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Abstract
Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects
optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM
takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical
diffusion limit (~1 mm in soft tissue). With its excellent scalability, PAM can provide high-
resolution images at desired maximum imaging depths up to a few millimeters. Compared with
backscattering-based confocal microscopy and optical coherence tomography, PAM provides
absorption contrast instead of scattering contrast. Furthermore, PAM can image more molecules,
endogenous or exogenous, at their absorbing wavelengths than fluorescence-based methods, such
as wide-field, confocal, and multi-photon microscopy. Most importantly, PAM can simultaneously
image anatomical, functional, molecular, flow dynamic and metabolic contrasts in vivo. Focusing
on state-of-the-art developments in PAM, this Review discusses the key features of PAM
implementations and their applications in biomedical studies.
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1. Introduction
For centuries, the development of optical microscopes has revolutionized fundamental life
science and clinical practice [1]. By magnifying minuscule cellular and subcellular features,
optical microscopes provide a powerful tool for studying tissue components and their
dynamic interactions. Its excellent imaging contrast in soft tissue has made optical
microscopy the most widely used imaging modality in the biomedical community [1].

The visual power of optical microscopy relies on sharp optical focusing. Such power is
rapidly reduced as photons travel deeper into biological tissue, a highly scattering medium
for electromagnetic waves in the optical spectral range. When photons reach the optical
diffusion limit (~1 mm in tissue), they have typically undergone tens of scattering events,
which randomize the photon paths and thus prevent tight focusing [2]. Although modern
optical microscopic techniques have released biologists from the confines of ten-
micrometer-thick ex vivo tissue slices to a world of volumetric in vivo tissue, optical
microscopy is still challenged to image at depths beyond the optical diffusion limit while
maintaining high resolution. For decades, engineers have made scant progress by using pure
optical approaches to fight scattering. Fortunately, the emerging technique of photoacoustic
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tomography (PAT) has pointed out a new direction, converting photon energy into
ultrasound energy on the basis of the photoacoustic effect [3–14].

In PAT, as photons travel in tissue, some of them are absorbed by biomolecules and their
energy is partially or completely converted into heat. The heat then induces an initial
pressure rise, which propagates in tissue as a wideband acoustic wave [15–17]. An
ultrasonic transducer or transducer array detects the acoustic wave to form an image, which
maps the original optical energy deposition in the tissue. Since ultrasonic scattering by tissue
(~1.2 × 10−3 mm−1 in human skin at 5 MHz) [18] is more than three orders of magnitude
weaker than optical scattering (~10 mm−1 in human skin at 700 nm) [2], PAT can achieve
fine acoustic resolution at depths beyond the optical diffusion limit. In addition, since the
photoacoustic signal amplitude is proportional to the optical energy deposition, PAT is
sensitive to the rich optical absorption contrast of tissue.

Several previous Review articles have given comprehensive coverage of PAT, focusing on
instrumentation [4–6], contrast agents [8, 19], or biomedical applications [20–23]. The goal
of this paper is to review a major implementation of PAT, photoacoustic microscopy
(PAM). PAM has achieved spatial resolution ranging from sub-micrometer to sub-
millimeter, at maximum imaging depths ranging from a few hundred micrometers to a few
millimeters [3, 6]. Distinct from reconstruction-based PA computed tomography (PACT)
[24–31], the other major implementation of PAT, PAM employs raster-scanning of optical
and acoustic foci and forms images directly from acquired depth-resolved signals [3]. PAM
maximizes its detection sensitivity by confocally aligning its optical illumination and
acoustic detection. While the axial resolution of PAM is primarily determined by the
imaging depth and the frequency response of the ultrasonic transducer, its lateral resolution
is determined by the combined point spread function of the dual foci. PAM can be further
classified into optical-resolution PAM (OR-PAM), where the optical focusing is much
tighter than acoustic focusing [32], and acoustic-resolution PAM (ARPAM), where the
acoustic focusing is tighter [33, 34]. In addition, photoacoustic endoscopy (PAE) is
considered as a variant of PAM for internal organ imaging, which is typically rotational
scanning based. In PAM, while the depth-resolved acoustic waves render 1D PA images (A-
scan), two-dimensional raster scanning generates 3D PA images (C-scan).

In this Review of PAM, we first discuss the wide length scalability, including the spatial
resolution, maximum imaging depth, and detection sensitivity. Next, we introduce the recent
methods that improve the imaging speed. Third, we present the rich endogenous and
exogenous contrasts. Then, we highlight the diverse functionality of PAM and its
representative applications. In the end, we envision future developments.

2. Multi-scale PAM
The scalability of PAM originates from its optical and acoustic focusing [3]. Within the
optical diffusion limit, OR-PAM has a great advantage over AR-PAM in spatial resolution
because the optical beam can be easily focused to a much tighter spot than the acoustic
detection, owing to shorter optical wavelengths. Beyond the optical diffusion limit, however,
AR-PAM can achieve better focusing, taking advantage of the weaker acoustic scattering.

2.1 Lateral resolution
Like confocal microscopy, OR-PAM can be implemented in reflection mode, transmission
mode or double-illumination mode, depending on the application [32, 35–37]. Figure 1a
shows a representative reflection-mode second-generation OR-PAM system (G2-OR-PAM)
[38]. The nanosecond pulsed laser beam is tightly focused into the tissue by an optical
objective. An optical-acoustic beam combiner composed of a layer of silicone oil
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sandwiched by two prisms is used for the coaxial and confocal alignment of the optical
illumination and acoustic detection. The resultant ultrasound waves are first focused by a
concave acoustic lens ground into the bottom of the combiner (numerical aperture: 0.44),
and then detected by a wideband ultrasonic transducer (central frequency: 50 MHz) attached
to the top surface of the prism. A correction lens is added to offset the optical aberration of
the prism.

Since the acoustic focal diameter (~45 μm) is more than ten times as wide as the optical
focal spot, the detection sensitivity within the optical focus is approximately uniform.
Therefore, the lateral resolution of OR-PAM RL,OR is given by the diffraction-limited spot
size of the optical focus [3, 35]

(1)

where λO is the optical wavelength and NAO is the numerical aperture of the optical
objective. The constant 0.51 reflects the full width at half maximum (FWHM) of the optical
focal spot in light intensity. For a wavelength of 570 nm and an NAO of 0.13, the lateral
resolution of G2-OR-PAM was experimentally determined to be 2.56 μm, which agrees to
Eq. (1) [38]. This resolution is sufficient to resolve the cortical capillaries (diameter: 5–10
μm) of a nude mouse with the scalp removed but skull intact (Figure 1b).

The lateral resolution of OR-PAM can be scaled down by either increasing the objective
NAO or using a shorter excitation wavelength, with the maximum imaging depth scaled
accordingly. For example, with a wavelength of 532 nm and an NAO of 1.23 implemented
with water immersion, sub-wavelength PAM (SW-PAM) has achieved a lateral resolution of
220 nm with a maximum imaging depth of 100 μm [35]. SW-PAM is able to resolve single
organelles such as the melanosomes in a melanoma cell (Figure 1c) [35]. Alternatively, with
a wavelength of 266 nm and an NAO of 0.2, ultraviolet OR-PAM (UV-PAM) has achieved a
lateral resolution of 0.7 μm with a maximum imaging depth of 100 μm [39]. UV-PAM can
image the DNA and RNA in single cell nuclei without staining. The lateral resolution of
OR-PAM can potentially be further improved by using an oil-immersion objective with the
maximum reported NAO of 1.6.

Unlike OR-PAM, AR-PAM is typically implemented in reflection mode because it is mainly
designed for thick objects [33, 34, 40, 41]. Figure 1d shows a representative dark-field AR-
PAM system [33, 34]. The laser beam from a multi-mode optical fiber passes through a
conical lens and provides a ring-shaped illumination area. The beam is then weakly focused
into the tissue, with the focal region coaxially overlapping the focus of an ultrasonic
transducer positioned in the dark center of the illumination. The acoustic focusing is
achieved by a concave acoustic lens affixed to the transducer surface. Depending on the
system design, a geometrically focused transducer can be used instead. The dark-field
configuration can greatly reduce the surface signals (e.g., from melanin in the epidermis of
human skin), and facilitate confocally aligning the optical and acoustic beams. In addition to
the dark-field AR-PAM, fiber-based bright-field AR-PAM has also been developed [41].
Since the optical beam even in the absence of scattering (>2 mm) is much wider than the
acoustic focus, the lateral resolution of AR-PAM is given by [42]

(2)

where NAA is the numerical aperture of the ultrasonic transducer, vA is the speed of sound in
the medium, and λA and fA are the central wavelength and frequency of the PA signal,
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respectively. The constant 0.71 reflects the FWHM of the acoustic focal spot in acoustic
amplitude. Note that this constant is about  times that of the optical focus in Eq. (1),
because it is the acoustic amplitude rather than the intensity that is detected by the ultrasonic
transducer. With an NAA of 0.44 and fA of 50 MHz, the dark-field AR-PAM in Figure 1d has
achieved a lateral resolution of 45 μm with a maximum imaging depth of 3 mm. AR-PAM is
able to resolve the major cortical blood vessels in a living mouse through intact scalp and
skull (Figure 1e) [43].

As we can see from Eq. (2), the lateral resolution of AR-PAM can be scaled by varying the
acoustic fA and NAA. Typically, with nanosecond pulsed excitations, fA is largely determined
by the acoustic attenuation in tissue. The frequency of the ultrasonic transducer is chosen to
match the detectable signal frequency. Although high frequency waves offer finer lateral
resolution, they are attenuated faster, resulting in shallower imaging depth. A typical
constant accounting for the frequency-dependent acoustic attenuation is 0.6 dB cm−1 MHz−1

in soft tissue [44]. Conversely, low frequency ultrasound results in deeper penetration. For
example, by using a 5 MHz ultrasonic transducer, deep-penetration photoacoustic
macroscopy (PAMac) relaxes the lateral resolution to 560 μm and extends the maximum
imaging depth to a few centimeters, as shown in Figure 1f [45–47]. Since the naked eye can
already discern features with 50 μm resolution, PAMac is generally not classified as
microscopy but is covered in this Review to demonstrate the scalability in the acoustic
domain.

It should be pointed out that the lateral resolution of PAM is the finest at the depth
corresponding to the focus of the optical objective for OR-PAM, or the acoustic lens for
AR-PAM. At the two ends of the focal zone, the lateral resolution degrades by  due to
diffraction. The focal zone for OR-PAM can be computed as ZOR = 1.8λO/NAO

2. The focal
zone for AR-PAM can be computed as ZAR = 2.4λA/NAA

2. At the ends of twice the focal
zone, the lateral resolution degrades by a factor of 2. The prefactors in the two formulas are
different because the former is based on light intensity and the latter is based on acoustic
amplitude instead of intensity.

To maintain high lateral resolution over an extended depth range, depth scanning can be
implemented at the expense of imaging speed. Alternatively, a virtual-detector-based
synthetic-aperture focusing technique, combined with coherence weighting, can be used for
AR-PAM [48, 49]. Furthermore, limited-diffracting Bessel beams can be used to extend the
focal zone at the expense of power delivery efficiency and sidelobe suppression for OR-
PAM [50, 51], where strong sidelobes degrade imaging contrast.

2.2 Axial resolution
For axial resolution, OR-PAM and AR-PAM share the same formula, RA,OR/AR = 0.88vA/
ΔfA, which is based on the assumption that the PA response to a point target follows a
Gaussian frequency profile [3]. ΔfA is the PA signal bandwidth, which can be approximated
as the detection bandwidth of the ultrasonic transducer and is often proportional to its central
frequency fA. However, this is based on the assumption that the PA signal bandwidth is
much wider than the detection bandwidth. As mentioned above, high-frequency components
of acoustic waves are attenuated faster than low frequency ones, and thus, PA signal
bandwidth decreases with imaging depth, resulting in worse axial resolution at greater
depths. Using ultrasonic transducers with a central frequency of 50 MHz and a one-way -6
dB bandwidth of 100%, G2-OR-PAM in Figure 1a and dark-field AR-PAM in Figure 1d
have achieved the same axial resolution of 15 μm, despite their different lateral resolutions.

In addition to the traditional wideband piezoelectric ultrasonic transducers, a thin-film
microring resonator has been used for optical detection of acoustic waves in OR-PAM [52,
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53]. The acoustic bandwidth of the microring resonator can potentially reach 1 GHz, which
can lead to an axial resolution of down to 2 μm at the expense of penetration. Similarly, a
Fabry-Perot polymer film ultrasound sensor with an acoustic bandwidth of 100 MHz has
been explored for OR-PAM, where an axial resolution of 10 μm has been achieved [54, 55].

2.3 Maximum imaging depth
The maximum imaging depth of OR-PAM is limited to ~1 mm in tissue due to optical
scattering (Figure 2a) [38]. By contrast, the maximum imaging depth of AR-PAM within the
reach of excitation photons is primarily limited by ultrasonic attenuation, thus highly related
to the optical wavelength and ultrasound frequency (Figure 2b) [33]. The optical attenuation
by tissue includes both absorption and scattering [2]. Compared with absorption, scattering
has a relatively weak dependence on wavelength. In general, an excitation wavelength
within the tissue optical window around 700 nm helps achieve a deeper penetration because
of the relatively low absorption of both hemoglobin and water, two major absorbers in tissue
[2, 56]. The maximum imaging depth can also be improved when the sample is illuminated
from multiple directions, as demonstrated by double-illumination PAM (DI-PAM) [57]. It
has been shown that the maximum imaging depth of PAM is approximately proportional to
its lateral resolution [3]. So far, by varying the lateral resolution from 220 nm to 560 μm,
maximum imaging depths from 100 μm to 4 cm have been achieved by various PAM
systems and PAMac.

With its high scalability, PAM can achieve a depth-to-resolution ratio (DRR) of ~100 over a
wide range of depths. The DRR is defined as the ratio of the maximum imaging depth to the
axial resolution, representing the number of resolution pixels in the depth dimension. As an
exception, the DRR of SW-PAM or UV-PAM is much less than 100. In these cases, the
strong optical focusing or the strong UV absorption reduces the imaging depth, and the
available bandwidth of ultrasonic detection limits the axial resolution. As mentioned above,
by using an acoustic detector with a wider bandwidth, OR-PAM can potentially achieve a
better axial resolution [58].

2.4 Detection sensitivity
The detection sensitivity of PAM is affected by several factors, including the incident laser
fluence, imaging depth, optical wavelength, absorption cross section of the target, and
detection efficiency of the ultrasonic transducer [59]. When the incident intensity is much
less than the saturation intensity of the target, the detection sensitivity is approximately
proportional to the fluence [60, 61]. Here, saturation intensity means the laser intensity that
reduces the absorption coefficient to half of its original value. As the imaging depth
increases, laser fluence decreases exponentially.

Two parameters can be used to quantify the detection sensitivity: noise-equivalent molar
concentration (NEC) and noise-equivalent number of molecules per resolution voxel (NEN).
The latter is the product of the former and the resolution voxel volume, associated with the
noise from a voxel. Since hemoglobin is one of the most imaged contrast agents by PAM,
the detection sensitivity of hemoglobin for representative PAM and PAMac systems is
quantified here using in vivo data reported in the literature (Figure 3).

For a fair comparison, the incident fluence of each system is scaled to the ANSI (American
National Standards Institute) limit for the skin at 570 nm (20 mJ/cm2 at the skin surface)
[62]. For SW-PAM where the data was acquired at 532 nm, the sensitivity is scaled
according to the ratio of the absorption coefficients at the two wavelengths. Among the four
PAM and PAMac systems, SW-PAM has the best sensitivity (NEC: ~0.38 μM; NEN: ~2.7 ×
10−4 fmol). Not surprisingly, as shown in Figure 3, both NEC and NEN increase with the
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imaging depth, another scalability of PAM. Furthermore, from the four systems shown in
Figure 3, two empirical formulas can be fitted to relate NEC (μM) and NEN (attomol) with
imaging depth z (mm):

(3)

(4)

We note that the difference between the powers of z is ~3, which suggests that the resolution
voxel volume is approximately proportional to the cubic of the imaging depth.

It should be mentioned that hemoglobin is chosen here mainly because it is the only contrast
agent that has been studied by all the PAM systems. The detection sensitivity can be
enhanced by using exogenous contrast agents with greater absorption cross sections [63–65].
For example, an NEC of ~250 nM and an NEN of ~5 fmol have been achieved by using
IRDye800-c(KRGDf) for PACT imaging at ~2 mm depth in tissue phantoms at 784 nm,
with a 2.25 MHz unfocused ultrasonic transducer [65]. While the absorption cross sections
of oxy-hemoglobin and deoxy-hemoglobin at 570 nm are both ~1.7 × 10−16 cm2, the
absorption cross section of IRDye800 at 784 nm is ~1.0 × 10−15 cm2, about 6 times that of
hemoglobin. Furthermore, an NEC of ~17 pM and an NEN of ~6 zeptomol (i.e., ~6 × 10−21

mol) have been demonstrated by using PEGylated nanoshells for transdermal and
transcranial PACT of a rat brain at 800 nm, with a 10.4 MHz unfocused ultrasonic
transducer [64]. The absorption cross section of the nanoshell at 800 nm is ~1.1 × 10−10

cm2, which is 6.4 × 105 times as large as that of hemoglobin at 570 nm.

The scalability of representative PAM systems is summarized in Table 1. By adjusting the
system configuration, PAM can be tuned over a wide range of resolution, imaging depth and
detection sensitivity, depending on the application.

3. PAM imaging speed
As a high-resolution imaging modality, PAM requires 2D raster scanning for 3D imaging.
Compared with confocal microscopy and two-photon microscopy, PAM does not need depth
scanning. Nonetheless, fast imaging speed is desirable to capture dynamics and eliminate
motion artifacts caused by breathing and heart beating.

The traditional PAM systems with ball-screw mechanical scanning have a typical cross-
sectional (B-scan) scanning rate of 1 Hz [33–35]. This translates into an image acquisition
time of 7 min for OR-PAM or 1 min for dark-field AR-PAM over a 1 × 1 mm2 imaging
area. Finer resolution PAM systems, such as SW-PAM, need more pixels per unit area,
resulting in an even longer data acquisition time [35].

Recently, great efforts have been invested in improving imaging speed, especially for OR-
PAM [66–73]. Optical scanning of the excitation laser beam by 2D galvanometer mirrors is
used to replace the relatively slow mechanical scanning. As a result, the B-scan rate has
been increased up to 1800 Hz over a scanning range of ~100 μm [66, 67]. Fast in vivo
imaging of the microcirculation in mouse skin has been demonstrated, with an 18 Hz
volumetric frame rate [66]. However, unlike optical microscopy, where both the
illumination and detection beams can be simultaneously steered, the acoustic beam in PAM
cannot be scanned by the same mirrors operating in air. The optical scanning is therefore
restricted to the focal spot of the static ultrasonic transducer, resulting in a scanning range of
no more than 100 μm. Besides, the detection sensitivity is not constant within the acoustic
focus. To solve the above issues, one method is to use unfocused ultrasonic transducers [68,
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70]. This method relaxes the scanning range to 6 mm, but the acoustic detection sensitivity
is reduced by ~40 dB. Another choice is to use cylindrical focusing as a compromise
between spherical focusing and unfocusing [74]. Fast optical scanning is performed along
the line focus of the transducer, and slow mechanical scanning is performed orthogonally.
This hybrid scanning method extends the scanning range to ~4 mm with a sensitivity loss of
~20 dB.

To increase the imaging speed while maintaining the detection sensitivity, a voice-coil
scanning OR-PAM has been developed [71]. By integrating both the optical illumination
and acoustic detection on a single-piece scanning head, voice-coil PAM has achieved a B-
scan rate of 40 Hz over a range of 1 mm, without sensitivity loss. However, the scanning
speed is largely limited by the mass of the scanning head and the driving force from the
voice coil. In addition to OR-PAM, voice-coil scanner has also been used for improving the
imaging speed of AR-PAM [75, 76]. Recently, a wide-field fast-scanning OR-PAM
enhanced by a water-immersible MEMS (i.e., microelectromechanical system) scanning
mirror (MEMS-OR-PAM) has been proposed and implemented [72, 77]. Because it uses an
electromagnetic driving force, the whole MEMS scanning system can be submerged in
water. By simultaneously scanning the excitation laser beam and resultant acoustic waves,
MEMS-OR-PAM maintains confocal alignment and thus high sensitivity over a large field
of view. This system has achieved a B-scan rate of 400 Hz over a 3 mm range [72].

PAM can also improve its imaging speed through parallel acoustic detection by ultrasound
transducer arrays. In a multi-focal OR-PAM system, twenty diffraction-limited focal spots
are simultaneously excited, and the resultant PA signals are detected by a 48-element
ultrasound linear array [78]. Limited by the 6:1 multiplexing in data acquisition, the imaging
speed is eventually improved by three to four times, compared with that in conventional
single-focus and single-detector OR-PAM. However, this method needs twentyfold more
laser energy than conventional OR-PAM. Besides, because of the inverse reconstruction of
PA images, reconstruction artifacts due to the limited detection aperture may degrade the
image quality.

Different fast-scanning methods for PAM imaging are summarized in Table 2. Currently, it
is the laser repetition rate that limits the imaging speed in PAM. Theoretically, real-time
(≥30 Hz) volumetric imaging over a 1 × 1 mm2 surface area needs a 5 MHz laser with a
pulse energy of 100 nJ for OR-PAM, or a 50 kHz laser with a pulse energy of 100 μJ for
AR-PAM. To avoid interference between PA waves excited by consecutive pulses, it is the
acoustic flight time that limits the ultimate imaging speed. For example, to image a sample
with a thickness of 1 mm, the minimum time interval between consecutive pulses should be
0.67 μs, which corresponds to a maximum laser repetition rate of 1.5 MHz.

4. Multi-contrast PAM
Although PAM and fluorescence microscopy both start with photon excitation of molecules,
PAM can potentially image all molecules. By contrast, fluorescence microscopy can image
only a small fraction of molecules, those that exhibit fluorescent relaxation.

4.1 Endogenous contrast agents
In biomedical studies, the advantages of endogenous contrast agents are undeniable. They
do not induce perturbations to original tissue microenvironment; they are nontoxic and do
not require costly and time-consuming regulatory approval. As shown in Figure 4,
endogenous absorbers in biological tissue can be classified into two groups, based on their
primary absorbing wavelengths.
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In the ultraviolet (UV) (180 nm to 400 nm) and visible (400 nm to 700 nm) regions (UV-
VIS), the primary absorbers for PA imaging include DNA/RNA [39, 79], cytochrome c [80,
81], myoglobin [80], hemoglobin [82] and melanin [83]. Among them, DNA and RNA
absorb mainly in the UV region. By exciting unlabeled DNA and RNA at 266 nm, UV-PAM
has achieved noninvasive imaging of cell nuclei in vivo without staining (Figure 5a) [39]. As
cancer cells typically have abnormal cell density and nuclear morphology, UV-PAM can
potentially be used for histology-free early cancer diagnosis and intraoperative cancer cell
detection [84]. Nevertheless, the potential cell damage caused by overexposure to UV light,
such as direct and indirect DNA breakage, need to be carefully controlled [85]. If UV-PAM
is used to tumor demarcation in the operating room, the exposed tissue can be removed
surgically. Cytochrome c in cytoplasm has also been imaged [81]. PAM of both cell nuclei
through DNA/RNA absorption and cytoplasm through cytochrome c absorption provides an
in vivo label-free equivalent to conventional ex vivo hematoxylin and eosin histology, where
hematoxylin stains cell nuclei and eosin labels cytoplasm.

As the most abundant protein in blood and the major oxygen carrier, hemoglobin has been
extensively imaged by PAM for a number of hemodynamic parameters, such as total
hemoglobin concentration, oxygen saturation, blood flow speed and the metabolic rate of
oxygen [82]. In the visible spectral range, the predominant optical absorption of hemoglobin
over other absorbers (e.g., water and lipid) enables highly sensitive PAM imaging of
microvasculature and even single red blood cells, with an SNR of more than 40 dB (Figure
5b) [35]. Functional and metabolic PAM imaging of microvasculature assists comprehensive
understanding of tumor microenvironment, such as neovascularization, hypoxia and
hypermetabolism [82, 86]. In addition to cancers, PAM has also been used to image
microvasculature damage induced by diabetes, another common cause of death in the US
[87].

Melanin is the major light absorbing molecule in melanotic melanoma, the foremost killer
among skin cancers [88]. Due to its extremely high optical absorption in the UV-VIS region
(e.g., ~10000 times that of water and ~100 times that of oxygenated hemoglobin at 700 nm),
melanin in melanosomes is an ideal contrast agent for early melanoma detection by PAM
[33, 82, 83]. In animals, PAM has been successfully applied to noninvasive in vivo detection
of circulating melanoma cells in blood stream and chronic monitoring of melanoma growth,
with a penetration depth up to 4 mm and an SNR of 30 dB [83, 89–92]. In tissue
engineering, spatial distribution of the melanoma cells in the scaffold has also been imaged
by PAM [93]. In addition to melanoma detection, melanin also provides good contrast for
PAM imaging of the retinal pigment epithelium (RPE) layer in rat eyes with an SNR of 23
dB (Figure 5c) [68, 94]. More importantly, the high optical absorption of melanin allows a
laser incident fluence of 0.1 μJ/cm2, which is below the ANSI limit for eye imaging (0.5 μJ/
cm2). Since RPE has critical functions in vision, PAM holds great promise for both
fundamental investigation and clinical diagnosis of eye diseases, such as age-related macular
degeneration [68, 94].

In the near-infrared region (700 nm to 1400 nm), lipid [35, 95, 96], water [97] and glucose
[98] are the major absorbers for PA imaging. Abnormal lipid, water or glucose
concentrations usually indicate an unhealthy status. For example, lipid is a common
constituent in atherosclerotic plaques, the location and area of which are closely related to
the progression of atherosclerosis [35, 95, 99]. PAM can image lipid and water with high
resolution in relatively deep tissue, taking advantage of its near-infrared excitation [35, 95,
97]. Blood glucose level is a standard index for diabetes diagnosis and treatment evaluation.
Photoacoustic sensing of blood glucose concentration has been demonstrated both in vitro
and in humans, with good correlations with the clinical measurements [98]. Compared with
the absorbers in the UV-VIS region mentioned above, lipid, water and glucose have been
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less explored by PAM. It is partially because wavelength-tunable high repetition rate lasers
typically have low energy in the spectral region beyond 900 nm. OPO or Ti:Sapphire lasers
can provide the required optical wavelengths and energy, but they typically have a pulse
repetition rate no more than 10 Hz. Nevertheless, with more advanced laser systems, PAM is
expected to engage more in imaging near-infrared absorbers.

4.2 Exogenous contrast agents
The advantage of exogenous contrast agents over endogenous ones lies in three aspects [8,
19]. First, the chemical and optical properties of exogenous contrast agents can be
specifically engineered for different applications. Second, exogenous contrast agents can be
conjugated with targeting molecules (e.g., antibodies) to selectively bind to disease-specific
cell surface receptors. Third, exogenous contrast agents can be concurrently used for
targeting, imaging and therapeutic purposes. So far, organic dyes, nanoparticles, fluorescent
proteins and reporter gene products have been used as PAM contrast agents, enabling
chemical, molecular and genetic imaging. To achieve a deep penetration depth and avoid
background water absorption, most of these exogenous contrasts work in red or near-
infrared (less than 900 nm) spectral regions.

Organic dyes have small molecular sizes (≤ 3 nm) and can be rapidly cleared by glomerular
filtration [100]. PEGylated ICG (ICG-PEG) has been used by AR-PAM to enhance cortical
vasculature imaging in rats [64]. IRdye800 has been used for noninvasive brain tumor
imaging in mice [65]. Evans blue has been used to enhance capillary imaging in mouse ears
by OR-PAM (Figure 5d) [101]. Methylene blue has been used for sentinel lymph node
(SLN) imaging for cancer biopsy [102]. 2-NBDG, an optical glucose analog, has been used
for brain metabolism study [103]. In general, the PA detection sensitivity of organic dyes is
at the micromolar level at 5 cm depth [64].

Nanoparticles typically have diameters greater than 10 nm, resulting in good optical
absorbance but slow clearance from the body [104–111]. Their absorption cross-sections can
be orders of magnitude larger than those of organic dye molecules due to plasmon
resonance. Their long-circulating feature can be beneficial for cancer drug delivery [100].
So far, a variety of nanoparticles with different sizes, shapes and compositions have been
used as PAM contrast agents [8]. Because of their inert chemical properties, gold
nanoparticles have been extensively investigated for tumor targeting (Figure 5e) [91, 109,
112, 113], cortical vasculature enhancement [114] and SLN mapping [115–117]. The PA
detection sensitivity of nanoparticles is at the picomolar level [64]. Unlike organic dyes,
most nanoparticles are still awaiting FDA approval for clinical translation. More studies are
still needed to assess their short-term toxicity and long-term effects of accumulation and
chronic exposure [118, 119].

The development of genetically encoded fluorescent proteins (FP) has revolutionized
molecular cell biology by tracking the dynamics of specific protein. Unlike organic dyes and
nanoparticles, FPs are expressed in living cells and do not need complex exogenous
delivery. Compared with fluorescence microscopy, PAM can provide deeper tissue imaging
of FPs, including eGFP, mCherry and iRFP [120–122]. For example, as shown in Figure 5f,
PAMac was used to image a mouse mammary gland tumor expressing iRFP (shown in blue)
and its surrounding blood vessels (shown in red) at 4 mm depth beneath the skin surface
[122]. The detection sensitivity of FPs is at the nanomolar level [8].

In addition to FPs, other non-fluorescent reporter gene products can also be imaged by
PAM, which makes PAM more flexible than fluorescence imaging. For example, PAM
imaging of LacZ gene activity has been demonstrated by using the blue product as the
contrast agent, which was produced from LacZ encoded β-galactosidase and locally injected
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X-gal [123–125]. Given the strong optical absorption of melanin, a few groups have been
working on transferring genes to non-melanogenic tumor cells to encode melanin as the
contrast agent for PAM imaging [126–128].

5. Multi-parameter PAM
Originating from optical absorption, photoacoustic signals can be used to derive a number of
physical, chemical and functional parameters of the absorber and its microenvironment.
Since a single parameter may not be able to fully reflect the true physiological and
pathological conditions, multi-parameter PAM can provide a more comprehensive
understanding, thus benefiting the diagnosis, staging and treatment of diseases.

Total concentration of hemoglobin (CHb) is the most commonly used blood perfusion index.
At the isosbestic wavelengths of hemoglobin (e.g., 498 nm, 568 nm and 794 nm), the PA
signal amplitude reflects the CHb distribution in relative values, regardless of the
oxygenation level of hemoglobin (Figure 6a) [82]. Because PA amplitude is also related to
the local laser fluence, a phantom calibration or additional correction is needed to obtain the
absolute CHb.

Oxygen saturation of hemoglobin (sO2) is an important indicator of tissue oxygenation and
viability. In particular, hypoxia is a hallmark of late stage cancers [129]. A large hypoxic
region usually correlates with poor prognosis. From fluence-compensated PAM
measurements at two or more wavelengths, the relative concentrations of the two forms of
hemoglobin (oxy-hemoglobin HbO2 and deoxy-hemoglobin HbR) can be quantified through
spectral analysis, and thus sO2 can be computed (Figure 6b) [82, 130–136].

In practice, however, accurate laser fluence compensation for absolute CHb and sO2
quantification can be challenging. Although it is less problematic for OR-PAM because of
the superficial targeting depth, the wavelength-dependent light attenuation in deep tissue
makes it difficult for AR-PAM to compensate for the local fluence. One solution is to
incorporate empirical correction or calibration factors that account for the fluence
distribution. For example, the dependence of fluence on optical wavelength can be
calibrated by inserting a black plastic absorber beneath the skin of a mouse at the targeted
depth [33]. Although useful for small animal models, this method, however, is invasive, thus
hard to implement for human studies. Another potential solution is to incorporate PAM with
diffuse reflectance spectroscopy [137] or diffuse optical tomography (DOT) [138], which
can quantify the tissue optical properties or the fluence distribution. In addition, other
model-based inversion methods have also been explored to mathematically reconstruct the
tissue optical properties from the detected PA signals, which, however, are typically
computationally intensive [139, 140]. Alternatively, the frequency spectra of PA signals at
multiple optical wavelengths can also be used to fit for absolute concentrations of HbO2 and
HbR, and thus CHb and sO2, where fluence compensation is not required [141, 142]. In this
calibration-free method, multi-wavelength measurements are needed to cancel out the
influences of ultrasonic transducer bandwidth and acoustic attenuation.

Blood flow helps keep tissue alive by distributing nutrients, oxygen and other products of
metabolism. Using the excellent absorption contrast provided by hemoglobin, PAM can be
used to measure blood flow with better contrast to noise ratio than that achieved by
backscattering-based methods such as Doppler optical coherence tomography (OCT) and
Doppler ultrasound [143–147]. Photoacoustic Doppler flowmetry measures the axial flow
speed on the basis of Doppler frequency shift, by using either intensity-modulated
continuous-wave (CW) excitation [148, 149] or tone-burst excitation [150]. While the CW
method provides high flow measurement accuracy without depth resolution, the tone-burst
method trades depth resolution for flow measurement accuracy. Correlation-based
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photoacoustic flowmetry measures the transverse or axial flow speeds by performing
temporal autocorrelation [151, 152] or cross-correlation [153] over consecutive
photoacoustic waveforms, respectively. Taking advantage of its high resolution, OR-PAM
has been successfully used to measure blood flow in vivo, with the penetration depth limited
to ~1 mm (Figure 6c) [61, 154, 155]. Although successful in OR-PAM, none of the above
methods have been demonstrated for blood flow imaging in AR-PAM yet [156]. Likely, as
PAM resolution becomes greater than the spatial separation between individual RBCs or
groups of RBCs, blood approximates a spatially homogeneous solution. The signal
fluctuations induced by RBC flowing are thus suppressed. Therefore, it remains a challenge
to implement the above methods for deep flow imaging [156, 157]. Photoacoustic thermal
flowmetry measures the flow speed based on the thermal diffusion, a method that does not
rely on the presence of resolvable particles [156]. Similarly, PA imaging of wash-in and
wash-out dynamics of nanoparticles or organic dyes can also provide flow information
[158–160]. However, these two methods would also have difficulty in deep flow
measurement, because they rely on clearly defined illumination boundaries which are
difficult to maintain in the optical diffusive regime.

The metabolic rate of oxygen (MRO2) directly reflects the oxygen consumption of tissue.
Almost all diseases, especially cancer and diabetes, manifest abnormal oxygen metabolism.
Hypermetabolism is a hallmark of all kinds of cancers [129, 161]. Currently, by virtue of
measuring all parameters required for MRO2 quantification, OR-PAM, as a single modality,
is the only imaging technique that can noninvasively quantify absolute MRO2 using
endogenous contrast [5, 82]. Moreover, the high resolution of OR-PAM enables the MRO2
studies of the tumor microenvironment. The preliminary results obtained by OR-PAM have
demonstrated its early cancer detection capability (Figures 6d–f). This new technology has
great potential to advance metabolism-associated studies such as oncology and neurology.
Alternatively, PAM can be integrated with Doppler OCT or Doppler ultrasound for MRO2
quantification, where PAM is used for blood oxygenation measurement while Doppler OCT
or Doppler ultrasound quantifies blood flow [162, 163].

In addition to measuring the electronic absorption of molecules, PAM is also capable of
measuring their overtone vibrational absorption in the near-infrared spectral region, which
can reveal the selective tissue composition and its molecular structure, such as lipid in artery
walls. PAM has been used to image the second overtone of the CH bond stretch of fat bodies
in a 3rd-instar larva of Drosophila melanogaster in vivo at 1200 nm, demonstrating its
chemically-selective imaging capability (Figure 6g) [95]. PAM can also be combined with
stimulated Raman excitation for improved chemical specificity [96]. However, vibrational
PAM and stimulated Raman PAM may both suffer from lower signal strength compared
with traditional PAM, because the overtone transitions and Raman shift are orders of
magnitude weaker than electronic transitions. To some extent, this drawback is overcome by
excitation in the near-infrared region, where ANSI allows higher incident laser intensity. In
addition, PAM has been used for imaging Förster resonance energy transfer (FRET), the
efficiency of which reflects intra- and inter-molecular distances in the 1 to 10 nm range
[164]. Compared with fluorescence FRET imaging, PA FRET imaging is expected to apply
in deeper tissue.

Absorption relaxation time is an important material property that describes the average time
that an excited molecule spends in the excited state before returning to its ground state.
Since absorption relaxation time is typically at the picosecond level, it is usually measured
by using an expensive femtosecond or picosecond laser. By contrast, by fitting the saturation
curve of the signal amplitude as a function of incident laser intensity, PAM is able to
measure the picosecond absorption relaxation times of natural materials, such as HbO2 and
HbR, in reflection-mode with a nanosecond laser (Figure 6h) [60, 165]. Based on the
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relaxation time contrast, PAM can even measure sO2 in a mouse ear in vivo using a single
wavelength at 576 nm (Figure 6i) [165]. Compared with the traditional two-wavelength sO2
measurement, on one hand, this relaxation time based method is more cost-effective because
single wavelength lasers are typically much more compact and less costly than wavelength-
tunable lasers. On the other hand, to better fit the saturation curve, more than two
measurements with different incident intensities are typically required, which prolongs the
image acquisition time [165]. Besides, to observe saturation requires much stronger incident
intensities, which may exceed the ANSI limit [165]. This, however, can be overcome by
shortening the pulse width.

Two other material parameters, dichroism [166] and magnetomotion [167, 168], can also be
used by PAM to enhance imaging specificity. In dichroism PAM, the distinct absorption
responses of dichroic molecules (e.g., amyloid plaques and retinal nerve fibers) to
differently polarized optical irradiations enable differential detection, which can eliminate
the non-dichroic background and greatly enhance specificity. As a demonstration, the linear
dichroism of Congo Red labeled amyloid plaques was imaged ex vivo (Figures 7a–b) [166].
In magnetomotive PAM, the displacement of magnetic nanoparticles (MNPs) under the
manipulation of an external magnetic field enables motion detection, which can suppress the
non-magnetomotive background and thus enhance the specificity remarkably (Figures 7c–
d). Notwithstanding, both dichroism PAM and magnetomotive PAM are applicable to only a
limited number of targets. Besides, with increasing imaging depth, dichroism PAM may also
suffer from optical depolarization by tissue [169].

In addition to absorber properties, PAM can also measure the microenvironment properties,
including pH and partial oxygen pressure (pO2) [170, 171]. A pH-sensitive fluorescent dye
(SNARF-5F carboxylic acid) was used as the contrast agent for PAM imaging of pH in
tissue phantoms at depths up to 2 mm [171]. The pH was computed from the relative
concentrations of acidic and basic populations of SNARF-5F molecules, which were
spectrally unmixed using a two-wavelength measurement at 581 nm and 594 nm, like that
for sO2 quantification. Physiologically realistic pH values from 6.78 to 7.80 were measured
by PAM with an error less than 2%. The challenge ahead of pH measurement in vivo is to
compete with the strong absorption of blood. Besides, the accuracy of pH measurement is
also affected by the wavelength-dependent light attenuation by tissue.

An oxygen-sensitive dye Pd-tetra-(4-carboxyphenyl)tetrabenzoporphyrin dendrimer (G2)
has been used as the contrast agent for PAM measurement of pO2 [170]. The
phosphorescent lifetime of the G2 dye is shortened in the presence of oxygen. A pump-
probe method has been used to measure the G2 lifetime. PA signal amplitude induced by the
probe beam reflects the remaining population of excited G2 molecules at the intermediate
triplet state. By varying the delay time between the probe beam (950 nm) and pump beam
(630 nm), an exponential decay curve of PA amplitude can be obtained, from which the dye
lifetime can be fitted for. Compared with the spectroscopic sO2 measurement, the lifetime
based pO2 measurement does not rely on the absolute PA amplitude, thus the measurement
accuracy is not affected by heterogeneous optical properties and inhomogeneous light
fluence in the background. Nevertheless, this method may suffer from weak PA signal
strength due to the low fluorescence quantum yield (~10%) of the dye. In addition to G2
dye, other oxygen-sensitive dyes such as Pt(II) octaethylporphine and methylene blue were
also explored by PAM for oxygen sensing [172, 173].

The different parameters measured by PAM are summarized in Table 3.
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6. PAM applications in biomedicine
By offering high-resolution images with unique optical contrast, PAM has so far been
applied to numerous preclinical and human studies, including vascular biology [174–176],
oncology [65, 83, 124, 151, 177–180], neurology [64, 132, 181, 182], ophthalmology [68,
70, 94, 135, 183], dermatology [184–188], gastroenterology [36, 57, 189–191], and
cardiology [35, 99, 192, 193]. In the interest of brevity, only a few representative
applications are highlighted in this paper. Information about additional applications can be
found in recent Reviews [8, 20, 21, 157].

Microcirculation provides exchange sites for gases, nutrients, metabolic wastes, and thermal
energy between blood and tissue. The high spatial resolution of PAM enables the
microcirculation studies of small animal models, and provides insight into disease-induced
abnormal microcirculations in humans. AR-PAM has been used to study the hemodynamic
changes induced by electrical stimulations in the mouse brain [181]. OR-PAM was used to
study the microvascular vasodilation and vasomotion in a mouse ear in response to
oxygenation challenges [133] (Figures 8a–b), the sO2 mapping at the capillary level in the
mouse brain, eye and small intestine [132, 135, 191], the Evans blue dye-enhanced capillary
network imaging in the mouse ear [101], blood pulse wave propagation measurement [194]
and in vivo zebrafish larva imaging [195].

Chronic imaging of the same animal both eliminates inter-animal heterogeneity, and allows
direct visualization of long-term physiological and pathological progression (e.g., aging and
carcinogenesis). The noninvasiveness of PAM is particularly well suited for chronic imaging
of small animal models, using endogenous contrast agents (e.g., melanin and hemoglobin).
For example, AR-PAM has been used to continuously monitor the growth of a melanoma in
a mouse brain for two weeks [83]. OR-PAM has been used for serial imaging of
neovascularization in the same mouse for two months (Figures 8c) [174, 175]. OR-PAM has
also been used to monitor the healing process of laser-induced microvascular lesions in a
mouse ear for over 12 days [134]. The chronic imaging capability of PAM enables minimal
animal preparation and reduces the number of animals required for statistical study.

In living organisms, biological events happen at time scales as short as milliseconds. PAM, a
fast imaging modality, has been applied to various dynamic studies. For example, a linear-
array-based real-time PAM has been used to studies of cardiovascular dynamics of a mouse
heart [193], blood pulsatile dynamics in a human forearm [188], and uptake and clearance
dynamics of Evans blue dye in SLNs of a mouse [196]. Furthermore, as shown in Figure 8d,
the wash-in dynamics of Evans blue dye in the microcirculation of a mouse ear were imaged
in vivo at a B-scan frame rate of 250 Hz and a C-scan frame rate of 0.5 Hz [160]. Such a
temporal resolution allows PAM to capture the whole dynamic flow of contrast agent from
arteries to veins.

In noisy tissue microenvironment especially in the brain, high detection sensitivity is
essential for studying weak physiological changes in response to either internal signaling or
external stimulation. PAM provides inherently background-free detection with 100%
sensitivity. AR-PAM has been used to study the temporal variations in a mouse brain in
response to oxygenation alternating between hyperoxia and hypoxia [197] (Figures 9a–b). A
detection limit of 3.6% change in oxygenation has been reported, which enables PAM
monitoring of weak brain activity via hemodynamic responses. AR-PAM has also been used
to image ICG enhanced single walled nanoparticles (ICG-SWNP) with a detection
sensitivity of 170 pM [178]. When ICG-SWNPs are targeted to tumor cell surfaces, AR-
PAM can detect as few as ~104 cancer cells. Such a high detection sensitivity is needed for
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early cancer diagnosis, because the malignant switching in cancer progression typically
needs ~105 cells [100].

For clinical applications, PAM must follow the safety limits to avoid potential damage to
patients. PA signal amplitude is typically less than 10 kPa, orders of magnitude lower than
that of diagnostic clinical ultrasound scanners. Therefore, hazards due to ultrasound
exposure are not of concern. The safety considerations about PA imaging are mostly related
to the laser exposure. ANSI has detailed standards for laser exposure to the skin and eye
(Laser Institute of America 2007). For example, in the visible spectral range (400 nm to 700
nm), the maximum permissible exposure (MPE) values for the skin are 20 mJ/cm2 for a
single pulse and 200 mW/cm2 for the average power. Of course, the safety standards are
lower than the damage thresholds. Therefore, it might be justifiable to use laser exposure
above the ANSI limits but below the damage thresholds in some applications. Fortunately,
due to the adequate conversion efficiency from temperature to acoustic pressure (i.e., 1 mK
temperature rise leads to ~800 Pa pressure rise [2]), PAM is safe for skin and eye imaging,
which clears a major hurdle for its clinical translation. Imaging of the subcutaneous
microvasculature of a human palm in vivo has been demonstrated by AR-PAM at 584 nm,
with an incident fluence of ~6 mJ/cm2 and penetration depth of 3 mm (Figure 9c) [33]. The
average contrast to noise ratio is 51 dB. OR-PAM has been used to image the ocular
microvasculature of a living mouse at 570 nm, with an incident fluence of ~0.1 μJ/cm2,
which is below the MPE for eye imaging (Figure 9d) [135]. Individual RBCs travelling in
iris capillaries can be detected with a contrast to noise ratio of ~20 dB.

7. Summary and discussions
In summary, we have reviewed the characteristics and applications of different PAM
implementations. PAM has the following notable features: (1) PAM breaks through the
optical diffusion limit, with highly scalable spatial resolution and maximum imaging depth
in both the optical and acoustic domains. (2) PAM images optical absorption contrast with
100% sensitivity, and provides images without speckle artifacts. (3) PAM can essentially
image all molecules at their absorbing wavelengths. (4) PAM is capable of functional and
metabolic imaging in absolute units using endogenous contrast agents.

As in modern optical microscopy, it is possible to combine multiple optical objectives with
different magnification powers to a single OR-PAM system for fast resolution switching.
However, the confocal alignment of the optical illumination and acoustic detection needs to
be maintained. Typically, a microscope objective with a higher NA comes with a shorter
focal length. To keep the imaged object in focus, one solution is to use a specially designed
parfocal lens, which is capable of varying the effective NA without changing the optical
focal length. Similarly, it is also possible to integrate multiple ultrasonic transducers with
different central frequencies into a single AR-PAM system, while keeping the same
illumination. Furthermore, OR-PAM can be combined with AR-PAM as a single device to
cover a wider scale range. Since OR-PAM and AR-PAM can share the same detection, only
the optical illumination needs to be integrated.

Integration between PAM and other imaging modalities can provide complementary
contrasts, thus is a direction for future PAM development. So far, PAM has been integrated
with back-scattered optical microscopy (scattering contrast) [198], fluorescence microscopy
(fluorescence contrast) [70, 199, 200], optical coherence tomography (scattering contrast)
[70, 201], two-photon microscopy (fluorescence contrast) [202] and pulse-echo ultrasound
imaging (mechanical and elastic contrast) [203, 204]. In these integrated systems, the two
sub-systems share either the same illumination or detection. Therefore, their images are
inherently co-registered. In addition to providing complementary contrast, PAM has been
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combined with a high intensity focused ultrasound (HIFU) system for therapeutics, where
PAM is used to outline the location and shape of tumors and guide the subsequent HIFU
therapy or drug release [177, 205]. In addition to the integration of instrumentations, new
exogenous contrast agents have also been integrated for multi-modal systems. For example,
perfluorocarbon nanoparticles loaded with near-infrared dyes have been used as a dual
contrast agent for fluorescence imaging and PAM imaging [206].

Another direction is to miniaturize the PAM system for internal organ and intravascular
imaging [99, 190, 195, 207–211]. The first sideway looking photoacoustic endoscope (PAE)
with a 4.2-mm-diameter probe has been demonstrated in acoustic-resolution mode for
functional esophagus and colon imaging on small animal models [190, 207]. The bottleneck
for further miniaturization of the PAE probe involves integrating the light delivery fiber with
a conventional piezoelectric transducer. Despite the complex fabrication procedures for
miniature piezoelectric detector, its detection sensitivity decreases with its size. By contrast,
optical detection of ultrasound pressure using a transparent Fabry-Perot sensor may be an
alternative solution [212]. Theoretically, PAE should enjoy the same scalability as PAM.
Since most cancers start from the epithelial layer, PAE can be implemented in optical-
resolution mode for high-resolution epithelial imaging of early-stage cancer [190, 195, 207].
Delivery of coupling medium for acoustic propagation remains another challenge for PAE
imaging of internal lumens such as the trachea and gastrointestinal (GI) tract. It has been
suggested that water and ultrasound gel can be introduced to the GI tract [190, 195].
However, it is challenging to apply water to the respiratory system. An inflatable balloon
with a water filling channel could be a solution [213]. By contrast, it is less problematic for
intravascular PAE imaging since blood is a natural acoustic coupling medium. However, the
strong absorption of blood in the visible spectral range requires the use of near-infrared
wavelengths. Alternatively, blood can be flushed with saline.

As a maturing imaging technique, PAM is expected to find new applications in both
fundamental life science and clinical practice, which include but are not limited to tumor
angiogenesis, lymphatic dynamics, neural activity, brain metabolism, cancer detection, drug
delivery and intraoperative monitoring. While PAM has been commercialized for pre-
clinical applications, future commercialization for clinical applications will greatly
accelerate the translation of PAM from a lab technology to a mainstream imaging modality.
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Figure 1.
Representative photoacoustic microscopy. (a) Second-generation optical-resolution
photoacoustic microscopy (G2-OR-PAM), where the lateral resolution is determined by the
diffraction-limited optical focusing. AL, acoustic lens; Corl, correction lens; RAP, right
angled prism; RhP, rhomboid prism; SOL, silicone oil layer; UT, ultrasonic transducer; WT,
water tank. (b) G2-OR-PAM of cortical vasculature in a living mouse with the scalp
removed but the skull intact. (c) Sub-wavelength photoacoustic microscopy (SW-PAM) of a
melanoma cell, where single melanosomes can be resolved. Reprinted with permission from
[35]. (d) Dark-field acoustic-resolution photoacoustic microscopy (AR-PAM), where the
lateral resolution is determined by the diffraction-limited acoustic focusing. (e) Dark-field
AR-PAM of the cortical vasculature in a living mouse with both the scalp and skull intact.
Reprinted with permission from [43]. (f) Deep photoacoustic macroscopy (PAMac) of the
sentinel lymph node (SLN) in a living rat. The SLN was about 18 mm deep. Reprinted with
permission from [47].
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Figure 2.
Representative maximum imaging depths of PAM. (a) G2-OR-PAM of a black needle
obliquely inserted into the leg of an anesthetized living mouse. A maximum imaging depth
of ~1.2 mm was achieved. Reprinted with permission from [38]. (b) Dark-field AR-PAM of
subcutaneous vessels in a living rat when the skin was covered by a chicken breast tissue
slab. A maximum imaging depth of ~3.3 mm was achieved. V, vessels; T, top surface of the
chicken tissue. Reprinted with permission from [33].
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Figure 3.
Noise-equivalent molar concentration (NEC, left axis, black circles) of hemoglobin
molecules and noise-equivalent number (NEN, right axis, red squares) of hemoglobin
molecules per resolution voxel versus the imaging depth of different photoacoustic imaging
systems. The results were quantified from the reported in vivo data in the literature. The
solid curves are power function fittings.
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Figure 4.
Absorption spectra of major endogenous contrast agents in biological tissue. Oxy-
hemoglobin, red line (150 g/L in blood); Deoxy-hemoglobin, blue line (150 g/L in blood);
Lipid, brown line (20% by volume in tissue); Water, green line (80% by volume in tissue);
DNA, magenta line (1 g/L in cell nuclei); RNA, orange line (1 g/L in cell nuclei); Melanin,
black line (14.3 g/L in medium human skin); Glucose, purple line (720 mg/L in blood).
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Figure 5.
Representative multi-contrast PAM images. (a) UV-PAM of cell nuclei (shown in blue) in a
6-μm-thick slice from mouse small intestine. No histology staining was needed here. The
signals of cell nuclei come from DNA and RNA. Reprinted with permission from [39]. (b)
SW-PAM of red blood cells (RBC). The signals of RBCs come from hemoglobin (Hb).
Reprinted with permission from [35]. (c) Photoacoustic ophthalmoscopy of retinal vessels
(shown in red) and the retinal pigment epithelium layer (RPE, shown in green) in a living
rat. The signals of the RPE layer come from melanin. Reprinted with permission from [68].
(d) OR-PAM of the microvasculature in a mouse ear, where the capillaries (shown in green)
were enhanced by Evans blue dye. Reprinted with permission from [101]. (e) AR-PAM of a
subcutaneously inoculated B16 melanoma labeled with targeted gold nanocages (GNC,
shown in yellow) and the surrounding vessels (shown in red) in a living mouse. Reprinted
with permission from [112]. (f) PAMac of a mouse mammary gland tumor which expressed
a near-infrared fluorescent protein iRFP (shown in blue). Reprinted with permission from
[122].
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Figure 6.
Representative multi-parameter PAM images. (a) OR-PAM of the total concentration of
hemoglobin (CHb) in a mouse ear. (b) OR-PAM of the oxygen saturation of hemoglobin
(sO2) in the area indicated by the dashed box in (a). (c) OR-PAM of blood flow in the area
indicated by the dashed box in (b). Red arrow: positive flow direction. (d) OR-PAM of a
mouse ear bearing a xenographed glioblastoma on Day 7. The vasculature of the mouse ear
was color-coded by depth: blue (superficial) to red (deep). (e) MRO2 change induced by
tumor growth in (d). A 100% increase in MRO2 indicated the tumor hypermetabolism. (f)
Averaged sO2 inside and outside the tumor, which suggested that the tumor region was
hyperoxic. (a–f) were adapted with permission from [82]. (g) Vibrational PAM of fat bodies
in a 3rd-instar larva of Drosophila melanogaster embedded in a thin layer of agar gel. The
PA signals come from the overtone absorption of CH bond stretch in lipid. Reprinted with
permission from [95]. (h) OR-PAM measurement of the absorption relaxation time of oxy-
hemoglobin (HbO2) and deoxy-hemoglobin (HbR), made by fitting the PA signal amplitude
as a function of incident laser fluence. Reprinted with permission from [60]. (i) Single-
wavelength PAM measurement of the sO2 in a mouse ear, based on the relaxation times of
HbO2 and HbR. Reprinted with permission from [165].
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Figure 7.
PAM specificity enhancement. (a) Dichroism PAM of amyloid plaques in an APP/PS1
mouse brain section stained with Congo Red (CR), acquired with two orthogonally polarized
optical irradiations P1 and P2. (b) Subtraction of P1 and P2, which eliminates the non-
dichroic background and highlights the dichroic contrast of the amyloid plaques. Inset:
close-up of the boxed area, showing the bipolar dichroism pattern of a representative
amyloid plaque indicated by yellow arrows in (a–b). (a–b) were adapted with permission
from [166]. (c) Magnetomotive PAM of magnetic nanoparticles (MNP) trapped in MNP-ink
solution in a tube. R: the tube was closer to the right magnet; L: the tube was closer to the
left magnet. Note that MNPs changed their positions while the nonmagnectic ink did not.
The white dashed circles indicate the tube boundary. (d) Subtraction of R and L, which
substantially suppresses the undesired background signals. (c–d) were adapted with
permission from [168].
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Figure 8.
Representative PAM applications in preclinical studies. (a) OR-PAM of the sO2 in a mouse
ear where an arteriole-venule pair (~20 μm in diameter) was chosen for vasodilation and
vasomotion study. A1, a representative arteriole; V1, a representative venule. (b)
Vasodilation and vasomotion in response to switching the physiological state between
systemic hyperoxia and hypoxia: a B-scan monitoring of the changes in the cross-sections of
the arteriole and venule. The vasomotion of the arteriole had greater amplitude than that of
the venule but the same frequency. (a–b) were adapted with permission from [133]. (c)
Chronic OR-PAM of the neovascularization in the same mouse. The blood vessels of the
mouse ear were color-coded by depth: blue (superficial) to red (deep). Adapted with
permission from [175]. (d) Linear-array PAM of wash-in dynamics of Evans blue in a
mouse ear. The whole dynamic flow of Evans blue from arteries (shown in red) to veins
(shown in green) was captured. Reprinted with permission from [160].
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Figure 9.
Representative PAM applications in preclinical and human studies. (a) AR-PAM of cortical
vasculature in a living mouse. Dotted white line indicates the line scanning range. CS,
coronal suture. (b) Dynamic vessel response profiles acquired through a hypoxic challenge
and shown in percent change of ratiometric PA signals at two wavelengths of 561 nm and
570 nm. Each colored trace corresponds to the respective cortical vessel crossed by the
dotted line in (a). (a–b) were adapted with permission from [197]. (c) AR-PAM of
subcutaneous vasculature of the palm of a human hand at 584 nm, with an incident laser
fluence of ~6 mJ/cm2. Inset: photograph of the imaged area. Reprinted with permission from
[33]. (d) OR-PAM of the iris microvasculature in a living adult mouse. A vessel-by-vessel
sO2 mapping (shown in color scale) was generated and overlaid on the vascular image
acquired at 570 nm (shown in gray scale). CP, ciliary process; MIC, major iris circle; RCB,
recurrent choroidal branch; RIA, radial iris artery. Reprinted with permission from [135].
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Table 3

Parameters measured by PAM

Parameters Endogenous contrast Absolute unit Representative applications Ref

CHb √ √ Imaging blood perfusion in angiogenesis [141]

sO2 √ √ Imaging blood oxygenation in tumor
microenvironment [130]

pO2 Imaging oxygenation of solid tumors [170]

Flow speed √ √ Imaging microcirculation diseases [61]

MRO2 √ √ Imaging hypermetabolism of cancers [82]

Overtone absorption of chemical
bond √ Diagnosing atherosclerosis [95]

Raman scattering √ Imaging and chemical analysis of microcalcifications [96]

Dichroism Imaging amyloid plaques in Alzheimer's disease [166]

Magnetomotion Detecting circulating cancer cells [168]

Absorption relaxation time √ √ Single-wavelength measurement of blood
oxygenation [60]

pH √ Diagnosing metabolic diseases such as diabetes [171]
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