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ABSTRACT

We report on the discovery and energy dependence of hard phase lags in the 2.14 Hz
pulsed profiles of GRO J1744-28. We used data from XMM-Newton and NuSTAR.
We were able to well constrain the lag spectrum with respect to the softest (0.3-2.3
keV) band: the delay shows increasing lag values reaching a maximum delay of ~ 12 ms,
between 6 and 6.4 keV. After this maximum, the value of the hard lag drops to ~ 7 ms,
followed by a recovery to a plateau at ~9ms for energies above 8 keV. NuST AR data
confirm this trend up to 30 keV, but the measurements are statistically poorer, and
therefore, less constraining. The lag-energy pattern up to the discontinuity is well de-
scribed by a logarithmic function. Assuming this is due to a Compton reverberation
mechanism, we derive a size for the Compton cloud Rc.~ 120 R, consistent with
previous estimates on the magnetospheric radius. In this scenario, the sharp discon-
tinuity at ~ 6.5 keV appears difficult to interpret and suggests the possible influence
of the reflected component in this energy range. We therefore propose the possible
coexistence of both Compton and disk reverberation to explain the scale of the lags
and its energy dependence.
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1 INTRODUCTION The X-ray pulsed profile can be satisfactorily decom-

. . posed into the sum of two sinusoids, where the first harmonic
The transient, X-ray binary pulsar GRO J1744-28, also accounts for about 3-8% of the overall harmonic content

k the Bursting Pulsar due to th f - [ ] DA} 1 Y. ]
nown as the Bursting Pulsar due to the presence of recur 1996; O’ 2017; 2017).
rent Type-1I bursts, went in outburst in 2014 mid-January, , . .
e . The profile’s shape is energy-dependent; the pulse amplitude
reached a peak luminosity in mid-March, and returned to . L. . .
. ¢ th d of Avril. Durine thi thurst. it is generally positively correlated with energy, with an amp-
quuescence a ¢ end of April LJuring this outburst, 1 litude fraction of ~5% for energies below 2 keV, increas-

was observed by many X-ray observatories: results from . . .
t than 20% at ~ 10 keV. Th litude fract
spectral analysis done with XMM-Newton and INTEG- g to more thatt 0 ¢ ¢ amputude fraction

has, h d in th ding t
RAL are reported in ID’Al et al (@), with Chandra in as, NOWEver, a drop 1M the energy range corresponding to

D 1 . . the iron fluorescence emission, because of the relative higher
) and with Chandra and NuSTAR in contribution to the observed flux from incoherent emission

XQ]]DQS QI a . spin = i i . N
(lZQlH) The pulsar (Fipin = 467 ms) orbits in a from the reflection component )

nearly circular path (eccentricity < 1.1 x 107*) with a period

of 11.8337 d, and a projected semi-major axis of 2.6324 lt-s. Calculations on the long-term evolution of the sys-
The mass function (1.3638 x 1074 Mg) indicate an evolved tem that account for the present-day orbital parameters
low-mass (Mg ~ 0.2 M) companion star and a nearly face- (Rappaport & Joss1997), measures of the neutron star (NS)
on inclination angle MM) spin-up rate dEmggrﬂj‘lJ Ll_&%), and evidence for a pro-

peller state at the end of its 1996 outburst ) in-
dicated an intermediate NS dipole field of a few 10*! G.
* antonino.dai@icf.inaf.it Detection of a cyclotron resonance feature between 4 and
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5 keV in the X-ray spectrum confirmed such expectations
(D’Aj et all[2015; [Doroshenko et all[2015) and firmly estab-
lished GRO J1744-28 as a peculiar system in-between the
class of the highly magnetised (B> 10'? G), young, X-ray
pulsars and the class of old NSs with low-mass companions,
i.e. accreting ms X-ray pulsars (AMXPs) and not-pulsating
accreting NSs, owing a presumed low magnetic dipole field,
(BS 10° Q).

In this Letter we focus on the relation between the
pulse phase and energy during the persistent (non-bursting)
emission of the source. We show the existence of energy-
dependent hard phase lags, we study its dependence and
propose a physical scenario using a mix of Compton and
disk reverberation.

2 OBSERVATION, DATA REDUCTION AND
ANALYSIS

XMM-Newton observed GRO J1744-28 on 2014 March
6. Details on this observation are reported in [D’Ai et al.
(2015). For this work we use only data from the EPIC/pn in-
strument, screening from type-I bursts and considering only
the persistent emission. We applied standard filtering cri-
teria and included events only in the RAWX|[28:46] columns.
The light curve exposure is 64.1 ks and the averaged rate
is ~660 cps. Events were barycentred with respect to the
Barycentric Dynamical Time (TDB) using the barycen tool
with RA =266.137792 and Dec =-28.740803 (Gosling et all
2007). To correct the pulse arrival times for the orbital mo-
tion of the pulsar, we adopted the following orbital para-
meters (Fermi/GBM pulsar projectEl): P,, =11.836397 d,
a sin(i) =2.637 It-s, and T/, = 56695.6988 MJD. We then
used an epoch-folding search (efsearch in XRONOS) to
find the averaged pulse period during the persistent emis-
sion. The x? highest peak is found in correspondence with
a period of 0.4670450(1) s. We selected 20 energy bands in
the EPIC/pn spectrum, keeping the number of events ap-
proximately equal in each selection. The softest band com-
prises the 0.3-2.3 keV range, while the hardest band the
9.18-12 keV range. For each energy-filtered event file, we
obtained the corresponding folded profile using as folding
period Pspin =0.4670450 s and a phase-bin time of ~ 0.5 ms.
We fitted the pulsed profiles using the best-fitting function:

f(x) =C + A1sin(2n(x — Apr)) + Asasin(dn(x — Agp2)) (1)

where C, A1, A2, A¢1, and A¢s are the averaged profile
count rate, the sinusoidal semi-amplitudes of the funda-
mental and first overtone and their phase differences with
respect to the best-fitting phase of the first interval, respect-
ively.

We obtained a satisfactory description of all the profiles,
with an averaged reduced x? for the 20 fits of 1.00 (929 d.o.f.
per fitted profile) and a standard deviation of 0.05. We show
in Fig. Dlthe results for the A¢ (in units of millisecond time
difference with respect to the first energy selected interval).
Because we report the phases with respect to the best-fitting
phase of the first interval, there is a systematic error of ~1

1 http://gammaray.msfc.nasa.gov/gbm/science/pulsars/

lightcurves/groj1744.html
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Figure 1. Phase lag dependence with respect to the softest en-
ergy band (E < 2.3 keV). Blue open squares: data from least-
squared fits to the folded profile. Red open circles: data from
cross-correlation technique, shifted of 0.1 keV in energy for clar-
ity’s sake. The inset shows the phase dependence in the 4.0-8.0
keV range, adopting a finer grid (step of 0.2 keV width) for the
folded profiles with the least-squared fits.

ms in the y—axis, while error-bars in the plot show only the
statistical error at 68% confidence level. There is a clear
hard-phase lag that from the softest band rises up to 12 ms
for energies ~ 6 keV. Above 6.5 keV the lag sharply drops,
progressively recovering to form a plateau for energies above
~8 keV. Adopting also a different energy binning (with a
constant energy width of 200 eV) and repeating the steps of
our analysis, we ensured that the drop is not an artefact of
the binning choice (see the inset in Fig. [J).

We applied a second procedure to check the robustness
of the trend, using the cross-correlation technique. We ob-
tained the cross-correlation function (CCF) of each energy-
selected profile with respect to the first folded profile. The
resulting CCF had a clear bell-shaped function; we obtained
the centre of this function through a Gaussian fit in a re-
stricted interval around the CCF peak. To estimate the er-
ror on the data, we generated for each profile 1000 simu-
lated profiles based on the same statistics of the original
profile. We found again the set of best-fitting centre val-
ues and we choose to associate as error the standard devi-
ation of this sample. The final result is shown in Fig. [ (red
open circles points) together with the results from the first
method to allow for a quick comparison. The trend is fully
compatible with our first procedure, the best-fitting lags are
slightly above the corresponding best-fitting values of the
least-squared lags (still well within the error bars) but the
associated errors are systematically larger due to the greater
uncertainty in estimating the peak of the cross-correlation
function.

We also analysed two NuSTAR observations of
GRO J1744-28 performed on 2014 February 15 (OBS.Id
80002017002, net exposure 24 ks, rate 185 cps) and on 2014
March 3 (Obs.ID 80002017004, net exposure 7.1 ks, rate 570
cps). We selected a circular region centred on the source co-
ordinates of 100" radius for both observations, and applied
the same procedure for the analysis of the EPIC/pn data,
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Figure 2. Phase-lags for the two NuST AR observations: in blue
and red data from the 2014-02-15 and 2014-03-03 observations,
respectively. We applied a small shift of 0.1 keV in energy for
clarity’s sake. Grey filled triangles show the XM M — Newton
data points.

selecting 12 energy bands. To improve the statistics, we com-
bined the light curves of the two Photon Counting Detector
Modules (FPMA and FPMB) to derive a single folded pro-
file. We obtained as best folding periods 0.4670460 s and
0.4670453 s, for the first and second observation, respect-
ively.

In Fig. 2l we show the phase-lag dependence according
to the least-square method. To allow a direct comparison
with the XMM-Newton data, we over-plotted them (grey
triangles), setting the reference phase of the phase-lag at
~ 8.8 keV channel to be equal to the value found for the
EPIC/pn data-set. The NuST AR data show in both obser-
vations qualitatively a trend similar to the one shown by
EPIC/pn data. Quantitatively, the lag values are much less
constrained and they do not allow us to draw firm conclu-
sions about possible differences in the trends derived for the
two observations, although there is a hint for greater lags
in the NuST AR observation of February, when the source’s
luminosity was about a third of the March observation.

We conservatively limit the discussion to the much more
clearly constrained dependence outlined by the EPIC/pn
data.

DISCUSSION

Energy-dependent soft phase-lags in accreting X-ray pulsars
have been reported for sources belonging to the class of the
millisecond pulsars (Cui et all [1998; [Galloway et all 2002,
uﬁﬂ Ibragimov et al J M Falanga et al J m ). Recently
[Miyasaka et all QZQE ) reported an energy dependent hard

phase-lag for the slowly spinning (Pipin =12.29 s), X-ray
pulsar GS 0834-430, and an energy-modulated phase-lag has
been reported for 4U 0115463 (Ferrigno et al! 2009). The
fractional delay for AMXPs is of the order of 5% and soft
photons lag harder ones, whereas the hard phase lag in GS
0834-430 shows a monotonic rise with energy attaining a
30% of the pulse period above 50 keV. GRO J1744-28 energy
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dependent phase lag more closely resembles the behaviour
of GS 0834-430, but its fractional delay (2.6% of the pulse
period) is significantly lower.

Different interpretations have been widely discussed in
literature about the origin and the possible diagnostic tools
offered by such measurements ) A straight
geometric interpretation of the lags due to the different geo-
metrical paths travelled by photons of different energy bands
are advocated in the case of some accreting X-ray binaries
and AGNs, where part of the hard photons are reflected by
the surface of the accretion disk. The lag is thus a measure
of the reverberation distance between the primary source
of the incident photons and the averaged radius in the disk
where reflection actually occurs; Fourier-resolved time-lags
have provided an additional method to connect the intrinsic
variability of the irradiating flux with the scattered /reflected
component (Uttley et all[2014).

The non-monotonic lag-energy spectrum of Fig. [l
clearly shows a smooth rising trend and a discontinuity in
the iron range, where a broad emission line is present in
the energy spectrum ) We shall therefore
explore a scenario where a combination of Compton and
disk reverberation might both operate to produce the ob-
served lag dependence. We start making some preliminary
considerations on the size of its accretion disk. Assuming
a NS mass of 1.69 My, a companion’s mass of 0.24 Mg
(Rappaport & José M) and the binary period of 11.83
days (Finger et al] M), we find that the pulsar Roche
lobe radius is ~43 lt-s, and the circularization radius ~4
It-s (Eq. 4.6 and 4.21 in ), so that the
outer disk radius, which should lie in between these two val-
ues, would easily accommodate the overall variation scale of
the observed lags. The inner disk radius, if truncated at the
magnetospheric radius, should instead be of the order of 1
It-ms (D’Al et all [2015).

The reflection component in the energy spectrum of
GRO J1744-28 gives its strongest contribution between
6.6-6.8 keV, because of the presence of a moderately
broadened emission line from highly ionised He-like iron
ions (Degenaar et al] w; Younes et al] m; D’Aj et al]
M) The ratio R of the reflected and the continuum fluxes
is almost constant in the 2-6 keV range at ~5% and rap-
idly rises up to ~15% at the iron peak (see lower panel
of Fig[3). Presence of this emission is also noticeable from
the clear drop in the pulsed emission amplitude at this en-
ergy, because the reflected component, coming from at least
a distance of 1 lt-ms, has lost coherence with respect to the
non-incident continuum (see upper panel of Fig. [3] and also
Fig. 12 in ). It is therefore plausible that
a distortion of the pulsed profile can be caused by some
reverberation on the disk, if the reflected emission is seen
pulsating (at least partially), but with a phase difference
with respect to the direct emission. The energy-dependent
sign of the lags from the iron emission line depends on the
distance where photons are actually emitted, so that they
track the complex, broadened, line shape, with the exten-
ded red wing and the Doppler boosted blue peak coming
from the inner radii (shorter lags), and the line core, close
at the rest-frame energy, produced by the more distant radii
(longer lags), where relativistic and dynamical effects are
strongly damped mw&ﬂkzj Ll_&%j) Qualitatively,

the lag spectrum, shown in the middle panel of Fig. [3] re-
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Figure 3. Amplitude fraction (upper panel) and phase-delay
(middle panel) of the fundamental harmonic as function of en-
ergy in the 4.5-8.5 keV energy range. Ratio of the fluxes from the
reflected and the irradiating continuum (lower panel), according
to the spectral decomposition in[D’Al et. al (@)

produces these features: the overall scale of the lag in this
energy range is 3-5 ms, consistent with the dimensions of
the inner parts of the accretion disk. When the line emis-
sion drops, the lag values at the extreme wings of the line are
consistent. We also note that the highest lag value is at ~ 6.4
keV, where [Younes et al! (2015) detected possible emission
from neutral/lowly ionised iron, which may hint also to a
contribution from a neutral and more distant reflector.

When the energy-lag spectrum is considered below 6.5
keV, the lag values rise almost monotonically. As a pos-
sible mechanism able to produce this monotonic part of the
lag trend, we consider the Compton reverberation scenario
1Pa¥né MQ; Guilbert et al] Mj) In this case, energetic,
relatively hot electrons up-scatter colder photons produced
by bremsstrahlung, synchrotron processes or emerging from
the thermalised mould at the base of the accretion column.
If the delay is produced because hard photons spend more
time in the Comptonizing cloud due to repetitive scatter-
ing, we can derive from the dependence of the delay on the
photon energy an estimate on the size of the cloud, assuming
reasonable values for the electron temperature and optical
depth, together with the very simplifying assumption of an
uniformly dense and static corona (but see m,
for a corona with a density gradient).

Because of the clear discontinuity at ~ 6.6 keV, we first
fitted the phase delays obtained from the least-squared fits
(Fig. I blue open squares), in the restricted 0.3-6.6 keV
energy range, assuming a logarithmic dependence function,

according to the formula dngthmmu ll_918)
Rec In(En/Es)
c(147)In(1+40(1 + 40))

ﬂag =

(2)

where © = kT, /mcz, 7 and R are the optical depth
and the Compton cloud size, respectively. E;, and Es are
the hard and soft photons energy (Es;=1.3 keV is a fixed
parameter, being the central value of the first energy band),
and c is the speed of light.

The logarithmic function provides a satisfactory de-
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Figure 4. Best-fitting piece-wise function (Eq. 2] with a break
at 6.6 keV) of the EPIC/pn data (Fig.[I) and residuals in units
of o (lower panel).

scription of the delays up to 6.6 keV (reduced x? of 1.3
with 15 degrees of freedom), with a best-fitting value of the
constant before the logarithm of 7.0 £0.1 ms.

There is small uncertainty for the cut-off energy of
the spectrum. Adopting a variety of models and also from
independent observations and analysis of the broadband
spectrum of GRO J1744-28 dmlﬁ&i] [2015; [Younes et. all
M), the cut-off energy of the spectrum results ~ 7 keV, so
that © ~ 1.3 x 1072, The optical depth is difficult to con-
strain from the simple observation of the slope of the spec-
trum, because the exact value depends on the assumptions
about the geometry of the Comptonization region and on
a variety of concomitant physical processes that are super-
imposed on the observed spectrum (i.e. black-body emission
from the NS cap, synchrotron emission, and the ratio of bulk
versus thermal Comptonization). Moreover, the scattering
cross-section depends on the direction of the photon with
respect to the magnetic field lines, allowing radiation to es-
cape more freely through the walls of the accretion column.
We consider a possible lower limit of 7=1 (see Sect.5.2 in
Becker & Wolﬂ M) and estimate the region size R.. to
be of the order of ~ 0.8 ms-1t (240 km), that would be con-
sistent with the estimates on the magnetosphere size as de-
rived by the measure of the inferred NS magnetic dipole
and the dynamical and relativistic broadening of the fluor-

escence lines of the reflection component
12014; [D’Al et all2015).

We note that after the discontinuity the trend sug-
gests a return to a logarithmic dependence as confirmed
by the extended NuST AR coverage, but with a different
multiplicative constant (Fig. [J). In fact, adopting a piece-
wise function, with f(x)=k1 log(Er/Es) for E < 6.6 keV and
f(x)=k2log(En/Es) for E>6.6 keV, we obtained a general
satisfactory fit (x%4=1.47 for 18 dof) as shown in Fig. @
The best-fitting constant of this second logarithmic func-
tion (k2 =4.5 ms) would point to physical characteristics
similar to the ones of the previously discussed region. In
conclusion, if the whole lag spectrum is interpreted only as
due to Compton reverberation, we would need an unreal-
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istic break in the iron range, requiring two Comptonizing
separate regions but with similar physical parameters. On
the contrary, it appears more likely that the sharp discon-
tinuity is determined by the over-imposed effect of the disk
reverberation. In this case, it remains to explain why at the
iron core energy the over-imposed hard lag, is not above the
extrapolated best-fitting function that fits the softer 1-6.4
keV lag range of Fig.[dl We argue that if the continuum emis-
sion is emitted in a fan-beam geometry, as possibly envis-
aged for pulsars accreting at very high M (Basko & Sunyaev
1976), and the GRO J1744-28 is a system seen at low inclin-
ation angle, with the magnetic columns almost parallel to
our line-of-sight, the optical paths of the continuum photons
hitting the disk and directed along our line-of-sight could be
different. Part of the continuum emission that impinges on
the disk escapes laterally from the base of the shock re-
gion, whereas the Comptonizing cloud that produces the
continuous phase-shift of the pulsed emission is along our
line-of-sight. Although the details of this combined process
could be much more complex, we note that at least qualit-
atively this sketched scenario could explain both the scale
of the observed lags and its trend. We note, that, besides
the Compton reverberation, there are other ways to pro-
duce a logarithmic lag-energy dependence: e.g. as sugges-
ted by IKotov et all (2001)) if the slope of the power-law de-
pended on the distance, with harder indices produced in
the inner regions, and softer in the outer regions, a logar-
ithmic lag-energy spectrum is naturally produced. Moreover,
this mechanism coupled with a reflecting disk, would pro-
duce a complex lag-spectrum, with a dimple (also defined
by IKotov et all 2001, anti-lags, as they anticipate the softer
band) at the energies of the fluorescent iron line very simil-
arly to what observed in the GRO J1744-28.

Finally, we also mention the possibility that the lag discon-
tinuity might be caused by an abrupt change in the energy-
dependent scattering cross-section at the cyclotron resonant
energy (as suggested for the accreting pulsar 4U 0115463
by [Ferrigno et al! 2009), though the results from spectral
analysis in [D’Al et all (2015) indicated the presence of a
moderately broad absorption feature at lower energy ~ 4.7
keV.
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