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We present a model system for strongly nonlinear transition waves generated in a periodic lattice of
bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the
bistable members produces a mechanical diode that supports only unidirectional transition wave
propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of
the transition wave and confirm these predictions by experiments and simulations. We further identify how
the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a
blueprint for transition wave control.
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Introduction.—Unidirectional waveguiding is a rare
phenomenon of interest for mechanical diodes, rectifiers,
or switches that propagate stress waves in designated
directions but not in reverse. For acoustic waves, this
has been achieved through carefully engineered periodic
lattices and topological metamaterials that exploit time-
reversal asymmetry or transmission asymmetry; see, e.g.,
Refs. [1–7]. Such systems, providing one-way acoustic
insulation, are typically studied in the linearized regime,
and the associated elastic pressure waves display small
amplitudes (and quickly decay in realistic structures with
internal damping). In weakly nonlinear lattices, directional
waveguiding has been achieved using cubic Kerr non-
linearities in nonhomogeneous systems [8,9]. However,
strongly nonlinear directional waveguides for the trans-
mission of finite amplitude pulses or the mitigation of
impact shock waves have remained largely unexplored,
partly due to their mathematical complexity and limited
experimental realizations. Only one macroscopic experi-
ment has verified stable nonlinear transition waves in a
chain of elastically coupled rotational pendula [10], and
that system was bidirectional. Here, we present an instruc-
tive homogeneous mechanical model that displays tunable
unidirectional guiding of strongly nonlinear transition
waves and admits theoretical insight that agrees well with
experimental findings.
Transition waves are commonly found in systems that

permit switching between multiple stable equilibria (the
energetic characteristics of which will be key to control-
lable unidirectionality). These play a central role in a
multitude of mechanical phenomena such as dislocation
motion in crystals [11], ferroelectric phase transitions [12],
structural collapse [13], transitions due to shape memory
effects [14], transformational plasticity [15], and nanoscale
structural mechanics [16]. Phase transition scenarios in

which the effects of lattice dispersion are balanced by the
nonlinear medium have been investigated theoretically; see,
e.g., Refs. [17–24] and references therein. Unfortunately,
the lack of accessible experimental systems has left many
previous theoretical studies unchallenged and, as a conse-
quence, has rendered mechanical diodes in the nonlinear
regime a rare find.
In this Letter, we identify stable unidirectional transition

wave propagation theoretically and experimentally in a 1D
periodic lattice or “metastructure” of bistable mechanical
elements connected by nonlinear links. The double-well
on-site potential is realized by prestressed composite shells
which snap elastically from one stable equilibrium to
another while undergoing large, nonlinear deformation.
Magnetic interelement connections generate nonlinear
repulsive forces between bistable lattice members. As we
demonstrate theoretically and verify numerically, the asym-
metric potential energy wells make the wave propagation
unidirectional: the transition from high to low energy
produces a stable transition wave, whereas the reverse
transition from low to high energy disintegrates incoming
pressure waves, thereby acting as a diode for large-
amplitude waves. This is in line with our general theoretical
observations [25]. This unidirectionality has potential for
wave mitigation, impact energy absorption applications, or
mechanical switches and filters. The described experimen-
tal setup serves as a model system that can enable the
investigation of the rich nonlinear dynamics of periodic
arrays with, in principle, arbitrary multistable on-site
energy topologies.
Experimental system.—The experimental setup consists

of an array of bistable composite shells with an interele-
ment magnetic forcing. Individual bistable elements are
made from carbon fiber reinforced plastic prepregs, lami-
nated with a precise spatially distributed arrangement of
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laminae in the 0° and 90° directions (see geometry and
manufacturing details in Supplemental Material [26]). The
combination of microstructure and cooldown after curing at
elevated temperature induces a particular deformation field
producing composite laminates exhibiting a tailorable
strain potential topology, while admitting clamping of
two opposite edges [29]. The strain energy stored in the
bistable laminate as a function of the out-of-plane dis-
placement can be further tailored by varying the clamping
distance, as well as the fiber distribution [30]. The topology
of the resulting potential is inherently asymmetric with one
of the wells having a lower energy than the other. To model
the bistable element, the force-displacement curve is
obtained with quasistatic displacement controlled tests
and fit using splines; see Fig. 1(a). The magnitude of
the snapping force is much higher at one transition point
than the other. Furthermore, desired levels of force-
displacement asymmetry and transition values can be
designed by modifying the fiber distribution of the used
bistable members as required to control the characteristics
of the propagating transition waves. The lattice used for
experimentation consists of 20 bistable elements which are
supported using clamps mounted on an aluminum rail. The
rails are fixed to an optical table. Each bistable element is
fitted on either face with two NdFeB ring magnets. Similar
to Ref. [31], the force-displacement curve of the magnets,
shown in Fig. 1(b), is fitted using a best fit relation of
the form F ¼ Adp, where F is the force and d is the
displacement. The magnets are fixed to the bistable
laminates and are arranged in a NSNS-SNSN configuration
to exert repelling forces between the elements (where N and
S denote the north and south poles of a magnet, respec-
tively). The magnets are laser aligned so that all lie along a
straight line. A stereoscopic digital image correlation
system with a rate of 4000 fps is used to acquire the
displacements of four consecutive representative bistable
elements. The initial displacement is triggered using a
precision screw which provides a repeatable perturbation to

the first lattice element. The lattice used for experimenta-
tion is shown in Fig. 2.
Stable wave propagation.—We study the transition from

the high energy well to the lower energy well. All the
bistable elements in the system are placed in the high
energy well and the first element is forced to snap to the
lower energy state. The rail distance R is defined as the
distance between the clamps at the two ends of the bistable
element and the lattice distance L is the distance between
two elements in the chain. We present results for three
representative cases of stable wave propagation in Fig. 3 for
various choices of R and L. Each experiment was repeated
three times to obtain statistical variations. In general, the
results obtained were highly repeatable. The deformation of
the bistable element is 3D in nature; however, the out-of-
plane displacement is significantly higher than the in-plane
deformation, thereby causing the wave propagation to be
quasi-1D, as can be observed in the snapshot sequence of
the propagating wave in the Supplemental Material [26].
Experiments are compared with numerical simulations
using the following 1D model of the discrete lattice:
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FIG. 1. (a) Force-displacement curve of the bistable element for
a clamping distance of 21.5 cm. The critical snapping points
(maximum force) and equilibrium points are identified and fitted
with splines while maintaining continuity in stiffness. (b) Mag-
netic force versus displacement plot for an NSNS-SNSN con-
figuration. Numerical fit: F ¼ Adp, with A ¼ 4.95 × 10−5 N=mp

and p ¼ −3.274.

FIG. 2. (a) The experimental lattice is shown along with the
trigger magnet mounted on a precision screw. The displacements
of elements 8–11 that are marked using a speckle pattern are
tracked using a digital image correlation software (DIC). (b) A
schematic of the experimental measurement technique is shown.
The two cameras are synchronized and capture the 3D deforma-
tion field of the tracked specimens. The out-of-plane deformation
is obtained using the VIC-3D DIC software.
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mun;tt þ Aðunþ1 − un þ LÞp − Aðun − un−1 þ LÞp
þ αun;t þ βϕ0ðunÞ ¼ 0; ð1Þ

where un is the displacement of the nth particle from its
static equilibrium, A and p < −1 are parameters of the
interelement forcing function, m is the mass of the four
magnets that compose each connecting element, L is the
lattice distance, α > 0 is the dissipation constant, and
βϕðuÞ is a bistable potential where β is a constant. The
parameters A, p and the bistable potential βϕðuÞ are
determined through the fitting procedure described above.
Indices following a comma denote differentiation. The
simulations are performed using a Newmark time integra-
tion scheme [32]. We expect the dissipation parameter to
depend on the snapping trajectory of an individual bistable
element, which is linked only to the rail distance.
Therefore, we assume α to be independent of the lattice
distance and to depend on only the rail distance. For each
rail distance R, the dissipation parameter α is calculated by
matching the numerically obtained wave velocity with
experiments for a fixed value of the lattice distance L.
The snapping equilibrium distances for the used elements
are slightly different (∼� 10%) owing to variability
induced during the composite manufacturing process.
Nevertheless, this variation does not affect the underlying
physical behavior under examination. Comparing Figs. 3(a)
and 3(b), we see that the strain of the wave transition profile
is broader for larger lattice spacings [Fig. 3(a)] and more
spatially localized for small lattice spacings [Fig. 3(b)]. The
variation of wave localization (i.e., width of strain profile)
and velocity as functions of lattice distance for different rail
distances are shown in Fig. 4. The experimental result for
R ¼ 21.5 cm and L ¼ 6 cm is an outlier in Fig. 4(a). This
is due to the fact that L (6 cm) is smaller than the snapping

distance (∼6.2 cm). This causes multiple intermediate
snaps during the transition of the bistable element and
the quasi-1D approximation fails to hold, thereby causing
the experimental data to significantly deviate from the
numerical results. The control parameters L and R allow
for designing the level of wave localization as shown in
Fig. 4(b). Interestingly, in the proposed system, transition
waves can be localized almost on a single element allowing
for tightly packed and remarkably stable energy trans-
mission. Hence, the waves can be localized to a single
particle, similar to the case of repelling magnet chains [31].
This compares with a minimum of approximately 2.2
particles for pressure waves in granular chains [33,34].
An interesting observation is that the steady state wave

velocity appears to be independent of the initial excitation
condition. For example, stronger initial impacts do not lead
to faster waves, which is in contrast to the case of the
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FIG. 3. (a)–(c) Transition wave propagation for three different combinations of lattice distance (L) and rail distance (R). The
displacement time series is shown for the 8th–11th element (blue diamonds, magenta squares, red 5-point stars, and black 6-point stars,
respectively) for (a) L ¼ 8 cm, R ¼ 22.5 cm, (b) L ¼ 6 cm, R ¼ 22 cm, and (c) L ¼ 8 cm, R ¼ 21.5 cm. The negative values of the
displacements indicate that the elements are deforming away from the camera. The direct numerical simulations of the discrete particle
model Eq. (1) (dashed lines) are in good agreement with the experimental results (solid lines). The inset of each panel is the numerical
solution of Eq. (14) of the Supplemental Material [26], which corresponds to an exact transition wave. On reaching the boundary,
the waves do not reflect back into the bulk and hence the transition is unidirectional. Refer to the Supplemental Material [26] for the
snapshot sequence and for video showing unidirectional stable wave propagation; i.e., waves propagate in one direction and not in the
opposite direction.
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FIG. 4. (a) Wave velocity as a function of lattice distance for
different rail distances. The dissipation parameter has been
optimized such that the wave velocity matches for lattice distance
8 cm for rail distances 21.5 and 22 cm, and lattice distance 7 cm
for rail distance 22.5 cm. (b) FWHM of the strain profile of the
transition wave as a function of lattice distance for different rail
distances.
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granular chain [34]. Indeed, it appears the combination of
an asymmetric bistable potential and the presence of
damping leads to unique wave velocities, making this
system more akin to reaction-diffusion-type equations
[35] rather than Hamiltonian lattices such as those of the
Klein-Gordon type [36,37] (e.g., the Frenkel-Kontorova
equation [11]) and Fermi-Pasta-Ulam type [38,39] (e.g., the
granular chain [34]). To probe this point even further,
we restrict our attention to traveling wave solutions of the
form of Eq. (1), namely, those of the form unðtÞ ¼
uðLn − vtÞ ¼ uðξÞ, where uðξÞ; ξ ∈ R satisfies the
advance-delay differential equation

v2muξξ − vαuξ þ βϕ0ðuÞ þ A½uðξþ LÞ − uðξÞ þ L�p
− A½uðξÞ − uðξ − LÞ þ L�p ¼ 0: ð2Þ

We found that, despite varying the initial guess for solving
Eq. (2) numerically, our algorithm converges to the same
profile and wave velocity v, implying that for a fixed set of
system parameters there is a unique wave velocity of the
transition wave. The traveling wave formulation (2) is also
natural for bifurcation and sensitivity studies. For example,
the variation of the wave velocity with respect to the
interaction potential coefficient p and level of asymmetry
are presented in the Supplemental Material [26].
Wave disintegration.—Advance-delay differential equa-

tions such as Eq. (2) are notoriously difficult to analyze.
One can obtain a system that is analytically tractable by
considering the limit of small lattice spacing. In the case of
Eq. (1), this results in the fourth-order ordinary differential
equation (see Supplemental Material [26] for derivation),

−
1

24
a2ρc20½ðp − 2Þðp − 1Þu3ξξðuξ þ 1Þp−3

þ 4ðp − 1Þuξξuξξξðuξ þ 1Þp−2 þ 2uξξξξðuξ þ 1Þp−1�
ρv2uξξ − ρc20uξξð1þ uξÞp−1 − vγuξ þ ψ 0ðuÞ ¼ 0; ð3Þ

with ξ ¼ nL − vt, ρ ¼ m=L, ρc20 ¼ −ALpp, γ ¼ α=L,
βϕ0ðunÞ=L ¼ ψ 0ðunÞ, and the subscript ξ implies differ-
entiation. It can be shown that for stable wave propagation
(see Supplemental Material [26] for derivation),

ψðuiÞ − ψðufÞ ¼ vγ
Z

∞

−∞
u2ξdξ ≥ 0 ⇒ ψðuiÞ ≥ ψðufÞ: ð4Þ

Equation (4) shows that the final state cannot have a higher
energy than the initial state for stable wave propagation.
This is because, in the case of high-to-low energy tran-
sition, the release of stored potential energy counters the
effect of dissipation. This is not possible for a low-to-high
energy transition. Therefore, in the case of an asymmetric
bistable potential, a transition is allowed from the higher
energy state to a lower energy state, as seen in the previous
experiments; however, in the opposite case, the wave does

not propagate. The problem can also be approached
through the entropy relation for phase boundary propaga-
tion [23]. Identifying that Δψ ¼ ψ ½uðξ → ∞Þ� − ψ ½uðξ →
−∞Þ� is the driving force on the transition wave, Eq. (4) can
be rewritten as the entropy inequality,

vΔψ ≥ 0: ð5Þ

Hence, the entropy inequality implicitly gives rise to the
condition for unidirectional stable wave propagation in the
discrete lattice. We observe this phenomenon in experi-
ments. When all the elements are placed in the low energy
well and a transition is forced, the elements snap back to
their original low energy state. In addition, the video in the
Supplemental Material [26] shows this effect. Therefore,
the lattice works as a nonlinear unidirectional waveguide
for transition waves.
Theoretical estimates of wave characteristics.—Using

Eq. (4), the average kinetic energy transported (hEi) can be
computed as

hEi ¼ Δψ
2γ

ρv ð6Þ

(with ρ ¼ m=L), which scales linearly with the velocity of
wave propagation [25]. The governing equation (3) also
provides bounds for maximum particle velocity. When the
particle velocity ut ¼ −vuξ attains a maximum, the accel-
eration utt ¼ v2uξξ ¼ 0 is zero. Substituting this in Eq. (3)
gives

���� 112 a2c20u�ξξξξð−A=vþ 1Þp−1
���� ¼

���� − γAþ ψ 0ðu�Þ
����; ð7Þ

where the asterisk indicates evaluation where uξ is at a
maximum. In the continuum limit (a → 0), the term on the
left-hand side in Eq. (7) is very small. Therefore,

A≃ ψ 0ðu�Þ=γ ≤ Fm=γ; ð8Þ

where Fm is the maximum force or the snapping force of
the bistable element and u� is the displacement at maxi-
mum uξ, thus providing an upper bound estimate of the
maximum particle velocity. The width of the strain profile
of the transition wave can be estimated by assuming an
ansatz of the form

uξðξÞ ¼
A
v
sech2

1.76ξ
w

; ð9Þ

where the w is the FWHM. Substituting Eq. (9) in Eq. (4)
and evaluating the integral yields

w ¼ 1.32
vΔψ
A2γ

≥ 1.32
γvΔψ
F2
m

; ð10Þ
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thus providing a lower bound on the width of the wave (or
the amount of localization that can be achieved).
Conclusions.—We have introduced a model lattice sys-

tem composed of tailored bistable elements connected by
magnets sustaining strongly nonlinear unidirectional
propagation of transition pressure waves. A reduced 1D
discrete analytical model is developed that allows for wave
tailoring by designing the strain potential topology of the
bistable members, the direction of propagation, velocity,
and profile of the transition waves. The designed on-site
potential exhibited by the bistable members enables the
realization of mechanical diodes and waveguides with far-
reaching applications, from energy absorption and harvest-
ing to impact mitigation and imaging. In addition, our
model system allows for accessible experimental inves-
tigation of hitherto difficult to access transition wave
phenomena in solids.
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