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ABSTRACT

In order to obtain robust cosmological constraints from Type Ia supernova (SN Ia)
data, we have applied Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve fitting.
We develop a method for sampling the resultant probability density distributions
(pdf) of the SN Ia lightcuve parameters in the MCMC likelihood analysis to constrain
cosmological parameters, and validate it using simulated data sets. Applying this
method to the Joint Lightcurve Analysis (JLA) data set of SNe Ia, we find that
sampling the SN Ia lightcurve parameter pdf’s leads to cosmological parameters closer
to that of a flat Universe with a cosmological constant, compared to the usual practice
of using only the best fit values of the SN Ia lightcurve parameters. Our method will
be useful in the use of SN Ia data for precision cosmology.

Key words: cosmological parameters – cosmology: observations – dark energy –
supernovae: general

1 INTRODUCTION

The use of Type Ia supernovae (SNe Ia) as cali-
brated standard candles has led to the discovery of
dark energy – the accelerating expansion of the Uni-
verse (Riess et al. 1998; Perlmutter et al. 1999). The cause
for the observed cosmic acceleration remains unknown.
Probing the nature of cosmic acceleration is one of the
most active areas of research today. For recent reviews,
see Ratra & Vogeley (2008); Frieman, Turner, & Huterer
(2008); Caldwell & Kamionkowski (2009); Uzan (2010);
Wang (2010); Li et al. (2011); Weinberg et al. (2013).

There are major ongoing and planned observational
projects to illuminate the nature of cosmic acceleration.
These include the ongoing Dark Energy Survey (DES)
(Bernstein et al. 2012)1; the dedicated dark energy space
mission Euclid, scheduled for launch in 2020 (Laureijs et al.
2011)2; and the Large Synoptic Survey Telescope (LSST)
(Abell et al. 2009)3, which is under construction, with first
light planned for 2019. Dark Energy is one of the main sci-
ence areas for the Wide-Field Infrared Survey Telescope

⋆ E-mail: mdai@ou.edu; wang@ipac.caltech.edu
1 http://www.darkenergysurvey.org/
2 http://www.euclid-ec.org/
3 http://www.lsst.org/

(WFIRST), which could be launched as early as 2023
(Spergel et al. 2015).

We can expect a dramatic increase in the quantity and
quality of SN Ia data in the next decade and beyond. For
z < 1, thousands of SNe Ia are expected from DES, and
hundreds of thousands of SNe Ia are expected from LSST.
WFIRST will observe thousands of SNe Ia at z > 1. In
order to use the SN Ia data in precision cosmology, it is
important that we develop robust analysis techniques that
can be applied to the observed SN Ia lightcurves.

In this paper, we apply Markov Chain Monte Carlo
(MCMC) to SN Ia lightcurve fitting. We develop a method
for sampling the resultant probability density distributions
(pdf) of the SN Ia lightcuve parameters in the MCMC like-
lihood analysis to constrain cosmological parameters. Both
of these are new approaches in SN Ia cosmology. We present
our methodology in Sec.2, and results in Sec.3. We conclude
with a summary and discussion in Sec.4.

2 METHODOLOGY

As the mechanism of SNe Ia explosion is still unclear, em-
pirical models are used for fitting SN Ia lightcurves. The
lightcurve of an SN Ia can be characterized by its shape
and color, which can be corrected to reduce the intrinsic
dispersion in SN Ia peak magnitudes. The shape correction
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utilizes the correlation between SN Ia peak brightness and
decline time (brighter SNe Ia decline more slowly in bright-
ness) (Pskovskii 1977; Branch 1981; Phillips 1993, 1999).
The color correction models the variation of SN Ia colors
and dust extinction.

Following Betoule et al. (2014), we use the SALT2
model (first proposed in Guy et al. (2007), and updated
in Guy et al. (2010) and Betoule et al. (2014)) for SN Ia
lightcurve fitting. SALT2 provides an average spectral se-
quence and color dispersion from the training of a subset
of SN Ia lightcurves. For SALT2, The four SN Ia lightcurve
parameters are: date of maximum light in the rest-frame
B band, the amplitude of the spectral sequence (which is
described conventionally by the peak magnitude in the rest-
frame B band), lightcurve shape, and color. The date of
maximum light is a nuisance parameter, since the distance-
indicator properties of a SN Ia only depend on its peak
magnitude, lightcurve shape, and color. The default fitting
procedure is minimizing a χ2 to find the best fit lightcurve
parameters from a 4D grid of parameter values. This grid
method has its limitations: it may result in a local minimum,
and the error estimate is sensitive to the choice of the grid
size and the spacing of the grid points.

In this paper, we use Markov Chain Monte Carlo
(MCMC) method to fit for lightcurve parameters, using the
SALT2 model in Betoule et al. (2014). The MCMC method
has the following advantages over a grid-based method:

(i) The posterior is drawn randomly from the proposed
distribution; the true probability distribution is recovered
given enough number of realizations.

(ii) The statistics can be calculated using multiple chains
that have converged, leading to robust error estimates.

(iii) The resultant probability density functions (pdf) are
smooth and can be utilized in the subsequent cosmological
analysis.

2.1 The SALT2 model

The SALT2 model (Guy et al. 2007; Guy et al. 2010) is an
empirical lightcurve model that provides an average spec-
tral sequence and its first order variation. The model flux is
defined as:

dF

dλ
(p, λ) = x0× [M0(p, λ)+x1M1(p, λ)+ . . .]×exp[cCL(λ)]

(1)
Where p is the phase from the maximum light in the rest
frame, λ is the rest-frame wavelength, M0 and M1 are the
average spectral sequence and its first order variation, CL is
the color law which is independent of phase. The lightcurve
parameters x0, x1, and c are determined by lightcurve fit-
ting. To find the best fit parameters, the default method
finds the minimum χ2 using a grid-based method. The χ2 is
expressed as:

χ2 = (Fmodel − Fobs)C
−1
SN (Fmodel − Fobs), (2)

where Fobs is the observed flux after calibration, Fmodel

is the model flux integrated over the observing filter
T (λ(1 + z)) :

Fmodel = (1 + z)

∫

λ
dF

dλ
(p, λ)T (λ(1 + z)) dλ. (3)

The covariance matrix CSN consists of three parts: a diago-
nal term of the model error, a regular matrix (not diagonal)
term of color dispersions (K-correction errors), an error ma-
trix (for SNLS) or a diagonal term of the observational flux
errors (for SN samples other than SNLS):

CSN = Dmodel + Cmodel +Cobs. (4)

The model parts of the covariance matrix are dependent on
the lightcurve parameters; they are varied to minimize the
χ2 for a given set of lightcurve parameters.

We will now discuss in detail the uncertainties in the
model fluxes (Dmodel term in Eq. (4)). The model fluxes are
calculated using Eq. (1) and Eq. (3). The model uncertain-
ties are calculated as

σmodel = (f0/ftotal)×S× (V0 +x2
1V1+2x1V01)

1/2
×Fmodel,

(5)
where S, V0, V1 and V01 are provided as part of the SALT2
model, and are dependent on phase and wavelength. Basi-
cally, V0 is the variance in M0, V1 is the variance in M1, V01

is the covariance between M0 and M1. S is a scale factor.
f0 is the main component of the model flux, which is M0

integrated over the observing filter; ftotal is the total model
flux including the M1 component (not including the color
term). When ftotal 6 0, the model uncertainty is set to be
100 times that of the model flux. Note that in the SALT2
code, (V0 + x2

1 ∗ V1 + 2 ∗ x1 ∗ V01) is set to 0.0001 when it
becomes less then zero.

2.2 MCMC lightcurve fitting

We use CosmoMC as a generic sampler to generate multiple
chains using the Metropolis-Hastings algorithm. We assume
convergence when R − 1 < 0.01 using the Gelman and Ru-
bin “R-1” statistic (Brooks & Gelman 1998). For a detailed
discussion on CosmoMC, see Lewis & Bridle (2002).

To implement SALT2 lightcurve fitting using MCMC,
we first need to understand how the SALT2 default grid-
based method works. In particular, how the covariance ma-
trix from Eq.(4) is handled, since the contribution from
model uncertainties depends on the values of the lightcurve
parameters (which are being fitted). There is an optional
“update weights” feature in the public SALT2 code, but
it seems not to be used by either Conley et al. (2011) or
Betoule et al. (2014); we are only able to reproduce their
results without using this option (see Sec.3). However, by
not updating the weights for the covariance matrix in the
SALT2 code, it does not mean keeping the covariance ma-
trix fixed. It means deriving a converged covariance matrix
by doing the following:

(i) Initial fit with x1 fixed to be 0, without including
model uncertainty.

(ii) Second fit with x1 allowed to vary, without including
model uncertainty.

(iii) Iterations of fits with model uncertainty included,
until the changes in all parameters are less than 0.1 times
the errors in the parameters.

At the beginning of each iteration in step 3, the co-
variance matrix is recalculated using the parameters from
the previous step or iteration. And the covariance matrix
is kept fixed during this iteration of the fit. In MCMC we
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cannot do the fit by steps as in the grid-based method, so
we calculate the covariance matrix using fiducial lightcurve
parameter values and keep it unchanged during the MCMC
lighcurve fitting. We assume that likelihood ∝ exp(−χ2/2),
with χ2 defined in Eq.(2), and carry out the following steps:

(i) Perform a grid-based fit to obtain a set of fiducial val-
ues of lightcurve parameters (which are the best fit values
from this fit).

(ii) The covariance matrix CSN is calculated using the
fiducial values of the model and lightcurve parameters.

(iii) An MCMC likelihood analysis is performed to ob-
tain the lightcurve parameters, while fixing the covariance
matrix to be that calculated using the fiducial lightcurve
parameters.

A compelling reason for us to fix the covariance matrix
for MCMC lightcurve fitting to be that calculated at fiducial
values of the lightcurve parameters is as follows. The model
uncertainty from Eq.(5) is dependent on the lightcurve pa-
rameters (especially x1 and time of maximum flux), so it is
varied as the lightcurve parameters are vared. For example,
if x1 is a very large number, it is possible that ftotal will
become negative, which means that the model uncertainty
is set to 100 times that of the model value, leading to a very
small χ2 — a numerical artifact that can bias the lightcurve
fitting. We have found that simply updating the covariance
matrix as the lightcurve parameters vary during the MCMC
steps can lead to unreasonable results for the lightcurve pa-
rameters, since the model errors can be much larger when
the lightcurve parameters fall out of the reasonable ranges.

To assess the implications of our choice of fixing the co-
variance matrix for MCMC lightcurve fitting, we have com-
pared the lightcurve parameter results using two different
fiducial values — one set contains the best fit results from a
grid-based fit, the other set the best fit results from a grid-
based fit without model errors. The lightcurve parameters
we get from MCMC using the two different covariance ma-
trices are very similar to each other (with a mean difference
∼ 10−4 for all three parameters used in a cosmological fit,
i.e. mB, x1, and c), and lead to almost identical cosmologi-
cal constraints. This is not surprising, since the cosmological
constraints are not very sensitive to the lightcurve param-
eters, as long as no erroneous lighthcurve parameter values
are used. We conclude that it is reasonable to fix the covari-
ance matrix at fiducial values of the lightcurve parameters
in MCMC lightcurve fitting.

2.3 Cosmological analysis

Having derived SN Ia lightcurve parameters using MCMC,
we can use them to derive cosmological constraints. We fol-
low the definition for the model magnitude in Conley et al.
(2011):

mmod = 5 log10 DL − αx1 + β c+M, (6)

where DL is a redefined luminosity distance that is inde-
pendent of the Hubble constant, α, β and M are nuisance
parameters which describe the shape and color corrections
of the lightcurve, and the SN absolute magnitude in com-
bination with the Hubble constant. In order to model the
dependence of SN Ia intrinsic brightness on the host galaxy

mass, M is defined as a function of the host galaxy stellar
mass Mhost (in units of solar masses):

M =

{

M1 for log10 Mhost < 10
M2 for log10 Mhost > 10

(7)

The χ2 is then

χ2 = ∆m
T
·C

−1
·∆m, (8)

where ∆m = mB −mmod, and mB is calculated by mB =
−2.5 log10(x0) + 10.635 (Mosher et al. 2014). C is the co-
variance matrix. We use the same covariance matrix in our
cosmological analysis as that used by Betoule et al. (2014).
Note that mmod is defined in Eq.(6).

In this paper we assume a flat Universe with constant
dark energy equation of state w, since SN Ia data alone do
not provide meaningful constraints on additional cosmolog-
ical parameters. The Hubble constant free luminosity dis-
tance DL is defined as:

DL ≡ c−1H0(1 + zhel) r(z), (9)

where zhel is the heliocentric redshift, z is the CMB-frame
redshift (i.e., the cosmological redshift), r(z) is the comoving
distance:

r(z) = cH−1
0 Γ(z) (10)

Γ(z) =

∫ z

0

dz′

E(z′)
(11)

E(z) = H(z)/H0 (12)

With the assumption of flat Universe and constant w,

H(z) ≡
ȧ

a
= H0

√

Ωm(1 + z)3 + ΩDE(1 + z)3(1+w) (13)

and Ωm +ΩDE = 1 (the radiation contribution is negligible
here).

2.4 pdf sampling

The MCMC analysis gives the marginalized pdf’s of the
lightcurve parameters. Those pdf’s contain the distribution
and error information of the lightcurve parameters and can
be used in a cosmological analysis. We have developed a
method to sample the pdf’s, and derive cosmological results
by combining results from different sets of lightcurve param-
eters drawn from the pdf’s, as described below.

For each SN, we choose N points with equal probabil-
ity intervals from the pdf of each lightcurve parameter, x0,
x1 and c, with probabilities equal to P1, P2, ... , PN . This
gives N3 sets of lightcurve parameters, with each set having
the same SNe with different values of lightcurve parameters.
We then use these sets of lightcurve parameters to fit cos-
mology, resulting in N3 sets of cosmological parameters. We
combine the results in the following way to get the combined
cosmological parameters:

s =

∑

i,j,k PiPjPk sijk
∑

i,j,k PiPjPk
, (14)

where s are the cosmological parameters from sampling the
pdf’s of the lightcurve parameters, sijk are the cosmolog-
ical parameters derived from the data set with a given
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set of lightcurve parameters drawn from the pdf’s of the
lightcurve parameters. The cosmological parameters from
different data sets are weighted by the product of the rela-
tive probabilities of the three lightcurve parameters, Pi, Pj ,
and Pk. Using only lightcurve parameters that correspond
to the peaks of the pdf’s gives Pi = Pj = Pk = 1; this is sim-
ilar to the usual practice of using only the best fit lightcurve
parameters in the grid-based method for SALT2 (which is
equivalent to using the peaks of the mean likelihood distri-
butions from MCMC).

It is not practical to densely sample the pdf’s of the
lightcurve parameters. In order to gauge how the cosmolog-
ical parameter constraints depend on the sampling density
of the lightcurve parameter pdf’s, we study the following
cases:

(i) N=3. We choose three points from the pdf, with the
probabilities P1 = 1 and P2 = P3 = 1/2. This results in 3
points on the pdf: the peak, and the half height point on
either side of the peak.

(ii) N=7. We choose seven points on the pdf, P1 = 1 (the
peak), P2 = P3 = 1/2, P4 = P5 = 3/4, and P6 = P7 = 1/4.
This divides the pdf in 1/4 segments in height, resulting in
three points on either side of the peak.

(iii) N=15. In this case 15 points are chosen from the
pdf, the probabilities are 1, 1/2, 3/4, 1/4, 7/8, 5/8, 3/8,
1/8.

(iv) N=19. When dividing the pdf into 10 equal proba-
bility intervals with probabilities Pi = i/10(i = 1, 2, ..., 10),
we get 19 points on each pdf.

We will show that pdf sampling is converged with increased
N in Section 3.4.

3 RESULTS

We have applied our methodology for SN Ia lightcurve fit-
ting using MCMC and constraining cosmology with sam-
pling the pdf’s of SN Ia lightcurve parameters to the
“Joint Lightcurve Analysis”(JLA) data set of SNe Ia from
Betoule et al. (2014), which combines the SNLS and SDSS
data of SNe Ia in a consistent, well-calibrated manner. We
do our MCMC lightcurve fitting using the calibrated photo-
metric data provided by Betoule et al. (2014). The JLA sam-
ple, as an extension to the C11 Compilation (Conley et al.
2011), contains a combination of data sets of 740 spec-
troscopically confirmed SNe Ia from several low-z samples
(z < 0.1) (mostly Hicken et al. 2009; Contreras et al. 2010;
Hamuy et al. 1996; Jha et al. 2006; Riess et al. 1999), the
full three-year SDSS-II supernova survey (0.05 < z < 0.4)
(Sako et al. 2014), the first three years data of the SNLS
survey (0.2 < z < 1) (Guy et al. 2010; Conley et al. 2011)
and a couple of high redshift HST SNe (0.7 < z < 1.4)
(Riess et al. 2007). The photometry of SDSS and SNLS is
recalibrated. The SALT2 model is retrained using the joint
data set.

3.1 Definitions

We will show comparative results on cosmological con-
straints using different sets of lightcurve parameters we have
obtained in different approaches. These are:

(i) SALT2 : This is the published lightcurve parameter
set from Betoule et al. (2014), we use it directly in the cos-
mological analysis as the base of comparison to other sets.

(ii) GRID-SALT2 : We obtain this set of lightcurve pa-
rameters by running the published version of the SALT2
code4, adding in the bias correction term to the peak mag-
nitude and the uncertainties in redshift, lensing and intrinsic
dispersion to the magnitude uncertainties. All the values of
the terms above are the same as those used in the JLA set
as described in Betoule et al. (2014). This is supposed to
reproduce the results of SALT2. All other sets of lightcurve
parameters described in the following are processed as de-
scribed here.

(iii) GRID : We use our own grid-based code using the
SALT2 model to calculate the χ2; this is an important cross-
check, to ensure that we understand all the nuances of the
public SALT2 code and its output. We will use this as the
grid method to compare with our MCMC analysis. We ob-
tain this GRID set of lightcurve parameters by minimizing
the χ2 using exactly the same approach as the SALT2 code
does (i.e. using the function minimization package called MI-
NUIT5). We expect to get the same values for the lightcurve
parameters within numerical errors.

(iv) MCMC-LIKE : The MCMC chains can be used to
calculate mean likelihood distributions; its maximum corre-
sponds to the least χ2 value from the grid method. If the
grid method ever falls into a local minimum, the maximum
likelihood value of the MCMC chains would instead give the
correct global minimum upon convergence.

(v) MCMC-MARGE : The MCMC chains can be used
to obtain marginalized one-dimensional distributions of the
fitted parameters; these give the standard error distribu-
tion information from an MCMC analysis. For this MCMC-
MARGE set we use the means of the marginalized pdf’s
as lightcurve parameters for fitting cosmology (with no pdf
sampling). We will discuss the pdf sampling results in Sec-
tion 3.4.

In an MCMC analysis, the differences of the marginal-
ized and the mean likelihood distributions indicate non-
Gaussianity, although it is possible to have a non-Gaussian
distribution where both curves are the same (Lewis & Bridle
2002). In general, the marginalized pdf differs more from
the mean likelihood for parameters that are less well con-
strained by the data. Mean likelihood shows how good a
fit you could expect if you drew a random sample from the
marginalized distribution. It is customary to quote marginal-
ized constraints in a cosmological analysis. We will follow
this practice in this paper regarding the lightcurve parame-
ters, except when we need to make a direct comparison with
the grid-based method (which gives results that are equiv-
alent to the mean likelihood). However, when showing the
cosmological constraints, we give the mean likelihood pdf’s
instead, as our tests with simulated data sets show that the
peaks of the mean likelihood pdf’s of the cosmological pa-
rameters are less biased than the marginalized means. (For
more details, see section 3.4.1.)

4 http://supernovae.in2p3.fr/salt/doku.php
5 http://seal.web.cern.ch/seal/snapshot/work-
packages/mathlibs/minuit
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Figure 1. Mean likelihood pdf’s of the parameters for the cos-
mological fit for the grid sets, using all 740 SNe from the JLA
data set. Black solid lines represent the GRID set; red dashed
lines represent the GRID-SALT2 set; blue dotted lines are for the
SALT2 set.

3.2 Reproducing the SALT2 Results

We first compare results of the three grid sets – SALT2,
GRID-SALT2 and GRID, to verify that our grid-based code
is correct. In this cross-check exercise, we found that we
are only able to reproduce the Betoule et al. (2014) results
without using the “update weights” option in the public
SALT2 code, but instead carrying out the steps as described
in Sec.2.2.

The lightcurve parameters from the three sets are very
similar. Fig.1 shows a comparison of the cosmological con-
straints from SALT2, GRID-SALT2, and GRID. As ex-
pected, all three approaches give nearly the same constraints
on the cosmological and SN nuisance parameters.

3.3 MCMC vs GRID Comparison

We now compare the results of MCMC and GRID. We find
that the lightcurve parameters from the MCMC-LIKE set
are also consistent with that from the GRID set. However,
the lightcurve parameters of the MCMC-MARGE set are
offset from the MCMC-LIKE (or the GRID) set for some
SNe. The cosmological results are shown in Fig. 2. The
MCMC-LIKE set gives similar cosmological constraint as
the GRID set, as expected. The MCMC-MARGE set shows
pdf’s shifted from the MCMC-LIKE (or the GRID) set in
Ωm and w; this is not surprising given the difference between
the marginalized and the mean likelihood in an MCMC anal-
ysis (see the discussion near the beginning of Sec.3). The
nuisance parameters are well constrained and have similar
constraints in all sets.

The peaks of the mean likelihood pdf’s and their 68%
confident intervals of the parameters are listed in Table 1.
We find the approximate 68% confidence levels by finding
the parameter values where the probability has dropped by a
factor of e−1/2. Note that for some sets there is only one up-

Ωm

0 0.2 0.4

w

-2 -1.5 -1 -0.5

α

0.12 0.13 0.14 0.15 0.16

β

2.9 3 3.1 3.2 3.3

M1

24.05 24.1 24.15

M2

24 24.05 24.1

MCMC-MARGE

MCMC-LIKE

GRID

Figure 2. Mean likelihood pdf’s of the parameters from the cos-
mological fit for the MCMC sets comparing with the GRID set,
using all 740 SNe from the JLA data set. Black solid lines rep-
resent the MCMC-MARGE set; red dashed lines represent the
MCMC-LIKE set; blue dotted lines represent the GRID set.

per limit in Ωm, because the pdf’s are truncated at Ωm = 0
before the probability has dropped by a factor of e−1/2. The
grid methods (SALT2, GRID-SALT2, GRID) show similar
values and errors. The MCMC-LIKE has consistent values
with the grid methods but has slightly higher errors in Ωm

and w. The MCMC-MARGE set show even higher errors in
w, but Ωm and w are closer to the “concordance model” of
Ωm = 0.27 and w = −1.

3.4 Cosmological Constraints from Sampling the

pdf’s of SN Ia Lightcurve Parameters

We now present cosmological constraints derived from sam-
pling the pdf’s of SN Ia lightcurve parameters. For this work,
we have to limit our analysis to SNe Ia with well-behaved
lightcurve parameter pdf’s. For most SNe, the pdf’s of
their lightcurve parameters are well-behaved, single-peaked
smooth bell curves. However, there are several exceptions
with multi-peak pdf profiles for the lightcurve parameters.
We have tracked the multi-peak profiles to data quality is-
sues: some SNe have no data after the maximum light, some
SNe have lightcurves with too few data points, or very noisy
data. We exclude those problematic, multi-peak SNe from
our cosmological analysis. We also exclude other SNe that
don’t have any data in any bandpass after the peak magni-
tude as a quality cut. This results in a set of 729 SNe Ia; we
will use only this set in our analysis from this point on.

The effects of excluding the 11 problematic SNe (listed
in Table 2) from the cosmological analysis are shown in Fig.
3. The constraints on Ωm and w are noticeably shifted by
excluding these 11 SNe, indicating that cosmological results
could be biased by including poor quality data. We observe
the same effect both using the original JLA data and using
our MCMC-fitted lightcurve parameters.

c© 0000 RAS, MNRAS 000, 000–000
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Table 1. Parameters from the cosmology fit using all 740 JLA SNe

Ωm w α β M1 M2

SALT2 0.196+0.116 −0.795+0.261
−0.236 0.141+0.008

−0.007 3.107+0.078
−0.088 24.118+0.027

−0.024 24.050+0.026
−0.029

GRID-SALT2 0.185+0.139 −0.806+0.268
−0.267 0.141+0.006

−0.007 3.109+0.086
−0.090 24.118+0.026

−0.029 24.045+0.029
−0.028

GRID 0.171+0.145 −0.769+0.229
−0.282 0.141+0.006

−0.007 3.105+0.085
−0.076 24.117+0.024

−0.027 24.044+0.030
−0.025

MCMC-LIKE 0.171+0.157 −0.788+0.257
−0.282 0.141+0.006

−0.007 3.088+0.087
−0.082 24.123+0.021

−0.032 24.050+0.027
−0.030

MCMC-MARGE† 0.246+0.125
−0.181 −0.871+0.293

−0.338 0.141+0.007
−0.007 3.100+0.086

−0.083 24.119+0.025
−0.029 24.045+0.029

−0.030

† The MCMC-MARGE set uses the marginalized means of the lightcurve parameter pdf’s.

Table 2. Problematic SNe

SN name

1 Lancaster
2 Patuxent
3 SDSS11206
4 SDSS14318
5 SDSS16619
6 SDSS16737
7 SDSS16793
8 SDSS19067
9 SDSS21510
10 SDSS21669
11 Torngasek
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24 24.05 24.1

729SN 740SN

Figure 3. Mean likelihood pdf’s of the parameters from the cos-
mological fit for different numbers of SNe Ia using the MCMC-
MARGE set. Black solid lines show the results from 729 SNe
excluding the 11 problematic SNe; red dashed lines represent the
whole SNe sample including all 740 SNe from the JLA data set.

3.4.1 Tests with simulations

Before showing the results of pdf sampling applied to the
JLA dataset, we first show results from the simulated
datasets to illustrate that pdf sampling gives less biased cos-
mological results than the usual practice without pdf sam-
pling. To generate the simulated datasets, we replace the
bias-corrected B-band peak magnitude (mB) in the JLA
dataset with true peak magnitude calculated from a fiducial

cosmological model, added with x1
random and crandom ran-

domly drawn from the lightcurve parameter pdf’s we obtain
using our MCMC lightcurve fitter, and a Gaussian scatter
(µ = 0, σ2 = 0.12):

mB = µ(Ωm, w)−α×x1
random+β×crandom+M+N (0, 0.12)

(15)
The nuisance parameters α, β and M are defined in Eq. 6,
and are fixed with fiducial values.

We generate 1000 sets of simulated data and perform
cosmological analysis to each set of data, with and without
pdf sampling. When applying pdf sampling to the simulated
dataset, we only sample the x1 and c parameter, and only
3 points are chosen from each pdf to speed up the process.
We list the input parameters and the means and standard
deviations of the 1000 sets of resultant cosmological param-
eters in Table 3. We have shown both the peak values of
the mean likelihood pdf and the means of the marginalized
pdf. The two values and their standard deviations show dif-
ferences in the Ωm and w parameter, which is due to the
differences in the meaning of the two kind of pdf’s. We have
briefly discussed the differences between the mean likelihood
pdf and the marginalized pdf in Sec. 3.1. For more detailed
discussions, see Lewis & Bridle (2002). Since the peaks of
the mean likelihood pdf are less biased in general, we only
show the mean likelihood pdf’s for cosmological constraints
in this paper. When quoting the peak values of the mean
likelihood pdf’s, comparing to not using pdf sampling, ap-
plying pdf sampling gives Ωm and w that are closer to the
input parameters, which is expected as pdf sampling uti-
lizes more information from the lightcurve parameter pdf’s.
However, the standard deviations are larger in these two pa-
rameters when applying pdf sampling, as the values spread
in larger ranges.

3.4.2 pdf sampling with the JLA dataset

We now proceed to implement pdf sampling of the lightcurve
parameters in our cosmological analysis, as described in
Sec.2.4, to the set of 729 SNe Ia, as described below:

(i) PDF-COMBINED-3 : We draw 33 = 27 sets of
lightcurve parameters from the pdf’s as described in Sec-
tion 2.4. We also apply the same bias correction as used in
the JLA set to each individual set of lightcurve parameters.
The cosmological results of the individual sets are combined
as described in Section 2.4 to obtain the cosmological results
with pdf sampling of lightcurve parameters.

(ii) PDF-COMBINED-7 : Similarly, 73 = 343 sets of
lightcurve parameters are drawn from the pdf’s and the cos-
mological results are combined.

c© 0000 RAS, MNRAS 000, 000–000
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Table 3. Test with simulated data

Ωm w α β M1 M2

input values 0.3 -1.0 0.14 3.1 24.11 24.04
w/o pdf (like1) 0.205±0.098 -0.928±0.196 0.152±0.006 3.543±0.088 24.114±0.019 24.034±0.021
w/ pdf (like1) 0.258±0.111 -0.990±0.288 0.152±0.007 3.541±0.089 24.123±0.032 24.038±0.036

w/o pdf (marge2) 0.247±0.057 -1.038±0.163 0.152±0.006 3.548±0.088 24.112±0.018 24.032±0.020
w/ pdf (marge2) 0.287±0.055 -1.121±0.181 0.148±0.006 3.545±0.089 24.111±0.018 24.029±0.020

1 The means and standard deviations of cosmological parameters of the 1000 simulated datasets, by quoting the peak
values of the mean likelihood pdf’s of the cosmological parameters;
2 The means and standard deviations of cosmological parameters of the 1000 simulated datasets, by quoting the means
of the marginalized pdf’s of the cosmological parameters.

(iii) PDF-COMBINED-15 & PDF-COMBINED-19:
153 = 3375 and 193 = 6859 sets of lightcurve parameters
are drawn respectively. These ensure that the combined
results have converged with increasing N. (See Fig. 4)

We compare the results from using pdf sampling of
lightcurve parameters with the GRID set and MCMC-
MARGE (no lightcurve parameter pdf sampling), shown in
Fig. 5. Since we have already shown that the pdf sampling
results are converged with increasing N, we only show one
set of results from using pdf sampling – PDF-COMBINED-
15.

Note that the pdf’s for Ωm and w are shifted, compared
to the results using the GRID set (grid-based method with
no pdf sampling). When comparing with the results using
only the marginalized mean values of the lightcurve param-
eters (without pdf sampling), the pdf’s are also shifted, and
pdf-sampling gives a little tighter constraints. The peak of
the mean likelihood pdf’s and their 68% confidence inter-
vals of the cosmological analysis using 729 SNe excluding
the problematic ones are shown in Table 4. When excluding
the problematic SNe, we get slightly larger Ωm values, and
the w values are closer to −1. In Fig. 6, we show the corre-
sponding 2D mean likelihood contours of the fitted parame-
ters of PDF-COMBINED-15, GRID and MCMC-MARGE.
It is interesting to note that pdf sampling of SN Ia lightcurve
parameters, and using the means of the lightcurve param-
eter pdf’s, leads to cosmological constraints closer to a flat
Universe with a cosmological constant.

4 SUMMARY AND DISCUSSION

We have developed a method to utilize the probability den-
sity distribution (pdf) of SN Ia lightcurve parameters in
cosmological analysis using SNe Ia. First, we have applied
Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve
fitting, in order to obtain smooth and well-behaved pdf’s of
SN Ia lightcurve parameters. Then we derived cosmological
constraints with sampling of the pdf’s of the SN Ia lightcurve
parameters. For a complementary approach of sampling the
underlying SN Ia population in cosmological model fitting,
see March et al. (2011).

In order to validate our method, we applied it to 1000
sets of simulated SN Ia data. We found that compared to not
using pdf sampling, applying pdf sampling gives Ωm and w
that are closer to the input parameters, which is expected as
pdf sampling utilizes more information from the lightcurve

Ωm

0 0.2 0.4 0.6

w

-2.5 -2 -1.5 -1 -0.5

α

0.12 0.14 0.16

β

2.9 3 3.1 3.2 3.3

M1

23.9 24 24.1 24.2 24.3

M2

23.9 24 24.1 24.2

PDF-COMBINED-3

PDF-COMBINED-7

PDF-COMBINED-15

PDF-COMBINED-19

Figure 4. Mean likelihood pdf’s of the parameters from the cos-
mological fit with sampling of the SN Ia lightcurve parameter
pdf’s, using 729 SNe Ia from the JLA data set (excluding 11
problematic ones). Black solid lines are results from sampling 3
points on each pdf (PDF-COMBINED-3); red dashed lines are
results from sampling 7 points on each pdf (PDF-COMBINED-
7); blue dotted lines are results from sampling 15 points on each
pdf (PDF-COMBINED-15); magenta dash-dotted lines are re-
sults from sampling 19 points on each pdf (PDF-COMBINED-
19).

parameter pdf’s. We also found that the peak values of the
mean likelihood pdf’s are closer to the input values than the
marginalized means.

Our method differs from the usual approach in two
ways: (1) We use MCMC, instead of a grid-based method, in
fitting the SN Ia lightcurve parameters; (2) We sampled the
pdf’s of the SN Ia lightcurve parameters in the cosmological
analysis, instead of just using the peaks of the pdf’s.

We have applied our method to the Joint Lightcurve
Analysis (JLA) data set of SNe Ia derived by Betoule et al.
(2014), which combines the SNe Ia from SDSS and SNLS in
a consistent, well-calibrated manner. Interestingly, we find
that the resultant cosmological constraints are closer to that
of a flat Universe with a cosmological constant, compared to
the usual practice of using only the best fit values of the SN
Ia lightcurve parameters.

The JLA set has a bias correction term which is deter-
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Table 4. Parameters from the cosmology fit using 729 JLA SNe (excluding 11 problematic ones)

Ωm w α β M1 M2

SALT2 0.238+0.115
−0.180 −0.848+0.283

−0.270 0.140+0.007
−0.006 3.092+0.082

−0.092 24.123+0.029
−0.024 24.054+0.028

−0.030

GRID-SALT2 0.258+0.104
−0.228 −0.866+0.320

−0.306 0.141+0.007
−0.006 3.090+0.087

−0.083 24.123+0.026
−0.028 24.051+0.027

−0.030

GRID 0.249+0.119 −0.830+0.291
−0.336 0.141+0.007

−0.006 3.093+0.083
−0.087 24.124+0.024

−0.028 24.053+0.026
−0.031

MCMC-LIKE 0.263+0.120
−0.205 −0.859+0.317

−0.359 0.141+0.007
−0.007 3.071+0.083

−0.080 24.126+0.025
−0.030 24.049+0.028

−0.031

MCMC-MARGE† 0.312+0.118
−0.158 −0.965+0.266

−0.420 0.142+0.006
−0.007 3.096+0.080

−0.087 24.128+0.021
−0.033 24.040+0.035

−0.024

PDF-COMBINED-3 0.339+0.065
−0.161 −0.910+0.288

−0.339 0.142+0.006
−0.005 3.076+0.092

−0.085 24.124+0.023
−0.042 24.046+0.025

−0.039

PDF-COMBINED-7 0.335+0.072
−0.145 −0.975+0.417

−0.288 0.142+0.005
−0.006 3.098+0.066

−0.093 24.107+0.031
−0.026 24.026+0.037

−0.023

PDF-COMBINED-15 0.325+0.081
−0.162 −0.916+0.351

−0.344 0.143+0.005
−0.007 3.084+0.079

−0.072 24.116+0.026
−0.032 24.036+0.031

−0.028

PDF-COMBINED-19 0.309+0.098
−0.162 −0.912+0.343

−0.330 0.143+0.006
−0.006 3.096+0.075

−0.086 24.116+0.028
−0.029 24.035+0.034

−0.026

† The MCMC-MARGE set uses the marginalized means of the lightcurve parameter pdf’s.

Ωm

0 0.2 0.4 0.6

w

-2

-1

Ωm

0 0.2 0.4 0.6

α

0.12

0.14

0.16

w

-2.5 -1.5 -0.5

α

0.12

0.14

0.16

Ωm

0 0.2 0.4 0.6

β

3

3.2

w

-2.5 -1.5 -0.5

β

3

3.2

α

0.12 0.14 0.16

β

3

3.2

Ωm

0 0.2 0.4 0.6

M
1

24

24.2

w

-2.5 -1.5 -0.5

M
1

24

24.2

α

0.12 0.14 0.16

M
1

24

24.2

β

2.9 3.1 3.3

M
1

24

24.2

Ωm

0 0.2 0.4 0.6

M
2

24

24.2

w

-2.5 -1.5 -0.5

M
2

24

24.2

α

0.12 0.14 0.16

M
2

24

24.2

β

2.9 3.1 3.3

M
2

24

24.2

M1

23.9 24.1 24.3

M
2

24

24.2

PDF-COMBINED-15

GRID

MCMC-MARGE

Figure 6. Joint confidence level contour plots from the cosmological fit with and without sampling of the SN Ia lightcurve parameter
pdf’s, using 729 SNe Ia from the JLA data set (excluding 11 problematic ones). The contours are 68% and 95% confidence levels. Thick
black solid contours are are results from sampling 15 points on each pdf (PDF-COMBINED-15); thin red solid contours are results from
using the GRID set; blue dotted contours are results from using the MCMC-MARGE set, without pdf sampling.

mined using simulations generated by the SNANA software
(Kessler et al. 2009), by comparing the reconstructed dis-
tance using SALT2-fitted lightcurve parameters to the sim-
ulation inputs (Betoule et al. 2014). We use this bias cor-
rection in our analysis, assuming that it is independent of
the fitting technique. Ideally we should perform our own
bias calculation by fitting the simulations with our MCMC
lightcurve fitter. We will leave this for future work. We also
note that the significantly smaller marginalized errors (com-
pared to likelihood errors) from the simulated datasets could
be due to the simulated datasets not being sufficiently real-
istic. We will investigate this further in future work.

As SN Ia data increases in both quantity and quality,
our method will be useful in the quest to illuminate the
nature of dark energy using cosmological data.
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