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A bed of granular material which is subjected to vertical vibration will exhibit at least
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one sudden expansion at a critical acceleration amplitude. This sudden expansion
corresponds to a bifurcation similar to that exhibited by a single ball bouncing on
a vibrating plate. Theoretical analysis based on this model yields results which are

in accord with the experimental observations. Other bifurcations may occur at higher
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1 Introduction

The vibration of granular materials is of interest for a number
of reasons. First, vibration is sometimes used instead of an
upward flow of gas to fluidize a particle bed reactor and in such
devices it is clearly important to know the state of the bed.
Secondly, vibration is often used to induce flow in recalcitrant
bulk flow transport devices such as hoppers and chutes. It is
also used to induce segregation of different density and different
size particles. Clearly, knowledge of how vibration affects these
granular materials provides important design information. As a
third incentive we note that there has been a growing recognition
of and interest in the granular state. In a recent review, Jaeger
and Nagel (1992) have summarized some of the important
issues, questions, and applications of knowledge of the granular
state and highlight the need for undersianding the response to
vibration. The analogy to molecular dynamics is often drawn
but an important difference is that the particles in a granular
material are inelastic and therefore only sustain random motions
when either (a) the material is flowing (more specifically, un-
dergoing continuous deformation) in which case the random
motions are produced by the collisions or (b) externally im-
posed vibrations generate particle motions. Consequently, re-
search on the flow of granular materials and on the vibrational
excitation of granular material would seem complementary and
knowledge gained from one should provide insights to the other.

Several investigators have previously examined the response
of a bed of particles subjected to vertical vibrations and identi-
fied a number of states and transitions between those states.
Observations have been made for fine powders in which the
interstitial fluid plays an important role in the response (see,
for example Gutman, 1976a, 1976b) and for larger particles
(typically > 0.1 mm diameter) in which the effects of the
interstitial fluid are small. In this paper we shall focus on the
latter case because, even in the absence of the interstitial fluid
effects, phenomena occur which have yet to be adequately ex-
plained. The important variables are the radian frequency of
vibration, {2, vibration amplitude, a, particle diameter, d, and
bed height at rest, A, as well as material properties such as the
coefficient of restitution, ¢,, for collisions between the individ-
ual particles and the base plate. Clearly two appropriate dimen-
sionless parameters which will influence the state of the material
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are the dimensionfess acceleration amplitude, I” = afl°/g,
where g is the acceleration due to gravity, and the number of
layers in the bed, hy/d.

Most investigators agree that within the range of frequencies
usually explored (5 — 100 Hz) the phenomena are relatively
independent of frequency but depend strongly on the accelera-
tion level, I', and the bed thickness, h,/d. We describe the
phenomena which have been reported to occur as I is increased
from zero. As long as I < 1, the visual appearance of the bed
changes little; however Chlenov and Mikhailov (1965, 1972)
report an increase in mobility and this manifests itself as a
decrease in the angle of repose (Rajchenbach and Evesque,
1988). When I" exceeds unity by a small amount, the bulk of
the particles separate from the base plate each cycle of oscilla-
tion when the downward acceleration exceeds 1g. We note,
parenthetically, that one of the effects of the resistance to air
flow in fine powders is to delay the inception of separation to’
values of I' greater than unity (Thomas et al., 1989). For the
larger particles (typically > 0.1 mm diameter), when T is just
a little larger than unity the flight time of the particles, Az (the
time between separation and subsequent recontact), is short
compared with the period, T = 27/}, of the oscillations. In
these circumstances the material essentially comes to rest rela-
tive to the plate prior to the next flight.

A number of phenomena are observed to occur when the
acceleration level, T, is increased to higher levels so that the
flight time, At, approaches the period, 7. It is clear that the
events depend upon the layer thickness, Ao/d. Douady, Fauve,
and Laroche (1989) examined fairly thick layers with ho/d in
the 10 — 100 range and observed that when the flight time
becomes slightly greater than the period, a period doubling
bifurcation occurred. This resulted in two different flights which
alternated to produce a 22 component in the motion. The critical
I' at which this occurred increased from 4.5 for hy/d = 7 to
5.3 for hy/d = 25.

Thomas.et al. (1989) examined much thinner layers including
very dilute systems consisting of much less than a single layer
of particles. They describe four identifiable states which can
occur at large T" (typically 2.5 — 6.0) and are primarily distin-
guished by different layer thicknesses, ho/d. For very small
ho/d (of order 0.17) they describe a ‘‘Newtonian-I'* state in
which the particles are bouncing so randomly that the vertical
concentration profile changes little during a cycle. At somewhat
larger ho/d (at 0.273 for example) there is a transition to a
‘‘Newtonian-II"” state in which a dense layer of particles accu-
mulates on the surface during one part of each cycle. Thicker
layers of particles (for example ky/d = 1.7) lead to a “‘coherent-
expanded’’ state in which the particles all oscillate as a coherent
mass. This mass does, however, expand and contract during
each cycle. Bachmann (1940) had earlier observed the transi-
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Table 1 Bead and lid masses for the various experiments

Experiment Bead Mass Lid Mass
No. _[gm.] [gm.]
1 250 3.44
2 125 3.44
3 125 7.17
4 375 3.44
5 125 17.06
6 625 3.44
7 45 3.51
8 125

28.14

tion to coherent motion and reported that this occurred when
hold = 6.

Finally, Thomas et al. (1989) identify a ‘‘coherent-con-
densed’’ state at larger values of ho/d on the order of 4. In this
state the particles move as a mass but the mass remains compact
throughout the cycle. They report that the transition from the
‘‘coherent-expanded’’ state to the ‘‘coherent-condensed’’ state
is sudden and repeatable.

In the present paper we describe the phenomena which were
observed to occur as the vertical acceleration of a bed of mate-
rial is increased and identify a transition or bifurcation similar
to that which occurs with a single bouncing ball on a vertically
vibrating plate (Wood and Byrne, 1981; Holmes, 1982).

2 Experiments

Experiments were catried out to investigate the behavior of
a bed of granular material subjected to vertical vibration. The
materials used were A-285 glass beads with a mean diameter
of 2.85 mm. Various quantities of these beads were placed in
a rectangular box with cross-sectional dimensions of 11 ¢cm by
13.2 cm which was in turn mounted on an electro-mechanical
shaker and subjected to vertical vibration at frequencies between
4 and 10 Hz with amplitudes up to about 2.5¢. A Statham
AT73TC-4-350 accelerometer was used to measure the accelera-
tion level accurately.

The box had a thick aluminum base and back but the other
three sides were made of lucite so that the behavior of the beads
could be observed. Paper lids of various thickness were placed
on top of the beads leaving a clearance of about 1 mm between
the edge of the lid and the walls of the box. When the box was
vibrated vertically the bed of beads would expand and the lid
would float on the beads. Fortunately, the lid proved to be
quite stable and under all of the conditions used in the present
experiments would remain horizontal and centralized with a
roughly equal spacing all around the periphery. Because this
spacing was smaller than the diameter of the beads, all of the
beads would remain under the lid. A stroboscope was used to
examine the motion of the lid and the beads during various
parts of the oscillation cycle. By this means we were able to
observe that the spacing, %, between the base and the lid did
not vary greatly during the oscillations. The beads would bounce
around below the lid but because of the resistance to the flow
of air around the sides of the lid, the volume of beads and air
would remain almost constant during a cycle of oscillation.
Thus, using the strobe and a scale attached to the exterior of
the box, it was possible to measure the height, #, for each
operating condition.

Experiments were conducted by observing the evolution of
the bed of beads as the vibration amplitude, a, was increased
from zero to the maximum of which the shaker was capable.
Such experiments were conducted over a range of frequencies
(4 — 10 Hz) for various quantities of beads and for lids with
different weights as listed in Table 1.
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It should be noted that a single packed layer of beads resting
on the base of the box would weigh approximately 62 gm.
Consequently the masses of beads range from less than a single
layer to about ten layers. The 45 gm of experiment 7 was close
to the minimum at which the lid would remain horizontal for
the duration of the experiment.

3 Experimental Results

The results for the base-to-lid spacing, h, as a function of
vibration amplitude will be presented in various ways but we
focus here on the expansion of the bed, h* = & — h,, where
hy is the spacing at rest. For reasons which will become clear,
h* will be presented both as a function of the non-dimensional
acceleration amplitude I' = a$2?/g where g is the acceleration
due to gravity, and as a function of the vibration velocity, af).
The typical behavior of the bed is best illustrated by the results
from experiment 7 which are presented in Fig. 1.

The bed would begin to expand at an acceleration amplitude

. of about 1g and this expansion would gradually increase until

one reached a certain critical value of the acceleration ampli-
tude, I';, which appeared to be independent of frequency but
to vary with both the mass of beads and the mass of the lid.
At this critical acceleration amplitude the lid would rise quite
abruptly and then settle down at a substantially larger spacing,
h. As illustrated in Fig. 1, further increase in the acceleration
would result in further bed expansion but this was more gradual
than the expansion encountered during transition. The top graph
in Fig. 1 illustrates the fact that the critical conditions appear
to occur at a given acceleration amplitude regardless of the
frequency. On the other hand, the bottom graph in Fig. 1 illus-
trates the fact that the supercritical conditions correlate with the
velocity amplitude, a€2, rather than the acceleration amplitude.

Using the strobe, one could observe that prior to the transition
the motions of the particles were fairly uncoordinated. However,
above the transition the beads began to move as a mass which
collided once per cycle with the base and with the lid. The
collision with the base seemed quite inelastic and it appeared
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Fig. 2 Datafrom experiments 4 (top) and 5 (bottom) with frequency key
as in Fig. 1

that the mass only left the base again when the acceleration of
the base exceeded some critical value. However, it is also im-
portant to emphasize that the mass expands and contracts sub-
stantially during each cycle being quite concentrated while it is
in contact with the base but quite dilute while it is in flight.

Experiment 7 was chosen to illustrate the transition because
" it does so most clearly. This is because it used the smallest
mass of beads. As the mass of beads was increased (for the
same lid weight) the critical transition became less distinct in
the sense that the expansion at the critical acceleration became
somewhat less abrupt and somewhat smaller. The same trend
was manifest as one increased the weight of the lid. Both effects
are illustrated in Fig. 2 which presents data from experiments
4 and 5.

The critical acceleration, T, also increases with both the
mass of the beads and the mass of the lid. These trends are
shown in Fig. 3.

In order to understand the fundamental dynamics behind the
above phenomena it is valuable to present the data non-dimen-
sionally. This accomplished by nondimensionalizing the expan-
sion as (h — hy)Q*/g and plotting this versus the nondimen-
sional acceleration amplitude, ' = aQ?%/g. Examples from ex-
periments 2 and 3 are shown in Fig. 4 in which the subcritical
and supercritical data clearly form two distinct groups of points.
Indeed the two groups of points both appear to lie close to
quadratic curves which imply that each group of points corre-
spond to a roughly constant value of the inverse Froude number,

_L[g(h — k)1
as) ’

Fr~! @))

To examine this further, the inverse Froude number is plotted
versus the acceleration, I', in Fig. 5 for the typical data of
experiments 2 and 3.

It seems particularly noteworthy that the subcritical data cor-
responds roughly to an inverse Froude number, Fr ™!, of between
0.5 and 1.0 and that the supercritical corresponds quite closely
to Fr~' = 1.5 (recall that the values of (k — /) and a for some
of the subcritical data are quite small and this may account for
the larger scatter in that group of points). The specific values
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for Fr ™' decrease significantly as the mass of beads increases
and as the mass of the lid is increased. The subcritical data
shows similar trends though they are less distinct due to greater
scatter in the data.

4 Theoretical Analyses

The analytical solutions to the problem of a ball bouncing
on a horizontal flat plate performing vertical oscillations (ampli-
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tude, a, and radian frequency, (1) are of interest for several
reasons. First, the model could be considered appropriate for
individual particles when particle/particle collisions are rela-
tively rare, as, for example, in the case where less than a single
layer of particles was used. Alternatively, in the case of a larger
mass of particles, the solution might be considered applicable
to the whole mass when it performs a coherent periodic motion.
In either case, we shall consider that the particles bounce off a
lid which, by some unspecified damping mechanism, is main-
tained at a constant height above the oscillating plate. The lid
is, however, entirely supported in the mean by the impulses
imparted by the particles; thus solutions will be sought for
various ratios of the lid mass to the particle mass, f. The problem
also requires specification of the coefficients of restitution, ¢,
and ¢, for collisions with the plate and lid, respectively.

The dynamics of the ball bouncing problem without a lid
have now become a classic example of the occurence of bifurca-
tions (see, for example, Wood and Byrne, 1981; Holmes, 1982)
and we shall see that this seems the probable explanation for
the experimentally observed transition.

The first, simple solution which is useful is that for no lid
and for €, = 0. The ball remains in contact with the plate until
the latter is accelerating downward at an acceleration equal to
g. The maximum height, %,, to which the ball rises above the
plate can readily be identified parametrically as

2

(2)

= I'[(x — x;) cos x; + sin x; — sin x,]

where

sin X = I/F; X3

(3)

This relationship between the dimensionless ‘‘expansion,’”
h£2?/ g and the acceleration amplitude was obtained numerically
and is identified in Fig. 6 as the ‘‘no bounce’’ solution. Note
that it corresponds quite closely with the subcritical experimen-
tal data (in Fig. 6 we have used the data of experiment 2 as
typical).

‘When one examines the specifics of this solution for the range
of T values of interest here (less than about 2) one finds that

—x; = I'(cos x; — cos x;).
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after becoming airborne the particle (or particle mass) will
return to impact the plate after less than about 0.6 of a cycle.
Even if ¢, were nonzero and there were several small bounces
following this impact there is more than sufficient time left in
the cycle for the particle (or particle mass) to effectively come
to rest on the plate before the next occurrence of a downward
acceleration of 1g. Thus the solution is valid for a range of ¢,.

The second benchmark which is of interest here is the peri-
odic solution in which the particle (or particle mass) bounces
off the plate and off the lid once per cycle of plate oscillation.
In order for such a periodic solution to exist the relative velocity
of departure from the lid collision, u,, the relative velocity of
incidence on the plate, u; (both u, and u, considered positive
downward), the relative velocity of departure from the plate,
u,, and the relative velocity of incidence on the lid, u;, (#, and
u; considered positive upward) must be given by

W _2n( +f) w2761 +f)

’

g (1 +¢) g (I +¢)
@ - 2rf | ufd _ 2ref )
8 (I+e)” g (Q+¢€)

The solution is most readily obtained parametrically by select-
ing the times #; and #, during a cycle when collision with the
plate and the lid, respectively, occur. It then follows that

[t — tz)][@ + “i‘l]
&g g

+ [t + 1) + 27r][3‘-9 + ”;‘Q-]
g g

r= (5)

2m(cos Ot + cos Q1)
and that the expansion, A, defined as the increase in the spacing
between the plate and the lid is given by

h . .
— = sin Q¢ — sin Q¢,
a

_A_Q(tl_tl) [ﬁ

u v
> + —;2 + cos Q¢ + cos QtZ:I . (6)

aQl  a

Thus the choice of two arbitrary values of Q, and Q¢, corre-
sponds to a solution for specific values of f and I" and yields
a specific value for 4/a. In addition one must check to ensure
that there are no unforeseen overlaps between the particle and
the lid or plate during the oscillation cycle. Typical results for
this analysis are included in Fig. 6 (identified as ‘‘with bounce’’
solution) for €, = 0.25, ¢, = 0, and f = 0.01, 0.1, and 0.2. Note
that for a given lid and given coefficients of restitution there
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Fig. 6 Typical data (from experiment 2) compared with the analytical
solutions described in the text :
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exist no periodic solutions of this type for accelerations below
a certain critical level. :

It should be noted in passing that there is a large variety of
other possible periodic solutions. For example there exist the
possibilities of one bounce for every two or more plate cycles
and of two or more bounces in a single plate cycle. Alternatively
the ball might cycle through two or more types of bounce before
repeating itself. It is important to point out that studies of the
dynamics of the much simpler system of a single particle on a
vibrating plate (Wood and Byrne, 1981 and Holmes, 1982)
have revealed a system of bifurcations at different critical values
of the acceleration, IT".

As the acceleration amplitude is increased the dynamics of
the .single ball exhibits the first bifurcation from the ‘‘no
bounce’’ solution to the ‘‘with bounce’’ state at

_r(l —¢)
T (l+e)

The present experimental data clearly indicates that such a bifur-
cation also occurs with the granular mass. Though the analogy
may only be of qualitative value, it is nevertheless of interest
to observe that Eq. 7 yields I'. = 1.88 when ¢, = 0.25, a value
we have arbitrarily chosen to demonstrate the results of the
analytical calculation. This analysis is qualitatively consistent
with the current experimental data since the effective ¢, for the
mass of particles may be as low as 0.25.

Thus the analysis is consistent with the following explanation
of the observed experimental behavior. At small values of the
acceleration just above 1g, the data is consistent with the sim-
ple, no-bounce solution. However, when the acceleration ap-
proaches the critical or bifurcation value of I, a sudden expan-
sion of the bed occurs as the particle mass begins to move as
a fairly coherent whole, bouncing off the plate once each oscilla-
tion cycle.

A computer simulation was developed in order to determine
if a column of inelastic particles vibrating on an oscillating
plate and bouncing off one another would behave in a manner
similar to a single particle. A hard sphere model was used
to simulate a column of up to ten particles with zero radius,
constrained to move vertically, supported by a sinusoidally vi-
brating plate. The separation height, 4, between the top particle
and the oscillating plate was averaged over many cycles for
values of the parameter I between 1.0 and 5.0. It was found
that a series of ‘‘jumps’’ in the bed expansion existed for combi-
nations of N, the number of particles, and ¢, the coefficient of
restitution between particles and between the bottom particle
and the plate. Figure 7 presents the results of a typical simulation
where the dimensionless expansion AQ?/g, is plotted against
the acceleration amplitude a§2?/g. For cases where N was small
and ¢ was large, the effective coefficient of restitution of the
column of particles is nonzero and sudden increases in the
column expansion occurred. However, when N was large and
e was small, the effective restitution coefficient was zero and
the column of particles remained grouped together. In this re-
gime the characteristic sudden expansion was not observed for
the range of acceleration amplitudes examined.

Clément et al. (1993) found similar results both experimen-
tally and numerically for a column of spherical particles vibrat-
ing on a sinusoidally oscillating base. They plotted the separa-
tion height of the center of mass of a column of ten particles
vibrating on a sinusoidally oscillating base as a function of
acceleration amplitude and also found sudden jumps at particu-
lar values of T". They, however, did not discuss the cause of
these jumps. Clément et al. also describe regimes where parti-
cles cluster together and move as a coherent mass. Here the
column of particles behaves in a manner similar to a single
particle with a coefficient of restitution equal to zero. Clearly the
same phenomena are being observed in the present simulations.

As a last note, it is interesting to consider the possible role
of the present bifurcations in the onset of the heaping phenome-
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Fig.7 Resuits from the computer simulation of a column of ten particles
with zero radius. In the simulation, € = 0.90, and the separation height,
h$¥*/g was averaged over 400 oscillations.

non (and its convection pattern) observed in the experiments
of Evesque and Rajchenbach (1989), Laroche et al. (1989),
and others. Since the bifurcations observed here occur at nearly
the same value of I" as the onset value for heaping (I'y = 1.2)
it is worth considering how the two phenomena might be re-
lated. The authors suggest that the two are in fact not related.
The sudden bed expansion which occurs for the shallow beds
examined here are due to a bifurcation in the dynamics of a
bed that has an effective restitution coefficient which is greater
than zero, ez > 0. Heaping, however, is observed for deeper
beds where e.¢ = O and the first bifurcation occurs when I' ~
3.3. Furthermore, when €. = 0, the bed does not exhibit the
sudden expansion described in this paper but instead displays
a period doubling bifurcation.

5 Conclusions

A bed of granular material which is subjected to vertical
vibration will exhibit at least one sudden expansion at a critical
acceleration amplitude. This sudden expansion corresponds to
a bifurcation similar to that exhibited by a single ball bouncing
on a vibrating plate. Theoretical analysis based on this model
yields results which are in accord with the experimental obser-
vations. Other bifurcations may occur at higher vibration levels.
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STUDENT PAPER COMPETITION

33rd Annual Technical Meeting
Society of Engineering Science

Arizona State University
October 20-23, 1996

Undergraduate and graduate students are invited to participate in a student paper competition at the 33rd Annual Technical
Meeting of the Society of Engineering Science to be held October 20-23, 1996 at Arizona State University in Tempe, AZ.
Cash prizes of $1000 and $500 will be awarded for first and second place, respectively. A limited number of travel stipends
of $350 will be available on a first come, first served basis. Student travel stipends also include waiver of the conference
registration fee.

Presentations in any area of engineering science are appropriate. Topics may include, but are not limited to acoustics,
atmospheric sciences, biological sciences, biomechanics, chemical sciences, compressible flow, computational sciences, com-
puter sciences, composite materials, corrosion, dynamics, fracture mechanics, fluid/structure interactions geophysics, material
sciences, mathematics, micromechanics, tribology and wear, and vibrations.

The competition is limited to 20 students. If more than 20 abstracts are received, the abstracts will be pre-screened. Students
not selected for the competition will be invited to present their work in a poster session at the conference. The student paper
competition is limited to those students who will not present papers in other sessions at the conference.

One-page abstracts must be submitted to Dr. Judy L. Cezeaux by February 29, 1996. Students must be first author on the
abstract and the student authors and faculty advisors should be clearly indicated.

For more information, contact:

Dr. Judy L. Cezeaux

Department of Mechanical and Aerospace Engineering and Engineering Science
310 Perkins Hall

University of Tennessee

Knoxville, TN 37996-2030

jecezeaux @utk.edu

(423) 974-2093

(423) 974-7663 FAX
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