A Caltech Library Service

Quantum Proofs

Vidick, Thomas and Watrous, John (2016) Quantum Proofs. In: Foundations and Trends in Theoretical Computer Science. Vol.11. No.1-2. Now Publishers , Boston, MA, pp. 1-215. ISBN 978-1-68083-126-9.

[img] PDF - Submitted Version
See Usage Policy.


Use this Persistent URL to link to this item:


Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class NP, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class QSZK, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.

Item Type:Book Section
Related URLs:
URLURL TypeDescription Chapter Paper
Vidick, Thomas0000-0002-6405-365X
Additional Information:© 2016 now publishers inc. Boston - Delft.
Group:Institute for Quantum Information and Matter
Issue or Number:1-2
Record Number:CaltechAUTHORS:20160622-144016671
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:68602
Deposited By: Jacquelyn O'Sullivan
Deposited On:23 Jun 2016 21:29
Last Modified:11 Nov 2021 04:02

Repository Staff Only: item control page