decomposition for KA
5 USVT yields properties of H(z) as a function of the
modal loop gain s i along these singular directions:
H~z ! 5 VF� s iz

z 2 ~1 2 s i!

�

GVT.

The dc gain limz→1 vi
TH(z)vi 5 1 if s i Þ 0 and is zero if

s i 5 0. H(z) is a low-pass filter with modally dependent
corner frequency z 5 1 2 s i . For small s i , this gives a
corner frequency fc /fs 5 s iN/(2p) for sampling rate fs .
Substituting the gain in Eq. (10) for the sparse-matrix re-
constructor yields a rough estimate for the corner fre-
quency on the lowest-order mode:

fc

fs
5

p

6
d 2N. (20)

The phase lag introduced by this filter limits the band-
width that can be achieved in controlling global modes.
With N 5 1, fc /fs ; 0.1 requires that d ; 0.44. Increas-
ing the number of subiterations improves the filter corner
frequency linearly, and thus the number of sensor subap-
ertures in the local control can decrease linearly for the
same performance. Since there are roughly twice as
many sensors as actuators in a given local region, it is al-
ways more efficient to increase the number of subitera-
tions than the size of the local domain. Thus to achieve a
specified ratio fc /fs , the optimum computations (N @ 2)
give C(n) 5 ( fc /fs)(6/p)n2. The iterative approach is
useful if lower bandwidth is acceptable on the global
modes relative to the local modes.

Assuming frozen turbulence, the bandwidth required
drops linearly with wavelength, and thus the ratio of the
bandwidth required between the largest and the smallest
spatial scale is given by D. From Eq. (9), the sparse re-
constructor gain, and therefore the bandwidth at which
information is available by using this iterative approach,
drop quadratically with wavelength. To ensure sufficient
bandwidth on all modes, choose the minimum corner fre-
quency to be a factor of D less than the Nyquist frequency,
or fc /fs . 1/(2D) ; 1/(2n1/2). The optimum computa-
tions per iteration scale as C(n) 5 (3/p)n3/2

. n3/2. This assumes that the sample rate fs is chosen
appropriately to control the smallest spatial scales. A
different control gain can be used for different spatial
scales by computing the control as a sum of contributions
based on each iteration z i ; this may be necessary to opti-
mize the gain at each scale according to the bandwidth of
available information.

With N 5 1, the noise multiplier for uncorrelated sen-
sor noise is @Tr(X)/n#1/2, where X satisfies the Lyapunov
equation X 5 GXGT 1 KKT. Equations (16) can be re-
written as

x̂k 5 S (
i50

N21

GiD Ky 1 GNx̂K21 , (21)

from which the noise multiplier can be similarly obtained
for N . 1.
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6. SIMULATION
The purpose of developing the algorithms in the previous
sections is to yield a tractable computational burden for
future large AO systems. However, simulating using
real data from a current AO system both validates the al-
gorithms and provides an understanding of the sources of
performance loss that can be scaled to large systems.
Simulation results can also be compared with experimen-
tal results to further validate the algorithms.14

Reconstructors were designed for the Palomar AO ge-
ometry described in Section 2, and simulated by using
data collected at Palomar. Modal loop gain, computa-
tions, noise multipliers, and simulated performance are
compared. Using these simulation results to give a com-
pletely general assessment of the expected performance
on any AO system is difficult because algorithm perfor-
mance depends on the relative amplitude of low- and
high-wave-number residual closed-loop energy, which in
turn depends on the nominal control bandwidth relative
to the turbulence wind-crossing time. Assume a Kolmog-
orov spectrum that decays with wave number at k211/3, as
well as frozen turbulence, implying higher temporal
bandwidth for higher wave number. Then for most ex-
pected control bandwidths, the global, low-wave-number
response still dominates the residual energy, while for
sufficiently high bandwidth, there may be more energy in
higher-wave-number modes; this behavior is relevant in
estimating the expected performance degradation for
large systems.

The least-squares reconstructors currently used in the
Palomar AO system are computed without explicitly rec-
ognizing the central obscuration; the obscured sensor sub-
apertures simply provide zero input to the reconstruction.
Although this should be somewhat suboptimal, the same
approach is taken herein for simplicity. Local least-
squares controllers were derived for d/2 5 2 to 6, span-
ning d 5 0.25 to 0.75. The modal gains are plotted in
Fig. 5 with the use of Zernike basis functions. Global tip
and tilt (Z1,61) are projected out and are not shown. The
loop gain on higher-order modes (small spatial wave-

Fig. 5. Modal loop gain of different spatial extent of local con-
trol. Basis functions are Zernike modes ordered with increasing
spatial wave number.
length deformations) is roughly constant for all of the lo-
cal controllers. The gain on the lower-order, global
modes (large spatial wavelength deformations) deterio-
rates as the local extent used in estimating the phase er-
ror is decreased. The lowest gain is consistent with the
estimate given in Eq. (10).

For Vs of d 5 4, d 5 0.25, the hierarchic parameteriza-
tion in Section 4 results in 21 global variables. The
modal loop gains with and without hierarchic estimation
are shown in Fig. 6; there is some aliasing from higher
modes to lower that cannot be seen on this plot. A four-
layer hierarchic reconstructor was also created with sub-
aperture grids of 16 3 16, 8 3 8, 4 3 4, and 2 3 2 and
d 5 2 for each layer. The loop gains are similar to those
of the two-layer hierarchy and are not plotted.

The iterative algorithm in Section 5 was evaluated for
d 5 4 and 6 and for N 5 1,..., 4. With this algorithm,
the dc gain of every nonsingular mode is always unity, but
the corner frequency at which the information is filtered
decreases with decreasing d and increases with N. The
modal corner frequencies fc /fs can be estimated from Fig.
5 as the gain times N/(2p).

A closed-loop simulation of the different algorithms was
conducted by using telemetry data obtained at Palomar
with the tip/tilt loop closed (to avoid saturating the
Shack–Hartmann wave-front sensors). The performance
metric from the simulation is the rms residual actuator
position error and does not include errors from calibra-
tion, fitting, or the tip/tilt loop. The recorded wave-front
sensor data include the response to both atmospheric
wave-front disturbance information and sensor (photon
and read) noise, while the simulation assumes that all of
the data represent atmospheric turbulence. As a result,
the simulation has more than double the disturbance en-
ergy in the highest-spatial-frequency modes than should
be present. To avoid possibly misleading results, the per-
formance is evaluated as the sum of contributions from
the first 91 Zernike modes only (up to radial degree 12).
Furthermore, while simulating without added sensor
noise simplifies the identification of different error
sources, it results in greater-than-realistic performance

Fig. 6. Modal loop gain comparing local control with d 5 4 and
two-layer hierarchic control with 21 global variables.
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reductions for the baseline full least-squares reconstruc-
tor and therefore larger implied errors for any of the al-
ternative algorithms.

A 400-Hz sample rate is used with a two-cycle delay
simulating the actual delay at Palomar, and the gains are
those that have been optimized at Palomar, leading to a
loop crossover frequency of roughly 20 Hz. The telemetry
data were recorded at 100 Hz and resampled with a noisy
interpolation to ensure some disturbance content above
the original Nyquist frequency of 50 Hz. This allows a
more accurate assessment of the local reconstructors,
which have increased loop gain for some disturbance
shapes, leading to an increase in the sensitivity function
above 50 Hz.

The modal performance of several designs is shown in
Fig. 7, illustrating reduced performance for lower-order
Zernike modes that is consistent with the decrease in
model gain.

The performance of different approaches relative to the
optimal provides a basis for comparing the trade-offs
among performance, computation, and propagation of
sensor noise. The total number of multiplies required for
these designs, normalized by the multiplies required for
the optimal global controller, is shown in Fig. 8. The ver-
tical axis is the simulated rms performance on the first 91
Zernike modes normalized by that of the least-squares
controller.

The local reconstructors introduce error due to both of
the unobservable modes, local piston and local waffle; the
former influences the global behavior, while the latter in-
fluences the local behavior. This paper has focused on
the former, as the global modes dominate the open-loop
atmospheric disturbances and typically dominate the
closed-loop residuals as well. The contribution to the
performance metric in Fig. 8 due to local waffle errors is
approximately 5% for d 5 4. (The relative contributions
of the two can be identified by creating a ‘‘perfect’’ hierar-
chic controller that uses the full least-squares estimate to
correct either the piston or waffle errors of the local recon-
structor.) For a larger system, a similar global perfor-
mance penalty would be expected for equal d (not d),
while the error due to local waffle would in general be
smaller.

Both the hierarchic and iterative approaches yield per-
formance improvements relative to the sparse controller
while retaining computational savings relative to the full-
matrix reconstructor.

The hierarchic controller does not correct local waffle
errors and therefore has the same performance degrada-
tion as that of the local controller for high-wave-number
modes. The primary error source on the global modes is
spatial aliasing, which degrades global performance by
approximately 10% (the remaining errors in Fig. 8 are
due to uncorrected local waffle). In general, the effect of
aliasing depends on the closed-loop residual energy as a
function of wave number. A worst-case estimate can be
obtained for a high control bandwidth where the low- and
high-frequency wave-number energies are comparable; in
this case, the aliasing noise could increase residual phase
errors by as much as A2. In practice, the errors are
likely to be much smaller; because of the excess high-
wave-number noise, the Palomar simulation should be
worse than typical, and the performance in Fig. 8 should
be an upper bound on what is likely to occur in other sys-
tems of any size. The multiple-layer hierarchic control-
ler compounds the aliasing problem and suffers a higher
performance penalty. For larger systems, as more layers
are used, the estimation errors are likely to increase.

The iterative controller by its structure corrects both
the local waffle and local piston errors. However, for this
small system, there is only a small computational benefit
relative to simply increasing the size of the local regions
of the local approach.

There are two critical observations that must be consid-
ered relative to the results shown in Fig. 8 for Palomar.
First is that the relative computational improvement for
these algorithms would be much more significant for
larger problem sizes. Second, the simulation is con-
ducted with equal time delay for all algorithms. How-
ever, reducing the computational burden would afford a
decreased time delay and a correspondingly increased
bandwidth. This in turn would lead to improved perfor-

Fig. 7. Modal performance on Palomar AO simulation compar-
ing the least-squares optimum with local control (d 5 4), two-
layer hierarchic control, and iterative control (N 5 1).

Fig. 8. Simulated performance versus computational improve-
ment for Palomar AO with sparse, hierarchic, and iterative con-
trollers. Performance is determined by the rms residual over
the first 91 Zernike modes for a fixed sample rate.
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mance. In addition to the reconstruction calculations,
the time delay includes detector integration, zero-order
hold, and computation for centroiding calculations, and
thus the total time delay reduction depends on the rest of
the system. With the bandwidth improvement taken
into account, the designs in Fig. 8 could result in a net im-
provement in performance, even for current-generation
AO systems, and a considerable net improvement for fu-
ture systems with many more actuators and sensors.
The extent to which increased bandwidth offsets in-
creased estimation errors associated with these algo-
rithms clearly depends on the computational power avail-
able; however, for large AO systems with computers
available today, the computations of the full least-squares
algorithm are likely to severely limit achievable band-
width.

The noise multiplier for the different designs is plotted
in Fig. 9, scaled relative to the optimal controller and
again plotted against the performance obtained in simu-
lation. The noise multiplier for the sparse reconstructors
decreases monotonically from that of the optimum least-
squares solution as the number of sensors used for each
actuator decreases. Both the hierarchic and iterative
methods yield acceptable noise propagation.

7. CONCLUSIONS
Current active and adaptive optics systems for large opti-
cal telescopes typically employ an optimal control algo-
rithm that uses all sensor information in computing each
actuator command. For extremely large telescopes cur-
rently being designed, the associated computational bur-
den of such algorithms can be significant. Local control
algorithms are developed wherein each actuator com-
mand is computed based only on a subset of neighboring
sensors. These decentralized algorithms perform close to
optimally on localized disturbances, but the performance
is degraded relative to that of the globally optimal con-
troller on low-order, global disturbances. The degrada-
tion can be quantified in terms of a spatial high-pass fil-
ter.

Fig. 9. Simulated performance versus noise multiplier for Palo-
mar AO with sparse, hierarchic, and iterative controllers.
Introducing an estimator of the global deformation and
combining the local and global controllers with a hier-
achic control approach yields performance close to that of
the globally optimal algorithm, with significantly lower
computational burden that scales with n4/3, while a
multiple-layer approach yields linear scaling.

Based on iterative methods, an alternative approach to
recovering global performance is also developed in which
a decentralized structure is retained. The estimate at
each location now depends on both the local sensor mea-
surements and the prior local state estimates. This algo-
rithm recovers global performance at dc but acts as a tem-
poral low-pass filter on global information. With a
constraint on filter bandwidth that is reasonable for a fro-
zen turbulence disturbance model, the computational bur-
den of the iterative algorithm scales with n3/2.

Simulations have been performed by using the Palomar
Observatory adaptive optics geometry. Both the hierar-
chic and iterative approaches recover most of the global
performance while maintaining significant computational
savings relative to the optimal least-squares solution.
Improved sensor noise propagation is also obtained. Lo-
cal and hierarchic reconstructors have been demonstrated
at Palomar.14

Extensions of this work will include spatial coupling
through the disturbance model to allow for knowledge of
atmospheric turbulence statistics.

APPENDIX A: NOTATION
D Size of domain (D 3 D)
n (ns) Number of actuators (sensors)
C(n) Computational scaling with n
Vs (Va) Local set of sensors (actuators)
d Size of V (d 3 d)
d Relative size of V (d 5 d/D)
x Vector of displacement at actuator locations
y Measurement vector
A Influence matrix ( y 5 Ax)
$mm%m51

M Orthonormal basis for null space of A
x̂ State estimate
x̂uV State estimate given y P V
K Reconstructor matrix ( x̂ 5 Ky)
G Gain matrix on prior estimate
j Vector of global states
F Interpolation and averaging of global states

(x 5 Fj)
ỹ Reduced set of measurements
C Measurement averaging ( ỹ 5 Cy)
( • )(,) Variable (•) at ,th layer of hierarchy

Douglas G. MacMartin may be reached by e-mail at
macmardg@cds.caltech.edu.

REFERENCES
1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes,

Oxford Series on Optical and Imaging Sciences 16 (Oxford
U. Press, New York, 1998).

2. R. Dekany, J. E. Nelson, and B. Bauman, ‘‘Design consider-
ations for CELT adaptive optics,’’ in Optical Design, Mate-
rials, Fabrication, and Maintenance, P. Dierickx, ed., Proc.
SPIE 4003, 212–225 (2000).



Douglas G. MacMartin Vol. 20, No. 6 /June 2003/J. Opt. Soc. Am. A 1093
3. J. Nelson and T. Mast, eds., ‘‘Conceptual design for a 30-
meter telescope,’’ CELT Rep. 34 (University of California
and California Institute of Technology, Berkeley, Calif.,
2002).

4. R. H. Hudgin, ‘‘Optimal wave-front estimation,’’ J. Opt. Soc.
Am. 67, 378–382 (1977).

5. K. Freischlad and C. Zeiss, ‘‘Wavefront integration from dif-
ference data,’’ in Interferometry: Techniques and Analysis,
G. M. Brown, O. Y. Kwon, M. Kujawinska, and G. T. Reid,
eds., Proc. SPIE 1755, 212–218 (1992).

6. L. A. Poyneer, D. T. Gavel, and J. M. Brase, ‘‘Fast wavefront
reconstruction in large adaptive optics systems with use of
the Fourier transform,’’ J. Opt. Soc. Am. A 19, 2100–2111
(2002).

7. B. L. Ellerbroek, ‘‘Efficient computation of minimum-
variance wave-front reconstructors with sparse matrix
techniques,’’ J. Opt. Soc. Am. A 19, 1803–1816 (2002).

8. L. Gilles, C. R. Vogel, and B. L. Ellerbroek, ‘‘Multigrid pre-
conditioned conjugate-gradient method for large-scale
wave-front reconstruction,’’ J. Opt. Soc. Am. A 19, 1817–
1822 (2002).

9. W. J. Wild, E. J. Kibblewhite, and R. Vuilleumier, ‘‘Sparse
matrix wave-front estimators for adaptive-optics systems
for large ground-based telescopes,’’ Opt. Lett. 20, 955–957
(1995).

10. T. P. Murphy, R. G. Lyon, J. E. Dorband, and J. M.
Hollis, ‘‘Sparse matrix approximation method for an
active optical control system,’’ Appl. Opt. 40, 6505–6514
(2001).

11. K. Li, E. B. Kosmatopoulos, P. A. Ioannou, and H.
Ryaciotaki-Boussalis, ‘‘Large segmented telescopes: cen-
tralized, decentralized and overlapping control designs,’’
IEEE Control Syst. Mag., October 2000, 59–72.

12. R. D’Andrea, C. Langbort, and R. Chandra, ‘‘A state space
approach to control of interconnected systems,’’ in Math-
ematical Systems Theory in Biology, Communication, Com-
putation and Finance, IMA Vol. 134 in Mathematics and Its
Application, J. Rosenthal and D. S. Gillian, eds. (Springer-
Verlag, New York, 2003), pp. 157–182.

13. D. M. Young, Iterative Solution of Large Linear Systems
(Academic, New York, 1971).

14. F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Bur-
russ, and R. G. Dekany, ‘‘Sparse matrix wavefront recon-
struction: simulations and experiments,’’ in Adaptive Op-
tical System Technologies II, P. L. Wizinowich and D.
Bonaccini, eds., Proc. SPIE 4839, 1035–1044 (2002).

15. M. Troy, R. Dekany, G. Brack, B. Oppenheimer, E. Bloem-
hof, T. Trinh, F. Dekens, F. Shi, T. Hayward, and B. Brandl,
‘‘Palomar adaptive optics project: status and perfor-
mance,’’ in Adaptive Optical Systems Technology, P. L. Wiz-
inowich, ed., Proc. SPIE 4007, 31–40 (2000).

16. J.-P. Gaffard and G. Ledanois, ‘‘Adaptive optics transfer
function modeling,’’ in Active and Adaptive Optical Systems,
M. A. Ealey, ed., Proc. SPIE 1542, 34–45 (1991).

17. R. J. Noll, ‘‘Zernike polynomials and atmospheric turbu-
lence,’’ J. Opt. Soc. Am. 66, 207–211 (1976).

18. T. Truong, G. Brack, T. Trinh, M. Troy, F. Shi, and R. G. De-
kany, ‘‘Real-time wavefront processors for the next genera-
tion of adaptive optics systems: a design and analysis,’’ in
Adaptive Optical System Technologies II, P. L. Wizinowich
and D. Bonaccini, eds., Proc. SPIE 4839, 911–922
(2002).


