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We study the scaling of entanglement in low-energy states of quantum many-body models on lattices of
arbitrary dimensions. We allow for unbounded Hamiltonians such that systems with bosonic degrees of freedom
are included. We show that, if at low enough temperatures the specific heat capacity of the model decays
exponentially with inverse temperature, the entanglement in every low-energy state satisfies an area law (with a
logarithmic correction). This behavior of the heat capacity is typically observed in gapped systems. Assuming
merely that the low-temperature specific heat decays polynomially with temperature, we find a subvolume scaling
of entanglement. Our results give experimentally verifiable conditions for area laws, show that they are a generic
property of low-energy states of matter, and constitute proof of an area law for unbounded Hamiltonians beyond
those that are integrable.
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I. INTRODUCTION

The amount of entanglement in low-energy states of
quantum many-body models has been the subject of intense
examination. The problem was originally studied in relation
to the Bekenstein entropy formula for black holes [1–3] and
more recently also in the context of condensed-matter physics
and quantum information theory [4–11]. The behavior of
entanglement in physically relevant states is an interesting
topic not only due to the resource character of entanglement in
quantum information [12,13] but also because it can be used to
elucidate aspects of the physics of the system [5,9]. Another
motivation comes from the observation that systems with a
large amount of entanglement are usually hard to simulate
classically. As a consequence it is useful to identify when there
is only limited entanglement in the system. Indeed it turns out
that in many circumstances a small amount of entanglement
leads to good ways to simulate the physics of the model
numerically [14–17].

Given a bipartite pure state |ψ〉AB , the entanglement
entropy of A with B is given by [12,13]

E(|ψ〉AB) := S(ρA) = −tr(ρA log ρA), (1)

with ρA = trB(ρ) being the reduced density matrix of |ψ〉AB

on the region A and S(ρA) its von Neumann entropy.
Starting with Refs. [2–4] and later also with Refs. [6–9] for

quantum quasifree systems and [10,11] for integrable quantum
spin systems, a large body of work appeared indicating
that low-energy states of local models satisfy an area law
[5]; i.e., the entanglement of a contiguous region with its
complementary region is proportional to its boundary, in
contrast to its volume as is the typical behavior for a generic
quantum state [18].

The problem is particularly well understood for ground
states of one-dimensional (1D) bounded Hamiltonians: A
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seminal result of Hastings [17] (see also Arad et al. [19])
gives an area law for the ground state of every 1D gapped
model. Recently this result was generalized to an area law
for every one-dimensional state that has a finite correlation
length [20,21]. In contrast, there are ground states of gapless
1D models (or states with diverging correlation length) with a
volume scaling of entanglement [22,23].

Systems in dimensions larger than one are not nearly as
well understood and, apart from solvable cases [5–8], almost
nothing is known for unbounded Hamiltonians like those of
bosonic systems. Neither states with a finite correlation length
nor, more particularly, ground states of gapped models are
known to universally obey an area law. It is thus interesting to
find further conditions under which an area law can be proven,
which is the approach taken in Refs. [24–28]. In this paper we
follow this direction and link area laws to another important
property of physical systems, different from spectral gap and
correlation length. Namely, we connect it to the specific heat
capacity of the model at low temperatures. We show that,
whenever the specific heat decays with the temperature fast
enough, the entanglement of every low-energy state of the
model is significantly limited.

II. SETTING AND MAIN RESULTS

We focus on translationally invariant nearest-neighbor
Hamiltonians on a d-dimensional lattice, � := {1, . . . ,n}d ,
and consider nontranslational local Hamiltonians acting be-
yond nearest neighbors in Appendix A. When one separates
the on-site terms and the terms coupling nearest neighbors, the
Hamiltonian reads

H =
∑
i∈�

Hi +
∑
i∈�

HB(i), (2)

where each Hi acts only on site i and each HB(i) only on
B(i) = {j ∈ � | |i − j | � 1}. Without loss of generality we
assume that the ground state energy is zero. We connect the
scaling of entanglement in the ground state to the specific heat
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FIG. 1. (Color online) The cubic lattice � = {1, . . . ,n}d under
consideration. We consider Hamiltonians H = ∑

i∈�(Hi + HB(i)),
where each Hi acts only on site i and each HB(i) only on nearest
neighbors B(i). The area law is obtained for cubic region R of edge
length l, which may be partitioned into its boundary ∂R and interior
R◦. Whenever i ∈ ∂R then HB(i) acts on R◦ and �\R as shown by the
yellow region. For unbounded HB(i) these terms enter the area-law
bound through Eq. (7).

of the thermal state. To this end, we define the thermal state at
temperature T as ρT := e−H/T /ZT , where ZT := tr(e−H/T ) is
the partition function (we set Boltzmann’s constant to 1). The
energy and entropy densities are given by u(T ) := tr(HρT )/nd

and s(T ) := S(ρT )/nd , respectively. Finally, we define the
specific heat capacity at temperature T as

c(T ) := u̇(T ) = 1

ndT 2
CovρT

(H,H ), (3)

where we use the notation u̇(T ) = du
dT

(T ) as we do in the
following for all functions depending on temperature and
Covρ(A,B) = 〈(A − 〈A〉ρ)†(B − 〈B〉ρ)〉ρ denotes the covari-
ance of operators A and B in ρ.

We need to be able to put bounds on the HB(i). If these
are bounded operators, we simply set h = ‖HB(i)‖. As we
are allowing for infinite-dimensional Hilbert spaces, this is
a bit more tricky for unbounded operators. The quantity
corresponding to h turns out to be state dependent and requires
some notation. To introduce it, we consider an example first.
The Bose-Hubbard model,

H = −J
∑

|i−j |=1

b
†
i bj + U

∑
i

ni(ni − 1) − μ
∑

i

ni, (4)

may be written as in Eq. (2) with Hi = Uni(ni − 1) − μni and

HB(i) = −Jb
†
i

∑
j :|i−j |=1

bj . (5)

Let us consider a cubic region, R = {1, . . . ,l}d , and let
i ∈ R. We may bipartition B(i) in the following way. Write
A = B(i) ∩ R and B = B(i) ∩ (�\R). Then A ⊂ R and B ⊂
�\R. If i is in the “interior” R◦ = {2, . . . ,l − 1}d of R

then B is empty and HB(i) acts only on R. If, however, i

is in the “boundary” ∂R = R\R◦ of R then it also acts on
sites outside of R. For example, if i is as in Fig. 1 then
A = {i,i − e1,i − e2,i + e2} and B = {i + e1}, with eδ being

the Euclidean unit vectors. We may then write

HB(i) =
K∑

k=1

h
(k)
A ⊗ h

(k)
B , (6)

with K = 2 and h
(1)
A = −Jb

†
i , h(1)

B = bi+e1 , h(2)
B = 1B , and h

(2)
A

collecting the remaining terms which only act on A. In this
way, we may write HB(i) as in Eq. (6) for any i ∈ ∂R and this
is of course also possible for more general Hamiltonians than
the Bose-Hubbard model. For a given translationally invariant
state ρ and a given Hamiltonian H as in Eq. (2) with HB(i),
i ∈ ∂R, as in Eq. (6) we may thus define

h(ρ) = max
i∈∂R

∣∣∣∣∣
K∑

k=1

Covρ

(
h

(k)†
A ,h

(k)
B

)∣∣∣∣∣, (7)

where Covρ(hA,hB) is the covariance of operators hA and hB

in ρ as defined above and we note that, by the Cauchy Schwarz
inequality, |Covρ(hA,hB)|2 � Covρ(hA,hA)Covρ(hB,hB). For
example, for the Bose-Hubbard model one finds

h(ρ) � 2d|J |Covρ(bi,bi) � 2d|J |〈ni〉ρ (8)

such that an upper bound is provided by the mean occupation
number.

Given a region R ⊂ �, we denote by tr�\R the partial trace
over all sites in � except those in R and write ρR = tr�\R(ρ).
Our main result is the following (we present the case of
nontranslationally invariant local Hamiltonians that act beyond
nearest neighbors in Appendix A).

Proposition 1. Let H be a translationally invariant
nearest-neighbor Hamiltonian on a d-dimensional lattice � =
{1, . . . ,n}d as in Eq. (2) and let R be a cubic region of edge
length l (and volume ld ). Let H have ground-state degeneracy
D and let ρ = |ψ〉〈ψ |, a translationally invariant state with
tr(Hσ ) � Cnd/l for some C � 1. Let Tc such that

u(Tc) = C + 4dh(σ )

l
. (9)

If there are γ,k,	 > 0 such that for every T � Tc

(i) c(T ) � k(	/T )γ e−	/T , then there is a constant C0

depending only on C,γ , 	, k, h, and d such that

S(ρR) � C0l
d−1 log(l); (10)

(ii) c(T ) � k(T/	)γ , then there is a constant C0 depending
only on C, γ , 	, k, h, and d such that

S(ρR) � C0l
d−1+ 1

γ+1 . (11)

Here, h = ‖HB(i)‖ for bounded HB(i) and h = h(ρ) as in
Eq. (6) for unbounded HB(i).

Part (i) gives an area law with logarithmic correction for
the von Neumann entropy of every low-energy state, assuming
that the specific heat decreases exponentially with inverse
temperature at temperatures smaller than Tc, which decreases
with increasing l. Part (ii), in turn, shows merely a subvolume
law; however only the weaker assumption c(T ) � kT γ is
required.

We expect that part (i) of the proposition can be strength-
ened to show a strict area law, without a logarithmic correction.
However we do not have a proof and leave it as an open
question. A drawback of the proposition is that one must
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know the behavior of the specific heat at arbitrary small
temperatures. This can be circumvented if we assume that
at small temperatures the heat capacity is monotonically
increasing with temperature, as is usually observed. Then it
is enough that the heat capacity decays as specified in the
proposition only in the range [Tc/2,Tc].

Which Hamiltonians have these two types of heat capacity
dependence on temperature? Although we do not have a
general result concerning the question, the class of systems sat-
isfying the required conditions appears to be very large. Indeed
gapped models are expected to have c(T ) � T −νe−	/T at all
sufficiently small temperatures [29]. Examples where this has
been verified explicitly—both in theory and experimentally—
are superconductors [30–32], quantum Hall systems [33–35],
and some lattice spin systems [36–38]. The condition c(T ) �
T γ is even more general and is the behavior routinely observed
in measurements of heat capacity of solids. It is an interesting
open question to give more rigorous results in this respect.

An appealing aspect of the result is that the heat capacity
is readily accessible experimentally (in fact the decay of the
heat capacity of the form T −νe−	/T is many times used as
an experimental signature that the system has a spectral gap
	; for instance, the first measurement of the superconductor
gap was achieved precisely by measuring this form for the
specific heat [31]). Thus one can infer an area law even when
the Hamiltonian is not fully known.

III. PROOF

The proof of the proposition is relatively simple. It is a
consequence of the variational characterization of thermal
states as states of minimum free energy, together with
standard thermodynamical formulas relating specific heat,
energy density, and entropy density. We start with the following
lemma.

Lemma 1. Let H on � = {1, . . . ,n}d be as above and let R

be a cubic region of edge length l. For every translational
state ρ and temperature T such that u(T ) � tr(Hρ)/nd +
4dh(ρ)/l, one has

S(ρR) � lds(T ). (12)

Here, h(ρ) = ‖HB(i)‖ for bounded HB(i) and h(ρ) as in Eq. (6)
for unbounded HB(i).

Proof. Partition the lattice into M = nd/ld cubic subsets
R1, . . . ,RM , each of edge-length l, and define

σ =
M⊗

m=1

ρRm
, (13)

for which σRm
= ρRm

, i.e., σ and ρ coincide locally on
each Rm. As the thermal state minimizes the free energy
FT (ρ) := tr(Hρ) − T S(ρ) (this well-known property of the
free energy is a direct consequence of the identity FT (ρ) =
FT (ρT ) + S(ρ||ρT ), where S(ρ||ρT ) is the relative entropy,
which is always non-negative), one finds

T S(σ ) � T S(ρT ) − tr(HρT ) + tr(Hρ) − tr[H (ρ − σ )].
(14)

Using translational invariance and the fact that ρ and σ

coincide on each Rm,

tr[H (ρ − σ )] = M
∑
i∈∂R1

tr
[
HBr (i)(ρB(i) − σB(i))

]
, (15)

such that for bounded HBr (i)

|tr[H (ρ − σ )]| � 2M max
m

|∂Rm|h � 4dhMld−1. (16)

For unbounded HBr (i), i ∈ ∂R1, we write

tr
[
HBr (i)(ρ − σ )

] = tr
[
HBr (i)

(
ρ − σR1 ⊗ σ�\R1

)]
=

K∑
k=1

Covρ

(
h

(k)†
A ,h

(k)
B

)
. (17)

By the additivity of the entropy and translational invariance
MS(σR1 ) = ∑M

m=1 S(σRm
) = S(σ ) and by Eq. (14) and the

above bounds,

S(σ ) � S(ρT ) + tr(Hρ) − ndu(T ) + 4dh(ρ)Mld−1

T
, (18)

such that the assertion follows by the choice of M and
whenever σ and T are as in the hypothesis. �

We now turn to the proof of the proposition.
Proof of Proposition 1. By Lemma 1 and for ρ and Tc as in

the hypothesis,

1

ld
S(σR) � s(Tc) = s(0) +

∫ Tc

0
dT

u̇(T )

T
. (19)

We now derive a bound on temperatures T below Tc in terms
of u(T ). For c(T ) upper bounded as in part (ii)

u(T )

k
=

∫ T

0
dt

c(t)

k
�

∫ T

0
dt

tγ

	γ
= 	

γ + 1

(
T

	

)γ+1

, (20)

i.e., T −1 � Ck,	,γ ġ[u(T )], where g(u) = u
γ

γ+1 . Hence,

∫ Tc

0
dT

u̇(T )

Ck,	,γ T
�

∫ Tc

0
dT

d

dT
g[u(T )] = g[u(Tc)], (21)

which, when inserting the definition of g and combining it
with Eq. (19), proves part (ii). Part (i) is proved in complete
analogy and may be found in Appendix A. �

IV. COMPARISON WITH PREVIOUS WORK

The fact that the Gibbs state minimizes the free energy
is instrumental in the proof of Proposition 1. It is not the
first time that this relation has been used in the context of
area laws: It was employed in Ref. [39] to show a general
area law for the mutual information of every Gibbs state of a
local Hamiltonian at constant temperature. Concerning ground
states, Hastings [24] and Masanes [25] proved an area law with
a O( log(n)) correction (logarithmic of the total system size)
for gapped models, assuming that the density of states D(E)
grows polynomially in the volume of the lattice for energies
E � O(nd ), i.e. D(E) � nO(E). The density of states and the
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heat capacity are related by

ndT 2c(T ) = 1

ZT

∫
D(E)e−E/T E2dE

−
(

1

ZT

∫
D(E)e−E/T EdE

)2

.

Therefore it is interesting to compare the results of
Refs. [24,25] with Proposition 1. Assuming D(E) � ncE for
a constant c � 0 and that H has spectral gap 	 > 0 we find

c(T ) � 1

ndT 2

∫ ∞

	

ncEe−E/T E2dE

� O(T −1nc	−de−	/T ). (22)

Thus, part (i) of Proposition 1 gives that S(tr�\R(|ψ〉〈ψ |) �
O(ld−1 log(n)), recovering the area law result of Refs. [24,25].1

Our argument has the advantage of being simpler than
Refs. [24,25], which were based on high temperature expan-
sion and Lieb-Robinson bounds, respectively. In contrast all
we need is the variational principle for the free energy and
basic relations between specific heat and energy/entropy.

V. PEPS APPROXIMATION

Hastings [24] also proved that under the above assumption
on the density of states, a constant spectral gap, and a bounded
Hamiltonian, the ground state is well approximated by the
Gibbs state at temperature O(1/ log(n)). Using the results
of Ref. [40] it was then argued that such ground states
are well approximated by a projected-pair-entangled-operator
[PEPO—the mixed state analog of projected-pair-entangled-
states (PEPS)] [14] of quasipolynomial exp[O( logd (n))] bond
dimension. We can easily show that this is already the case
under our assumption on the heat capacity:

Under the assumptions of part (i) of Proposition 1, one can
show (see Appendix B) that for every 0 < δ � 1 and T �
δ/ log(n) the maximally mixed state ρ0 on the ground space of
H is well approximated by the thermal state at temperature T ,

‖ρT − ρ0‖1 �
(

log(n)

δ

)γ−1

nd−	/δ, (23)

where 	 and γ are as in Proposition 1. Reference [41], which
builds on Refs. [40,42], shows that ρT can be approximated
with error ε in trace norm by a PEPO of bond dimension
(n/ε)O( log(n)).

VI. CONCLUSION

We showed that specific heat dependence on temperature
commonly observed in gapped systems implies an area law
with logarithmic correction for every low-energy state and,
building on Refs. [40–42], that the ground state can be ap-
proximated by a PEPS of small bond dimension. Even the mild

1We note Ref. [25] also shows that if the density of states of the sub-
Hamiltonian on region R plus a boundary of R [of width O(log |∂R|)]
grows polynomially with the energy (up to energies of order |∂R|)
and the ground state has a finite correlation length, then it satisfies an
area law with a correction of O(log |R|).

assumption that the heat capacity decays polynomially already
puts nontrivial constraints on the amount of entanglement in
the system. We believe our results are valuable for four main
reasons: first, the condition on the specific heat is natural, can
be checked experimentally, and relates entanglement scaling
to a thermodynamic quantity; second, it implies an area
law not only for the ground state but also for every state
of sufficiently low energy; third, it applies to unbounded
Hamiltonians; and finally, the argument is very simple. It
is an interesting open question to prove a strict area law,
without any logarithmic correction, under the assumption of
an exponentially decreasing specific heat. Another interesting
direction for future research is to elucidate the class of models
having the required behavior for the specific heat. Although
examples of gapped models violating it can be constructed, it
might still be possible to prove it for a large class of gapped
models.
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APPENDIX A: MORE GENERAL VERSION
OF PROPOSITION 1 AND LEMMA 1

We let H be an r-local Hamiltonian on a d-dimensional
cubic lattice � = {1, . . . ,n}d . That is,

H =
∑
i∈�

HBr (i), (A1)

where each HBr (i) acts only on sites

Br (i) = {j ∈ � | d(i,j ) � r}, (A2)

where d(·,·) denotes the Manhattan distance in the lattice. Let
M = nd/ld and partition

� =
M⋃

m=1

Rm (A3)

with Rm cubes of edge length l and denote by

E[f (R)] = 1

M

M∑
m=1

f (Rm) (A4)

the uniform expectation of f over all the Rm. Further,
Rm = v + {1, . . . ,l}d for appropriate v = v(m) and we denote
the “interior” of Rm by R◦

m = v + {1 + r, . . . ,l − r}d and the
“boundary” of Rm by ∂Rm = Rm\R◦

m, for which we have
|∂Rm| � 2drl. For given i ∈ ∂Rm let A = A(i) = Br (i) ∩ Rm,
B = B(i) = Br (i) ∩ (λ\Rm), and

HBr (i) =
K∑

k=1

h
(i,k)
A ⊗ h

(i,k)
B . (A5)

For a given state ρ define

h(ρ) = min

{
max
i∈�

∥∥HBr (i)

∥∥, max
i∈∂R

∣∣∣∣∣
K∑

k=1

Covρ

(
h

(i,k)†
A ,h

(i,k)
B

)∣∣∣∣∣
}

.

(A6)
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For states ρ and A ⊂ � we denote ρA = tr�\A[ρ] as the state
obtained by tracing over all sites apart from those in A. We
have the following lemma.

Lemma 2. If σ and T are such that tr(Hσ )/nd +
4drh(σ )/l � u(T ) then E[S(σR)] � lds(T ).

Proof. Define

σ̃ =
M⊗
i=1

σRi
, (A7)

for which σ̃Ri
= σRi

; i.e., σ and σ̃ coincide locally on each Ri .
As the thermal state minimizes the free energy we have

T S(σ̃ ) � T S(ρT ) − tr(HρT ) + tr(Hσ̃ )

= T S(ρT ) − tr(HρT ) + tr(Hσ ) − tr[H (σ − σ̃ )],

(A8)

where, as σ and σ̃ coincide on each Ri ,

tr[H (σ − σ̃ )] =
∑
i∈�

tr
[
HBr (i)(σ − σ̃ )

]

=
M∑

m=1

∑
i∈Rm

tr
[
HBr (i)(σ − σ̃ )

]

=
M∑

m=1

∑
i∈∂Rm

tr
[
HBr (i)

(
σBr (i) − σ̃Br (i)

)]
, (A9)

such that for bounded HBr (i)

|tr[H (σ − σ̃ )]| � 2M max
m

|∂Rm| max
i

∥∥HBr (i)

∥∥ � 4drhnd/ l.

(A10)

For unbounded HBr (i), i ∈ ∂R, we write

tr
(
H

(i)
Br (i)(σ − σ̃ )

) = tr
(
H

(i)
Br (i)

(
σ − σRm

⊗ σ�\Rm

))
=

K∑
k=1

Covσ

(
h

(i,k)†
A ,h

(i,k)
B

)
. (A11)

Hence, by the additivity of the entropy,

M∑
i=1

S
(
σRi

) = S(σ̃ )

� S(ρT ) + nd tr(Hσ )/nd + 4drh(σ )/l − u(T )

T

(A12)

and thus the assertion follows whenever σ and T are as in the
hypothesis. �

Proposition 2. Let σ such that tr(Hσ ) � Cnd/l for some
C � 1 and Tc such that

u(Tc) = C + 4drh(σ )

l
. (A13)

Then

E[S(σR)] � s(0)ld + Fk,γ,	,l l
d−1, (A14)

where, if c(T ) � k(T/	)γ for some k,	,γ > 0 and all T �
Tc,

Fk,γ,	,l = k
1

γ+1

γ
(γ + 1)

γ

γ+1

(
C + 4drh(σ )

	

) γ

γ+1

l
1

γ+1 (A15)

and, if c(T ) � k(	/T )γ e−	/T for some k,	,γ > 0 and all
T � Tc,

Fk,γ,	,l = 2[ln(kγ γ−1) + 1 + γ /2 + ln(l)]
C + 4drh(σ )

	
.

(A16)

Proof. By Lemma 2 and for σ and Tc as in the hypothesis,

1

Mld

M∑
i=1

S
(
σRi

)
� s(Tc) = s(0) +

∫ Tc

0
dT

u̇(T )

T
. (A17)

We now derive a bound on temperatures T below Tc in terms
of u(T ). For c(T ) � k(T/	)γ , 	,γ > 0, we have

u(T ) =
∫ T

0
dtc(t) � k

∫ T

0
dt(t/	)γ = k	

γ + 1
(T/	)γ+1,

(A18)

i.e.,

	

T
�

(
k	

γ + 1

) 1
γ+1

[u(T )]−
1

γ+1

=
(

k	

γ + 1

) 1
γ+1 γ + 1

γ
ġ[u(T )], (A19)

g(u) = u
γ

γ+1 ,

such that∫ Tc

0
dT

u̇(T )

T
� 1

	

(
k	

γ + 1

) 1
γ+1 γ + 1

γ

∫ Tc

0
dT ġ[u(T )]u̇(T )

= 1

	

(
k	

γ + 1

) 1
γ+1 γ + 1

γ
{g[u(Tc)] − g[u(0)]}

= 1

	

(
k	

γ + 1

) 1
γ+1 γ + 1

γ
[u(Tc)]

γ

γ+1 . (A20)

Now let c(T ) � k(	
T

)γ e−	/T , 	,k > 0, and γ � 0. For
0 � t � 1/γ , the function e−1/t t−γ is nondecreasing in t such
that for T � Tc � 	/γ

u(T ) =
∫ T

0
dtc(t) � k	

∫ T
	

0
dtT −γ e−1/T

� k	(T/	)1−γ e−	/T � γ γ−1

(
	

γT
e
− 	

γT

)γ

� kγ γ−1e− 	
2T , (A21)

i.e., for T � Tc � 	/γ ,

	

2T
� ln(kγ γ−1) − ln[u(T )] = ln(kγ γ−1) + ġ[u(T )],

g(u) = u − u ln(u), (A22)
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such that for Tc � 	/γ∫ Tc

0
dT

u̇(T )

T
� 2

	
ln(kγ γ−1)u(Tc) + 2

	
{g[u(Tc)] − g[u(0)]} = 2

	
{ln(kγ γ−1) + 1 − ln[u(Tc)]}u(Tc) (A23)

and for Tc > 	/γ∫ Tc

0
dT

u̇(T )

T
=

∫ 	
γ

0
dT

u̇(T )

T
+

∫ Tc

	
γ

dT
u̇(T )

T
�

∫ 	
γ

0
dT

u̇(T )

T
+ γ

	
[u(Tc) − u(	/γ )]

� 2

	
ln(kγ γ−1)u(	/γ ) + 2

	
{u(	/γ ) − u(	/γ ) ln[u(	/γ )]} + γ

	
[u(Tc) − u(	/γ )]

= 2 ln(kγ γ−1) − γ

	
u(	/γ ) + γ

	
u(Tc) + 2

	
u(Tc)

[
u(	/γ )

u(Tc)
− u(	/γ )

u(Tc)
ln

(
u(	/γ )

u(Tc)

)
− u(	/γ ) ln[u(Tc)]

u(Tc)

]

� 2

	
{ln(kγ γ−1) + 1 − ln[u(Tc)]}u(	/γ ) + γ

	
u(Tc) − γ

	
u(	/γ ) − 2

	
u(	/γ ), (A24)

where we used Eq. (A22) and the monotonicity of u(T ) to
bound the first integral and the monotonicity of x − x ln(x)
for 0 � x � 1 to obtain the last line. �

APPENDIX B: PEPO APPROXIMATION

Proposition 3. Let H be a Hamiltonian on a d-dimensional
lattice, � := [n]d . Let ρ0 be the maximally mixed state on the
ground space of H . Suppose there are 	,k > 0 and ν � 0 such
that c(T ) � kT −νe−	/T for T � 1/ log(n). Then for every
1 � δ > 0 and T � δ/ log(n),

‖ρT − ρ0‖1 � η := 2k

	

(
log(n)

δ

)ν−1

nd− 	
δ , (B1)

and there is a PEPO π of bond dimension (n/ε)O( log(n)) such
that ‖π − ρ0‖1 � ε + η.

Proof. For T = δ/ log(n) we find

s(T ) − s(0) =
∫ T

0

C(T ′)
T ′ dT ′ � k

logν(n)

δνn
	
δ

. (B2)

Equation (B1) follows from the previous equation and

1

ZT

∑
k>0

e−Ek/T � T

	

1

ZT

(∑
k>0

Ek

T
e−Ek/T

)

= T

	
[S(ρT ) − log(ZT )] � T nd

	
[s(T ) − s(0)].

Reference [41], which builds on Refs. [40,42], shows that ρT

can be approximated with error ε in trace norm by a PEPO of
bond dimension (n/ε)O( log(n)). �
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