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Abstract

We present fast functional photoacoustic microscopy (PAM), which is capable of three-

dimensional high-resolution high-speed imaging of the mouse brain, complementary to other 

imaging modalities. A single-wavelength pulse-width-based method was implemented to image 

blood oxygenation with capillary-level resolution and a one-dimensional imaging rate of 100 kHz. 

We applied PAM to image the vascular morphology, blood oxygenation, blood flow, and oxygen 

metabolism in the brain in both resting and stimulated states.

Many biomedical imaging techniques, especially small-animal functional magnetic 

resonance imaging (fMRI), two-photon microscopy (TPM), and wide-field optical 

microscopy, have profoundly impacted hemodynamic studies of the mouse brain by 

providing structural, blood oxygenation, and flow dynamic information at various length 

scales. However, small-animal fMRI is insufficient to resolve brain hemodynamic activities 

at microscopic length scales finer than 50 μm 1; phosphorescence-lifetime-based TPM 

suffers from slow measurement of blood oxygenation 2; and wide-field optical microscopy 

lacks depth resolution 3.

Given these limitations, photoacoustic (PA) tomography (PAT) can play a complementary 

role. Previously reported PAT techniques variously lacked capillary-level resolution, wide-

field imaging speed, or blood oxygenation imaging capability 4–8. Here, we present fast 

functional photoacoustic microscopy (PAM), which is capable of high-resolution high-speed 

imaging of the mouse brain through an intact skull in vivo. PAM has achieved a lateral 

spatial resolution of ~3 μm, which is 5 times finer than that of our previous fast-scanning 
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system 7, 25 times finer than that of our previous acoustic-resolution system 6, and more 

than 35 times finer than that of ultrasound-array-based photoacoustic computed 

tomography 5. By using a new single-wavelength pulse-width-based method, PAM allows 

three-dimensional (3D) blood oxygenation imaging with capillary-level resolution at a one-

dimensional (1D) imaging rate of 100 kHz. PAM’s blood oxygenation imaging speed is 50 

times higher than that of our fast-scanning PAM 8, 100 times higher than that of our 

acoustic-resolution system 6, and more than 500 times higher than that of phosphorescence-

lifetime-based TPM 2.

In PAM, both the excitation laser beams and the detection acoustic axis are confocally 

steered by a customized water-immersible MEMS (i.e., microelectromechanical system) 

scanning mirror (Fig. 1a, Supplementary Fig. 1, Supplementary Note 1). The lateral 

resolution—in the direction perpendicular to the acoustic axis—is ~3 μm at the optical 

focus, and the axial resolution—in the direction along the acoustic axis—is ~15 μm. The 

high laser pulse repetition rate of 500 kHz, 5 times greater than that in our previous work 7, 

enables dense sampling for morphological capillary-resolution imaging over a large 

scanning range. With a 1D time-resolved imaging rate of 500 kHz, PAM has achieved a 2D 

frame rate of 400 Hz over a ~3 mm scanning range, and a 3D volumetric rate of 1 Hz over a 

3×2 mm2 field of view (Fig. 1b).

By using a new single-wavelength pulse-width-based method (PW-sO2), PAM is capable of 

high-speed imaging of the oxygen saturation of hemoglobin (sO2) (Fig. 1c, Online 

Methods). The two forms of hemoglobin, oxy- and deoxy-hemoglobin (HbO2 and HbR), 

have different saturation intensities, defined as the excitation intensity that reduces the 

absorption coefficient to half its initial value (Supplementary Note 2, Supplementary Fig. 

2) 9. When first excited by a picosecond pulse and subsequently by a nanosecond pulse of 

the same wavelength and pulse energy, HbO2 and HbR display different saturation levels 

(Supplementary Fig. 3). From PA signals acquired with the two laser pulses, the relative 

concentrations of HbO2 and HbR are quantified, and thus sO2 can be computed. PW-sO2 

does not suffer wavelength-dependent optical attenuation as the traditional wavelength-

tuning method does. Nevertheless, the maximum PW-sO2 imaging depth is limited by 

optical attenuation to the point where saturation becomes insufficient.

A 5×10 mm2 region of the mouse brain was imaged by PAM through an intact skull with the 

scalp removed (Fig. 1d, Supplementary Video 1) (acquisition time: ~15 seconds). The 

optical focal plane was fixed at ~250 μm beneath the skull surface. The imaging parameters 

for all the key experiments are summarized in Supplementary Table 1. By additional depth-

scanning of the optical focal zone with a z-step size of 100 μm, PAM provided an imaging 

depth of ~0.7 mm (Fig. 1e, Supplementary Fig. 4, Supplementary Video 2), giving an 

effective pixel count of ~47 in focus along the depth direction. The optical scattering of 

brain tissue degraded the lateral resolution and image contrast of PAM with increasing 

imaging depth, as in any depth-resolved optical microscopy; thus, deep capillaries cannot be 

resolved by the current version of PAM. PAM of the brain vasculature was confirmed by 

TPM (Supplementary Fig. 5). The acoustic sectioning of PAM could not resolve the blood 

vessels along the z-axis as well as the optical sectioning of TPM. The skull degraded the 
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image quality of PAM by blurring the optical focusing and attenuating the PA signal 

(Supplementary Note 3, Figs. S6 and S7).

sO2 of the mouse brain was mapped vessel-by-vessel by using the pulse-width-based 

method(Fig. 1f) (acquisition time: ~40 seconds). A pulse energy of 400 nJ was used for all 

the sO2 measurements unless otherwise stated. The optical fluence at the optical focus was 

estimated to be ~0.3 J/cm2. The non-saturated PA signal acquired with nanosecond 

excitation was used to correct for optical attenuation and the laser spot size. We observed 

that the averaged sO2 in the skull vessels was lower than that in the cortical vessels, 

consistent with the low-oxygenation microenvironment in bone marrow 10.

The PW-sO2 method was validated on blood phantoms, with an average measurement error 

of ~2.7% (Fig. 1g). The PW-sO2 method was also compared with the traditional two-

wavelength-based method (TW-sO2) in vivo, with an average difference of <5% for 

superficial vessels (Supplementary Fig. 8) 4. To quantify the underestimation of PW-sO2 

induced by light attenuation with increasing depth, we measured the sO2 in blood phantoms 

and in a mouse ear in vivo with pulse energies from 50 nJ to 1000 nJ (Fig. 1h, Figs. S9–

S10). When the pulse energy was 300 nJ, the measurement error was ~3% for absolute PW-

sO2.

We carefully investigated the potential for tissue damage induced by PAM. First, bright-

field microscopy of a single layer of mouse RBCs, before and after the PAM imaging, 

confirmed that the PAM-imaged RBCs were intact, with clear donut shapes (Supplementary 

Fig. 11). Second, TPM of a mouse brain after PAM imaging with the laser pulse energy 

intentionally increased to 1000 nJ ruled out its potential to induce bleeding (Supplementary 

Fig. 12a). A few vessels were imaged by TPM but not by PAM, probably due to the lack of 

RBC perfusion 11. Last, standard H&E histology on a mouse brain after PAM imaging 

(Online Methods) showed no burn damage to the brain tissue (Supplementary Fig. 12b). As 

a positive control, a part of the brain was intentionally burned and was also studied 

histologically. Representative histological slices from the inside and outside of the burned 

area, as well as the imaged area, were compared, revealing no burns in the imaged area 

(Supplementary Fig. 13).

Directly imaging hyperaemia in the brain can help understand neurovascular coupling. Here, 

we demonstrate the high-speed functional imaging capability of PAM by studying mouse 

cortical hemodynamic responses to electrical stimulations to the hindlimbs (Supplementary 

Fig. 1a). Upon stimulations, the PA amplitude in the contralateral somatosensory region 

started to increase until the end of the stimulations (Fig. 2a, Supplementary Video 3). 

Meanwhile, the ipsilateral somatosensory region followed a similar trend but responded 

more weakly (Figs. S14a–b), suggesting vascular interconnection between the two 

hemispheres 12. We also observed that the sagittal sinus region responded to both left and 

right hindlimb stimulations, possibly due to the fact that it drains blood from both 

hemispheres simultaneously 12. The depth-resolved responses revealed that the responding 

region covered a depth range of 50–150 μm beneath the cortical surface (Fig. 2b). The deep 

capillary beds showed stronger amplitude responses than the major arteries and veins (Figs. 

S15a–b) 3.
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Meanwhile, the artery dilated substantially in the contralateral hemisphere during the 

stimulations (Supplementary Fig. 14c, Supplementary Fig. 15a). In the ipsilateral 

somatosensory region, arterial dilation was also observed but with a much weaker 

magnitude (Supplementary Fig. 14d). Veins did not show dilations (Supplementary Fig. 15c, 

Supplementary Fig. 15a) 3. Deep capillary beds are reported to dilate less than 0.5 μm in 

diameter 13, which is not resolvable by the current version of PAM. Fast line scanning along 

the vessel axis was repeated to measure the blood flow speed (Supplementary Fig. 16, 

Online Methods) 8, 14. Stimulations induced a substantial increase in blood flow speed in 

both arteries and veins (Supplementary Fig. 14e and Supplementary Fig. 15d) 14. However, 

PAM could not detect the flow speed changes in deep capillaries.

Upon stimulations, sO2 increased substantially in veins and deep capillary beds (Fig. 2c, 

Supplementary Video 4, Supplementary Video 5). The fractional change in sO2 diminished 

with increasing distance from the core responding region (Figs. S17a–b), which was ~100 

μm below the cortical surface (Supplementary Fig. 17c) 3. The sO2 increase was greater in 

deep capillary beds than in veins and was insignificant in arteries (Supplementary Fig. 15e). 

The lack of arterial sO2 response is consistent with the fact that arterial blood has not yet 

reached capillaries for oxygen consumption and thus maintains a high oxygenation level 3.

In the core responding region, the increase in sO2 in veins also manifested as a decrease in 

the oxygen extraction fraction (OEF) (Fig. 2d) 15. The fractional change in the cerebral 

metabolic rate of oxygen (CMRO2) can be estimated from the above hemodynamic 

measurements (Online Methods). A moderate fractional increase in CMRO2, peaking at 

~15%, was observed (Fig. 2d). The ratio between the fractional changes in cerebral blood 

flow (CBF) and CMRO2 (i.e., the flow-consumption ratio) was ~2.0, consistent with the 

literature 16.

In summary, using endogenous contrast, PAM has achieved high-speed high-resolution 

imaging of the vascular morphology, blood oxygenation, blood flow dynamics, and oxygen 

metabolism of the mouse brain. In particular, PAM has achieved a 1D time-resolved 

imaging rate of 500 kHz for morphological imaging and 100 kHz for blood oxygenation 

imaging. In the future, the axial resolution of PAM can be improved by using an ultrasonic 

transducer with a wider bandwidth or by using nonlinear photoacoustic mechanisms 17. 

Near-infrared wavelengths can increase the imaging depth of PAM 17. The potential for 

optical breakdown in RBCs in vivo, which is relevant to excitation pulsewidth, can be 

further investigated by using photothermal microscopy or more other methods 18.

We would like to end by briefly discussing the advantages and limitations of our PAM for 

mouse brain hemodynamic imaging. (1) PAM provides better depth resolution and greater 

absorption-based image contrast than wide-field optical microscopy, but is slower and more 

expensive. (2) In comparison to TPM, PAM does not need exogenous contrast agents and 

point-by-point depth scanning, but PAM has worse axial resolution, and at the currently 

available wavelengths less penetration. (3) In comparison to fMRI, which is sensitive only to 

HbR, PAM is sensitive to both HbR and HbO2, and has higher spatial and temporal 

resolutions. However, fMRI can provide deeper penetration. Therefore, PAM is highly 
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complementary to other brain imaging modalities in its contrast mechanism, spatial–

temporal resolutions, and functional imaging capability.

ONLINE METHODS

Photoacoustic tomography (PAT)

In PAT, as photons travel in tissue, some are absorbed by biomolecules, and their energy is 

partially or completely converted into heat. The heat-induced pressure wave propagates in 

tissue, and is detected outside the tissue by an ultrasonic transducer or transducer array to 

form an image that maps the original optical energy deposition in the tissue. PAT has a 

100% relative sensitivity to optical absorption, which means a given percentage change in 

the optical absorption coefficient yields the same percentage change in the PA signal 

amplitude. In PAT operating at 532 nm, the high contrast of cortical microvasculature comes 

from the absorption of hemoglobin in red blood cells (RBCs), which overpowers the 

absorption of other absorbers such as water and lipids by three orders of magnitude. As the 

optical absorption of blood is highly oxygenation dependent, PAT can measure blood 

oxygenation with high sensitivity. Photoacoustic microscopy (PAM) is a microscopic 

focused-scanning embodiment of PAT.

Fast functional photoacoustic microscopy

To induce photoacoustic signals, a 3-ns pulsed laser beam at 532 nm (AOT-YVO-100Q, 

AOT Inc.; pulse repetition rate: 100 kHz) is combined with a 3-ps pulsed laser beam at 532 

nm (APL-4000-1064, RPMC Lasers, Inc.; pulse repetition rate: 500 kHz) via a polarizing 

beam splitter (PBS251, Thorlabs, Inc.). The polarizations of the two laser beams are 

adjusted by wave plates to maximize the combining efficiency. Laser energy fluctuations are 

monitored by a fast photodiode that samples a small portion of the laser beams. The laser 

beams are focused by a plano-convex lens (LA1131, Thorlabs, Inc.), then spatially filtered 

by a 50-μm-diameter pinhole (P50C, Thorlabs, Inc.). The filtered laser beams are focused to 

~3 μm spots by an objective lens (AC127-050-A, Thorlabs, Inc.; NA: 0.1 in air). The optical 

focal zone (also known as the depth of focus), defined as the full width at half maximum of 

the peak intensity, is ~83 μm, within which the lateral resolution degrades up to ; 

correspondingly, the depth range within which the lateral resolution degrades up to a factor 

of 2 is ~144 μm. An optical-acoustic beam combiner, composed of an aluminum-coated 

prism (NT32-331, Edmund, Inc.) and an uncoated prism (NT32-330, Edmund, Inc.), 

provides optical-acoustic coaxial alignment. Here, the thin aluminum coating reflects light 

but transmits sound. An optical correction lens attached to the top surface of the combiner 

corrects the optical aberration due to the prism. The focused laser beams and the generated 

photoacoustic waves are both directed by a MEMS scanning mirror in a coaxial 

configuration. The photoacoustic waves are focused by an acoustic lens and detected by an 

ultrasonic transducer (V214-BB-RM, Olympus-NDT, Inc.; central frequency: 50 MHz; one-

way −6 dB bandwidth: 100%).

Driven by sufficiently strong electromagnetic force, the whole MEMS scanning mirror can 

operate under de-ionized water in a water tank, which is required to provide acoustic 

coupling from the sample surface to the acoustic lens. The bottom of the water tank is sealed 
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with a piece of membrane that is both optically and acoustically transparent. In PAM, 

because the acoustic flight time provides depth information along the acoustic axis, each 

excitation laser pulse generates a 1D depth-resolved image. Volumetric imaging is provided 

by fast angular scanning of the MEMS mirror along the x-axis and slow linear motor-stage 

scanning of the sample along the y-axis at a speed of 2–4 mm/s. In PAM, a 3 μm lateral 

resolution at the optical focus and a 15 μm axial resolution have been achieved in clear 

media. The axial resolution of PAM is jointly determined by the laser pulse width, the 

frequency-dependent acoustic attenuation in tissue, and the frequency response of the 

ultrasonic transducer. The maximum in-focus scanning range is ~3.0 mm along the x-axis, 

with a cross-sectional frame rate of 400 Hz. When necessary, additional depth-scanning of 

the optical focal zone extends the focal range of PAM at the expense of imaging speed. By 

steering both the optical and acoustic axes simultaneously, PAM maintains confocal 

alignment and high detection sensitivity over the field of view. The two lasers are triggered 

with a time interval of 500 ns. The 500 ns delay allows the first PA signal to travel 0.75 mm, 

which is approximately the maximum penetration depth of PAM in the brain.

PAM of oxygen saturation (sO2)

In PAM, the two lasers emit the same pulse energy at 532 nm. Because the picosecond pulse 

has a higher peak intensity than the nanosecond pulse, it results in more saturation (Figs. 

S3a–b). We define a saturation factor as the ratio of the PA amplitudes under picosecond 

and nanosecond excitations (Supplementary Fig. 3c).

The relative concentrations of HbR and HbO2 can be estimated by solving the following 

linear equations:

(1)

(2)

where Pns and Pps are the PA amplitudes under nanosecond and picosecond excitations, 

respectively; k is a proportionality coefficient related to the detection system, the are the 

molar Grüneisen parameter, and the nonradiative quantum yield; εHbR and εHbO2 extinction 

coefficients of HbR and HbO2, respectively; CHbR and CHbO2 are the molar concentrations 

of HbR and HbO2, respectively; and rHbR and rHbO2 are the saturation factors of HbR and 

HbO2, respectively, which are functions of the local fluence F (i.e., the photon energy 

imposed over a unit area).

Note that εHbR ≈ εHbO2 at 532 nm and rHbR ≈ 1, Eqs. (1)–(2) are reduced to

(3)

(4)
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where k1 = ln(10)kεHbR F. Once Eqs. (3)–(4) are solved, the total hemoglobin concentration 

CHbT is computed by CHbT = CHbR + CHbO2.

Therefore, sO2 can be computed as

(5)

where k2 = 1/[1 − rHbO2 (F)].

From Eq. (5), we can see that rHbO2 is needed for absolute sO2 measurement. rHbO2 is 

calibrated for using the local fluence F (Supplementary Fig. 3c), which is proportional to the 

unsaturated PA signal Pns (Supplementary Fig. 3b). Note that the local fluence change due 

to the varied laser spot size at different depth is also accounted for by Pns. rHbO2 can also be 

calibrated for according to the neighboring arteries.

In studies where only fractional changes in sO2 are of interest, we have

(6)

Eq. (6) shows that local fluence is not needed for measuring fractional changes in sO2, as 

long as the saturation is sufficient.

PAM of cerebral metabolic rate of oxygen (CMRO2)

If the cortical region of interest has well-defined feeding arteries and draining veins, and the 

volumetric blood flow rates in the feeding and draining vessels are conserved, CMRO2 can 

be calculated as

(7)

where ξ is the oxygen binding capacity of hemoglobin (1.36 mL O2/gram hemoglobin or 

87.7 L O2/mol hemoglobin); sO2−artery and sO2−vein are the oxygen saturation averaged in 

the artery and vein, respectively; CBF is the volumetric blood flow rate (L/s); and W is the 

weight of the region of interest (grams).

Oxygen extraction fraction (OEF) is defined as the fractional difference between the arterial 

and venous oxygen saturation:

(8)

Under normal conditions, arterial blood is close to fully oxygenated (i.e., sO2−artery ≈ 1). 

We can rewrite Eq. (7) as
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(9)

Since the volumetric blood flow rates are conserved, we have

(10)

where dvein is the diameter of the vein, and vvein is the average blood flow speed in the vein.

Assuming W does not change during the brain activity, we have

(11)

From Eq. (11), we can calculate the fractional change in CMRO2 from the fractional 

changes in other parameters measured individually.

Experimental animals

Six female ND4 Swiss Webster mice (Harlan Laboratory, Inc.; 16–30 g, 3–10 weeks old) 

were used for the studies. The laboratory animal protocols were approved by the Animal 

Studies Committee of Washington University in St. Louis. During the experiment, the 

mouse’s temperature was kept at 37 °C by a water-circulating heating pad. An 

intraperitoneal dose of 100 mg/kg α-Chloralose was used for anesthesia, which had a 

relatively mild effect on the brain functions 14. The mouse was then taped to a lab-made 

animal holder, which was mounted to the PAM system. The head of the mouse was fixed in 

a stereotaxic frame. Before imaging, the scalp was surgically removed, while the skull was 

left intact. Bloodstains on the skull surface—even when invisible to naked eyes—could 

generate strong photoacoustic signals; thus, the exposed skull surface was carefully cleaned 

with phosphate buffered saline (PBS) solution. Ultrasound gel was then applied on the skull 

surface to retain moisture and couple the acoustic signals. A water tank filled with de-

ionized water was then placed on top of the mouse head. The membrane at the bottom of the 

water tank was in gentle contact with the ultrasound gel. The translation of the animal holder 

by the motor-stage at a speed of 2–4 mm/s did not induce significant disturbance to the 

animal and the water in the tank.

Electrical stimulations to hindlimbs

Electrical stimulations were introduced by two pairs of needle electrodes inserted under the 

skin of the right and left hindlimbs, respectively. The electrodes were connected to a 

function generator (DS345, Stanford Research Systems, Inc.) through a manual switch. The 

whole procedure consisted of five periods and lasted for five minutes. The first, third and 

fifth periods were resting states, while the second period, from 60 seconds to 80 seconds, 

was left hindlimb stimulation, and the fourth period, from 200 seconds to 220 seconds, was 

right hindlimb stimulation. Each stimulation period consisted of a train of electrical pulses 
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with an amplitude of 2 mA, a pulse width of 0.25 millisecond and a repetition rate of 2 Hz. 

The stimulation period and intensity were controlled without inducing any paw motions. 

Five trials were performed on each mouse.

Automatic vessel segmentation

The PA signal amplitude was extracted through the Hilbert transformation of each 1D depth-

resolved signal. The data was then processed using a customized vessel-segmentation 

algorithm. All the data analysis was performed in 3D. Briefly, a cross-sectional image was 

first converted to a binary image, where the cross-section of each vessel was identified and 

labeled. By tracking the cross-sections of each vessel throughout all the cross-sectional 

images, the vessels were individually labeled and thus segmented. All the segmented vessels 

were visually evaluated and corrected if necessary. The final segmentation information was 

then stored for future use. The vessel segmentation algorithm can be performed along 

different orientations.

The vessel segmentation was used to measure blood vessel diameters and correct the sO2 

calculation. To measure the vessel diameter, we measured the length of a line across the 

vessel at different angles relative to the vessel’s axis, and chose the shortest path length as 

the vessel diameter. To correct the sO2 calculation, any overlapping vessels were separated 

at the junction through segmentation, and the sO2 of each vessel was calculated individually.

PAM of blood flow speed

Line scanning along the axis of a vessel can be used to measure the blood flow speed. 

Moving RBCs imaged at a sufficient rate appear as bright–dark streaks in the resulting 

space–time map. The slope of the bright–dark streaks, measured from the vertical direction, 

is proportional to the centerline (axial) flow speed. The slope is measured by using a 2D 

Fourier transformation of the space–time map. The flow direction can be determined from 

the sign of the slope and the direction of the line scan sweep. To measure high flow speeds 

more accurately, we imaged the same cells with at least five line scans. Therefore, the 

maximum measurable flow speed corresponds to a travel distance of 3 mm within 12.5 ms, 

which translates to a flow speed of ~24 cm/s.

H&E histology

The right hemisphere of a mouse was imaged by PAM with a picosecond pulse energy of 1 

μJ and a pulse repetition rate of 500 kHz. Immediately after the imaging, the mouse was 

transcardially perfused with 0.9% saline followed by 4% paraformaldehyde in PBS. The 

brain was removed and postfixed in 4% paraformaldehyde for 24 h. Coronal sections (5 μm 

thick) were cut with paraffin embedding. Standard H&E staining was performed on the 

sections, which were examined using bright-field microscopy (NanoZoomer, Hamamatsu) 

with a 20× objective (NA = 0.67). In the positive control experiment, the left hemisphere of 

a mouse was illuminated by a continuous-wave laser (GM-CF02-100, Information 

Unlimited, Inc.; wavelength: 532 nm; power: 100 mW; spot size: ~0.25 mm2) for one 

minute to induce thermal coagulation (i.e., burn). The right hemisphere was imaged by PAM 

for one minute with a pulse energy of 1 μJ and a pulse repetition rate of 500 kHz. H&E 

histology was then performed on the brain with the same procedure as above.
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Two-photon microscopy imaging

To rule out the potential for causing vessel leakage by PAM, a mouse was imaged by two-

photon microscopy (Fluoview 1000, Olympus, Inc.) after the PAM imaging (pulse energy: 1 

μJ; pulse repetition rate: 500 kHz). For two-photon microscopy, the skull was thinned to ~30 

μm using a dental drill and a microsurgical blade as previously described 14. FITC-dextran 

solution in PBS (150 μL, 2.5% w/v) was injected via a tail vein before the two-photon 

imaging. A 4× objective (NA = 0.10) was used to find the same imaging area as that in 

PAM, and then a 20× objective (NA = 0.70) was used to acquire high-resolution images 

(excitation wavelength: 800 nm; emission filter wavelength: 495–540 nm). Depth-scanning 

was performed from the skull surface to a depth of 600 μm into the cortex, with a step size 

of 5 μm. The same procedure was also used for validating PAM by using two-photon 

microscopy (Supplementary Fig. 5).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Fast functional photoacoustic microscopy (PAM) of the mouse brain
(a) Schematic of the PAM system. OAC, optical-acoustic combiner; PBS, polarizing beam 

splitter; UT, ultrasonic transducer. (b) Scheme of PAM scanning. 3D imaging is achieved by 

fast MEMS mirror scanning along the x-axis and slow motor-stage scanning along the y-

axis. (c) Sequence of PAM excitation and detection. The picosecond pulse incident on oxy-

hemoglobin (HbO2) results in more saturation and thus a weaker PA signal than the 

following nanosecond pulse, whereas the difference for deoxy-hemoglobin (HbR) is 

negligible. (d) A representative x-y projected brain vasculature image through an intact skull 

(n = 6). (e) A representative enhanced x-z projected brain vasculature image acquired over a 

0.6×0.6 mm2 region with depth scanning, where the signal amplitude was normalized depth-

wise (n = 6). (f) PAM of oxygen saturation of hemoglobin (sO2) in the same mouse brain as 

(d), acquired by using the single-wavelength pulse-width-based method (PW-sO2) with two 

lasers. The averaged sO2 in the skull vessels was lower than that in the cortical vessels. SV, 

skull vessel. (g) Comparison of the PW-sO2 measurements in four blood phantoms and the 
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gas analyzer readings. (h) In vivo PW-sO2 measurements in an artery-vein pair in a mouse 

ear with varied excitation pulse energies. The data in (g) and (h) are averaged within the 

samples, and the error bars are standard deviations.
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Fig. 2. PAM of brain responses to electrical stimulations to the hindlimbs of mice (n = 6)
(a) Fractional PA amplitude changes (shown in yellow) in response to left hindlimb 

stimulation (LHS) and right hindlimb stimulation (RHS), superimposed on the vascular 

image (shown in red). LH/RH, left/right hemisphere. (b) Depth-resolved PA amplitude 

responses. The responding areas in the LH and RH are shown in red and blue, respectively, 

and superimposed on the gray-scale y-z projection image. The signal amplitude in the y-z 

projection image was normalized depth-wise. (c) Fast sO2 imaging before (left panel) and 

during (right panel) stimulations to the left hindlimb. Three 0.3×0.3 mm2 subregions (i, ii 

and iii) are further analyzed (Supplementary Fig. 17). (d) Time courses of the fractional 

changes in the cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral 

metabolic rate of oxygen (CMRO2) in the core responding region. All the sO2 measurements 

were acquired with two lasers. The data in (d) are averaged over five trials on each of the six 

mice, and the error bars are standard errors. Statistics: paired student’s t-test. P values: *** 

<0.001.
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