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Abstract

The CKM matrix, V , relates the quark mass and flavor bases. In the standard model, V is unitary 3×3,
and specified by four arbitrary parameters, including a phase allowing for CP violation. We review the
experimental determination of V , including the four parameters in the standard model context. This is
an active field; the precision of experimental measurements and theoretical inputs continues to improve.
The consistency of the determination with the standard model unitarity is investigated. While there
remain some issues the overall agreement with standard model unitarity is good.
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1. Introduction

According to the standard model, quarks come in three families, with “up”-type and “down”-type
flavors represented in the mass basis by:

U =

uc
t

 , D =

ds
b

 (1)

The standard model weak charged current for quarks may be written

Jµ+
qW = 1√

2
ŪLγ

µV DL. (2)

The hermitian conjugate gives Jµ−qW . The L subscript indicates the left-handed projection: QL =
1
2
(1−γ5)Q. The quantity of interest to us here is the matrix V , called the Cabibbo-Kobayashi-Maskawa

(CKM) matrix [1, 2], describing how the mass states are mixed in the weak interaction.
The standard model does not predict V ; it must be evaluated experimentally. Otherwise, some

physics beyond the standard model is necessary to predict V . However, it is not an arbitrary 3 × 3
complex matrix. In the standard model with 3 generations, it relates two bases, and must be unitrary.
Nine real parameters are required to describe an arbitrary 3 × 3 unitary matrix. Not all of these
parameters are of physical significance, five of them can be absorbed as arbitrary phases in the definition
of the quark fields. This leaves four real physical parameters required to completely specify the CKM
matrix in the standard model. As only three parameters are sufficient to specify a real orthogonal matrix
(i.e., a rotation matrix), the matrix is in general complex. This yields a standard model mechanism for
CP violation.

The unitarity constraint permits testing the self-consistency of the standard model through precise
measurements of the elements of V . If any deviation from unitarity is detected, that is evidence for new
physics, such as the presence of additional generations. Alternatively, if two measurements, via different
processes, of the same element in the standard model yield different results, that is also evidence for new
physics. An important class of such searches for new physics is the possibility of new physics at a high
energy scale contributing to some processes via new virtual particle exchange, perhaps in semileptonic
decays or in “penguin diagrams”. For example, this could show up in CP asymmetry measurements.
Thus, the measurement of V has two thrusts: First, the four parameters are fundamental in the standard
model, and must be determined by measurement. Second, measurements of the CKM matrix elements
provide a means to search for physics beyond the standard model, or to constrain such theories.

In this article we review the present experimental status of our knowledge of V . For reliability,
we include in our averages only published, or accepted for publication, results, with a nominal cutoff
of December 31, 2015, although we often mention preliminary work. This remains an active area,
both experimentally and theoretically. Theoretical issues are included only to the extent that they are
relevant to the measurements of V . There are many excellent theoretical reviews; we reference several
at appropriate places.

The Review of Particle Properties [3] is used for constants such as GF and particle properties such as
masses, lifetimes, etc., except as otherwise noted. In addition, there are several other averaging groups
providing extremely useful services, including FLAG (Flavor Lattice Averaging Group) [4], FlaviaNet
Kaon Working Group [5], and HFAG (Heavy Flavor Averaging Group) [6, 7, 8]. In some cases, we
have used unpublished averages from these groups, as long as the primary results are published. A
comprehensive review of the physics of the B-factories (BaBar and Belle) is available in [9].

In the next section, we’ll discuss the parameterization of the CKM matrix. It will be convenient to
separate the discussion of the measurements into the magnitudes of the elements (Section 3) and the
phases via CP violation (Section 4). Then in Section 5 we will briefly discuss three extensive efforts at
providing global fits to available information concerning the CKM matrix and possible extensions. We
conclude with some fits of our own with discussion in Section 6.
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2. Parameters

There are several useful parameterizations of the CKM matrix. We review here the ones that we
shall be concerned with.

The conventional labeling for the general 3× 3 flavor mixing matrix is

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (3)

With this labelling, the charged current vertex gets a factor Vji as in Fig. 1. In terms of the flavor
labels, Vji = V ∗ij , for example, Vdu = V ∗ud.
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Figure 1: Appearance of CKM matrix element Vji in the Feynman rule for a charged current vertex, where i and j are
quark flavor labels.

Standard model unitarity implies nine independent equations relating the elements of V :

• The sum of the absolute squares of the elements in each row (or column) is one:

|Vud|2 + |Vus|2 + |Vub|2 = 1 (4a)

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1 (4b)

|Vtd|2 + |Vts|2 + |Vtb|2 = 1 (4c)

• The dot product of a column with the complex conjugate of a different column is zero. This yields
the remaining six equations (considering real and imaginary terms separately):

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 (5a)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (5b)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (5c)

Alternatively, we could have taken the dot products by rows, but this does not yield new inde-
pendent equations (since V †V = I ⇐⇒ V V † = I).
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These conditions reduce the number of parameters to nine real parameters required to define an
arbitrary unitary 3 × 3 matrix. However, there are five arbitrary phases defining the relative quark
fields. When these are chosen, there remain four physical real parameters needed to specify the CKM
matrix.

Since a rotation (orthogonal) matrix in three dimensions is specified by three angles (e.g., the
Euler angles), it is intuitive to think of the CKM matrix as described by three angles θij; i = 1, 2; i <
j ≤ 3 corresponding to a rotation, plus an additional phase angle, δ, giving complex elements to the
matrix. Conventionally, the θij are chosen to be in the first quadrant. The complex phase provides a
mechanism for CP violation in the standard model. Perhaps the most common convention for such a
parameterization of the matrix is [10, 3]:

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

 , (6)

where sij ≡ sin θij and cij ≡ cos θij.
Empirically, V is approximately diagonal, and this suggests a useful parameterization as an ex-

pansion in powers of one of the parameters [11]. Following [12, 13], we define a new set of four real
parameters (λ, A, ρ, η, which we shall refer to as Wolfenstein parameters) according to:

λ ≡ s12

Aλ2 ≡ s23

Aλ3(ρ− iη) ≡ s13e
−iδ.

(7)

The parameter λ ≈ 0.22 then functions as an expansion parameter for describing V , and we have (e.g.,
[14]):

V =

 1− λ2

2
− λ4

8
λ Aλ3(ρ− iη)

−λ
[
1 + A2λ4(ρ+ iη − 1

2
)
]

1− 1
2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3
[
1− (ρ+ iη)(1− 1

2
λ2)
]
−Aλ2

[
1 + λ2(ρ+ iη − 1

2
)
]

1− 1
2
A2λ2

+O(λ6), (8)

Measurements of rates are typically sensitive to magnitudes of particular CKM matrix elements, |Vij|.
Thus, we shall discuss these magnitudes extensively. In the standard model, they are related according
to the unitarity constraints above, but experimentally they provide nine independent quantities, hence
allowing for tests of the standard model. If the experimental results do not fit the constraints, that is
evidence for new physics.

On the other hand, measurements of CP -violating processes are sensitive to the phase δ, or alterna-
tively the parameter η. The connection with experiment is often done in the context of the “unitarity
triangles”. Eqs. 5 describe triangles in the complex plane. In the limit of no CP -violation, the relative
phases of all the elements would be 0 or 180◦, and the triangles would have zero area. In fact, all of
the triangles have the same area, related to a phase-convention invariant quantity called the Jarlskog
invariant [15]:

J = (−1)a+b=(VijVklV
∗
kjV

∗
il ) (9)

where one row (index a) and one column (index b) of V is crossed out to obtain the 2× 2 matrix

V(ab) =

(
Vij Vil
Vkj Vkl

)
, (10)

defining indices i, j, k, l. The magnitude of J , or equivalently the area of the triangles, is a measure of
how much CP violation there is in the standard model. It has more recently been pointed out that the
Jarlskog invariant can also be expressed as [16, 17]:

J = =(V ∗31V
∗

22V
∗

13), (11)
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assuming V has been expressed in a form with determinant one by multiplying by an overall phase as
needed. In the Wolfenstein parameterization, at the order of Eq. 8,

J = A2λ6η. (12)

One triangle in particular, Eq. 5b, has the feature that all of the sides have length of order Aλ3.
This is usually what we mean when we say the (standard) “unitarity triangle”. Dividing through by
VcdV

∗
cb gives:

1 = −VudV
∗
ub

VcdV ∗cb
− VtdV

∗
tb

VcdV ∗cb
(13)

It is conventional to define the complex apex point as

ρ̄+ iη̄ ≡ −VudV
∗
ub

VcdV ∗cb
=

√
1− λ2(ρ+ iη)√

1− A2λ4 +
√

1− λ2A2λ4(ρ+ iη)
≈ (ρ+ iη)(1− λ2/2). (14)

We may graph this triangle, as in Fig. 2. Three angles are thus defined:

α ≡ arg

(
−1− ρ̄− iη̄

ρ̄+ iη̄

)
= arg

(
− VtdV

∗
tb

VudV ∗ub

)
(15)

β ≡ arg

(
− 1

1− ρ̄− iη̄

)
= arg

(
−VcdV

∗
cb

VtdV ∗tb

)
(16)

≈ − arg Vtd (17)

γ ≡ arg (ρ̄+ iη̄) = arg

(
−VudV

∗
ub

VcdV ∗cb

)
. (18)

The angles β, α, and γ are also commonly called φ1, φ2, and φ3, respectively.

(0, 0)

(ρ̄, η̄)

(1, 0)

γ
β

α
ρ̄+ iη̄

1 − ρ̄− iη̄

1

Figure 2: The vectors forming the standard unitarity triangle.

A second unitarity triangle has more recently become experimentally accessible. This is the relation
in Eq. 5c, which, dividing by VcsV

∗
cb, is:

1 +
VtsV

∗
tb

VcsV ∗cb
+
VusV

∗
ub

VcsV ∗cb
= 0. (19)

Considering the Wolfenstein parameterization in powers of λ, the first two terms are of order one, while
the third term is O(λ2). Hence, this triangle has at least one very small angle, called βs:

βs ≡ arg

(
−VtsV

∗
tb

VcsV ∗cb

)
∼ λ2η̄ (20)

≈ arg(−Vts). (21)
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3. Magnitudes of CKM elements

As already noted, rates for weak transitions provide for relatively direct measurements of the mag-
nitudes of the CKM matrix elements. In the following, we review what is known about each of the nine
magnitudes in turn, without assuming unitarity of the matrix. This is a convenient organization also
because the results are largely uncorrelated. We consider the upper left 2× 2 submatrix elements first,
as the best known quantities, followed by |Vub| and |Vcb|, then finish with the top-quark elements.

3.1. |Vud|
The magnitude of Vud is measured in weak u↔ d transitions. Thus, the most promising candidates to

study are nuclei, neutrons, and pions. The principal pion decay, π+ → µ+νµ(γ), has a rate proportional
to |Vud|2, given by:

Γ
(
π+ → µ+νµ(γ)

)
=
G2
F

8π
f 2
πm

2
µmπ

(
1− m2

µ

m2
π

)2

|Vud|2
(

1 +
α

π
Cπ

)
, (22)

where GF is the Fermi constant, fπ is the pion decay constant, mπ is the charged pion mass, mµ is the
muon mass, and Cπ allows for radiative corrections, including both virtual and real photons. Radiative
corrections are not negligible considering available experimental precision, and there is a large literature
on this subject. A convenient discussion, though by no means the last word, is provided in [18]. Our
main concern here is the dependence on fπ, which is not perturbatively calculable. The present situation
on the lattice calculation of fπ is reviewed in [19], where a precision of 1.3% is quoted. Thus, while
the pion lifetime, τπ = (2.6033 ± 0.0005)10−8 s [3], is precisely known, it measures the combination
f 2
π |Vud|2, and the extraction of |Vud| is hampered by the inability to precisely calculate fπ. Instead, the

pion decay is typically used to measure fπ given other more precise determinations of |Vud|.
A method that is theoretically clean is to look at the rare pion beta decay process π+ → π0e+νe [20].

The world average branching fraction is dominated by the most recent measurement from the PIBETA
experiment at the Paul Scherrer Institute, yielding |Vud| = 0.9728(30)[21]. Using the theoretical value
for the normalizing branching fraction for π+ → e+νe(γ) instead of the less precise world average,
Towner and Hardy [22] recommend the value |Vud| = 0.9742± 0.0026. In spite of the robustness of this
approach, the small branching fraction has so far kept it from being as precise as the measurement via
nuclear transitions. It provides, however, a valuable consistency check, being independent of nuclear
structure.

The lifetime of the neutron is measured to be τn = 880.3 ± 1.1 s [3]. There has been substantial
movement in the neutron lifetime in recent years, a synopsis of the situation appears in [3]. Due to this
fluidity, it seems prudent to wait for further developments before reaching firm conclusions based on
this quantity.

Presently, the most precise value for |Vud| comes from superallowed 0+ → 0+ nuclear beta transitions.
This is largely because these are vector transitions and the conserved vector current hypothesis provides
reduced hadronic uncertainties. Over the last several decades there has been considerable experimental
effort to improve the rate measurements, and concomitant improvements in the theoretical evaluation
of the few percent corrections for symmetry breaking and radiative diagrams. The corrected ft values
(comparative half-lifes) are independent of nucleus, and inversely proportional to |Vud|2. The most
recent update [23] uses an average of the 14 most precise ft values measured on different nuclei, and
quotes

|Vud| = 0.97417(21) (23)

|Vud|2 = 0.94900(42), (24)

where we quote also the square as being more directly related to the measurements. This represents
a slight shift and slight improvement in precision from the five-year earlier evaluation [22] of |Vud| =
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0.97425 ± 0.00022. The dominant uncertainty is theoretical, from the nucleus-independent portion of
the radiative corrections [24].

The measured value of |Vud|2 is many standard deviations different from one, the value for a world
with a single generation. Hence, this measurement alone implies at least two generations are required.

3.2. |Vus|
The measurement of the magnitude of Vus requires s↔ d transitions. The most promising sources

are kaon and hyperon decays, as well as τ decays with strangeness in the final state. So far, kaon decays
provide the most precise measurements. They may be classified as the purely leptonic decays, K → µν
(including radiative decays) and semileptonic decays, K0

L → π`ν, K0
S → π`ν, and K± → π0`±ν. The

leptonic K → eν decay rate is suppressed relative to K → µν by (me/mµ)2, as seen by considering the
kaon decay equation analogous to Eq. 22.

Extraction of |Vus| using the leptonic decay suffers from the same uncertainty, now for the kaon
decay constant fK , as for the pion in our discussion of Vud. However, the ratio fK/fπ may be computed
rather precisely using lattice QCD (LQCD), and the precise value of |Vud| may then be used to evaluate
|Vus|:

|Vus|2 = |Vud|2
Γ (K → µν(γ))

Γ (π → µν(γ))

(
fπ
fK

)2
mπ

mK

 1−
(
mµ
mπ

)2

1−
(
mµ
mK

)2

 1 + α
π
Cπ

1 + α
π
CK

. (25)

The ratio of radiative correction factors is taken from [5], using the chiral perturbation theory results
in [25]. This corresponds to the same central value, but half the uncertainty of the ratio in [26]. Thus,
we use

1 + α
π
Cπ

1 + α
π
CK

= 1.0070(18), (26)

the dominant corrections being the same for the pion and kaon. Two recent four flavor (Nf = 2 + 1 + 1)
lattice caculations of fK/fπ quote a precision of around 0.2% (see also [27]):

fK+/fπ+ =

{
1.1916(21) HPQCD [28]

1.1956
+(27)
−(24) Fermilab Lattice and MILC [29].

(27)

Symmetrizing the second interval and averaging, we use

fK+/fπ+ = 1.1935(21), (28)

where we have not reduced the uncertainty below the smaller error because of potential systematic
correlations.

The measured input is summarized in Table 1. Using Eq. 25 we find:∣∣∣∣VusVud

∣∣∣∣2 = 0.05347(14)Γ(10)C(19)f ,

|Vus|2 = 0.05074(13)Γ(2)Vud(9)C(18)f ,
(K → µν)

|Vus| = 0.22526(29)Γ(5)Vud(20)C(40)f ,

(29)

or, quadratically combining the uncertainties, |Vus|2 = 0.05074(24) and |Vus| = 0.2253(5). This result
is close to other determinations, such as in [3], but the quoted uncertainty is smaller due to the use
of [28, 29] for the ratio of decay constants. Nevertheless, this ratio remains the dominant source of
uncertainty in |Vus|. This method introduces a correlation with |Vud|. However, the contribution to
the uncertainty from |Vud| is small, and the linear correlation coefficient is only ρ(|Vus|2, |Vud|2) =
cov(|Vus|2,|Vud|2)
σ|Vud|2

σ|Vus|2
= |Vus

Vud
|2 σ|Vud|2
σ|Vus|2

≈ 0.09.
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Table 1: Experimental rates in the evaluation of |Vus| from leptonic decays. “Fit” refers to the constrained fit performed
by the Particle Data Group.

Quantity Value Reference
τ(π+) 2.6033(5)× 10−8 s [3]
B (π+ → µ+ν(γ)) 0.9998770(4) [3] (fit)
Γ (π+ → µ+ν(γ)) 3.8408(7)× 107 s−1

Γ (K+ → µ+ν(γ)) 5.133(13)× 107 s−1 [3] (fit)

The value of |Vus| is also measured in K → π`ν, ` = e, µ decays, avoiding the dependence on the
decay constant, but introducing the form factor parameter fKπ+ (0). The total decay rate for this process
may be expressed in terms of the product |Vus|fKπ+ (0) according to [30, 5, 31]:

ΓK`3 =
G2
Fm

5
K

192π3
C2
K |Vus|2fKπ+ (0)2IK`SEW(1 + δEM + δSU(2)), (30)

where C2
K is 1 or 1/2 for K0 or K+, respectively, and IK` is a form factor dependent phase space integral

(see [5] for discussion). The remaining SEW(1 + δEM + δSU(2)) ∼ O(1) factor includes corrections for
short distance electroweak, long distance electromagnetic, and isospin-breaking effects. The correction
depends on whether it is a neutral or charged kaon, and whether the lepton is e or µ. The form factor
fKπ+ (0) is by convention that of the neutral kaon decay.

The FlaviaNet Working Group on Kaon Decays reviewed the K`3 measurement in 2010 ([5] and
references therein). We use the most recent update from [32], which includes more recent results from
KLOE [33], KTeV [34], and NA48/2 [35]. It should be remarked that the NA48/2 results are actually
unpublished, in violation of our selection criteria. However, the main difference with the 2010 average
is actually in the correction for strong isospin breaking rather than in the additional data, and the
influence of the new NA48/2 analysis on the result is very small. The result after radiative corrections
is:

fKπ+ (0)|Vus| = 0.2165(4). (31)

This is an average over neutral and charged kaon decays. The largest uncertainty is from measurement,
in the lifetime for K0

L, and in the branching fractions for K0
S and K±.

We use the recent lattice result [36] fKπ+ (0) = 0.9704(32) to obtain

|Vus|2 = 0.04978(38),

|Vus| = 0.2231(8).
(K`3) (32)

The uncertainty is dominated by the uncertainty in fKπ+ (0). This result is about 2.5 standard deviations
below the K`2 result.

We may average the K`2 and K`3 results to obtain:

|Vus|2 = 0.05046(20),

|Vus| = 0.2247(5),
(33)

In this average, the correlation with |Vud| reduces to ρ(|Vus|2, |Vud|2) ≈ 0.08. Including the Particle Data
Group scaling factor procedure [3] the uncertainties enlarge with a scale factor of S = 2.2 to (44) and
(10), respectively.

The |Vus| matrix element is also measured in hyperon decays and in tau decays to strangeness (e.g.,
see Blucher and Marciano in [3] and references therein). The precision and theoretical understanding of
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these measurements is not competitive with the K`2 and K`3 measurements at this time. In particular,
there has been a long-standing discrepancy between |Vus| determined from inclusive τ → Xsντ decays
compared with the kaon results. An evaluation in [37], based on sum rule and flavor breaking theoretical
work described in [38], yields |Vus|(τ → Xsντ ) = 0.2176(21), which is 3.3 standard deviations smaller
than the K`2 and K`3 average. This value would also imply a 3.6σ deviation from three generation
unitarity when combined with the values for |Vud|2 and |Vub|2 in this review. Improvements in the
theoretical framework have recently been suggested [39], and a new evaulation of the τ data yields
|Vus|(τ → Xsντ ) = 0.2228(23)exp(5)thy. This value (which uses some unpublished preliminary data
from BaBar on τ → K−π0ν [40] that also helps to improve the agreement) is consistent with the kaon
determination. The experimental uncertainty dominates, and there is room for the τ determination of
|Vus| to improve, e.g., with Belle-II.

With |Vud| and |Vus| we may ask whether a third generation is required. We find (without using the
scaled error for |Vus|):

1− |Vud|2 − |Vus|2 = (0.00054± 0.00047). (34)

This is consistent with zero, hence there is no evidence that a third generation exists based on these
values. However, a constraint is obtained on how large the mixing with the third generation could be
or on new physics scenarios such as additional generations.

3.3. |Vcs|
The c → s transition is the “Cabibbo-favored” decay channel for charm. The value of |Vcs| is best

measured in D and Ds decays analogous to the kaon decays discussed for |Vus|. The analog of the Kµ2

decay is Ds → `ν with ` = µ or τ and the analog of the K`3 decay is D → K`ν. There are other
processes dependent on |Vcs|, such as charmed baryon decays to strangeness and W → cs̄, but the
available precision as measurements of |Vcs| is not competitive.

The Heavy Flavor Averaging Group (HFAG) [7] has averaged the published results from BaBar [41],
Belle [42], and CLEO-c [43, 44, 45] for Ds → `ν, corrected for τ branching fractions in [3] where relevant,
obtaining:

B(Ds → µν) = 5.57(24)× 10−3

B(Ds → τν) = 5.55(24)× 10−2 (35)

Using the appropriately relabled Eq. 22, neglecting the radiative corrections, but including experimental
correlations, these results are combined by HFAG [7], obtaining:

fDs|Vcs| = 250.6± 4.5 MeV. (36)

The value of the fDs decay constant is evaluated in lattice QCD. We use the HPQCD collaboration
result from [46] and the Fermilab Lattice (FNAL)/MILC collaboration result from [29]. We do not
include the also recent but less accurate HPQCD result in [47]. The average is performed assuming both
no correlation and completely correlated systematics. The central value we quote is the no correlation
value, and the uncertainty is increased linearly by the difference between the correlated and uncorrelated
averages, with the result

fDs = 248.6± 1.6 MeV. (37)

Combining Eqs. 36 and 37 gives
|Vcs| = 1.008± 0.019. (38)

The lattice calculation has improved to the point where the dominant uncertainty comes from the
experimental measurement.

We may also determine the value of |Vcs| using the semileptonic D → K`ν process and the analog
of Eq. 30. Several methods have been employed and compared to evaluate the form factor dependent
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Table 2: Experimental measurements of |Vcs|fDK+ (0). The first error is statistical, the second systematic. The notation
“10 GeV” refers to data taken in the BB̄ threshold region, mostly on the Υ(4S).

Quantity Data |Vcd|fDK+ (0) Reference
D0 → K−e+ν 10 GeV, 75 fb−1 0.720(7)(7) BaBar [53, 7]
D0 → K−(e+, µ+)ν 10 GeV, 282 fb−1 0.692(7)(22) Belle [54, 7]
D+ → KLe

+ν ψ(3770), 2.92 fb−1 0.728(6)(11) BESIII [55]
D0 → K−e+ν ψ(3770), 2.92 fb−1 0.7172(25)(35) BESIII [52]
D0 → K−e+ν ψ(3770), 281 pb−1 0.747(9)(9) CLEO-c untagged [56]
D+ → K̄0e+ν ψ(3770), 281 pb−1 0.733(14)(11) CLEO-c untagged [56]
D → Ke+ν ψ(3770), 818 pb−1 0.719(6)(5) CLEO-c tagged [57]
D0 → K−e+ν ψ(3770), 818 pb−1 0.726(8)(4) CLEO-c tagged [57]
D+ → K̄0e+ν ψ(3770), 818 pb−1 0.707(10)(9) CLEO-c tagged [57]

D → K`+ν 0.7208(33) Our average

integral ID`, including dispersion relations [48], pole parameterizations [49], “z-expansion” [50] (and
references therein), and ISGW2 [51]. Recent analyses typically settle on the z-expansion for quoting
results. The basic idea of the z-expansion is to map t = q2 to a variable (z) such that a Taylor series
with good convergence properties can be used. The chosen mapping is

z(t, t0) ≡
√
t+ − t−

√
t+ − t0√

t+ − t+
√
t+ − t0

, (39)

where t+ = (mD + mK)2 is the threshold for DK production and t0 ∈ (−∞, t+) is the value of t
corresponding to z = 0, and may be chosen for desirable properties. The form factor is then expanded
in a Taylor series in z. Three terms in the expansion is usually found to be sufficient.

The most precise published results on the semileptonic decay D → K`+ν (` = e, µ) come from
BaBar, Belle, BESIII, and CLEO-c, see Table 2. On a 2.9 fb−1 dataset taken at the ψ(3770), BESIII
reports a very precise result [52], fDK+ (0)|Vcd| = 0.7172(25)(35) from D0 → K−e+ν decays.

In Table 2 the 818 pb−1 dataset from CLEO-c includes the 281 pb−1 dataset, and there is some
correlation between the tagged and untagged analyses in both statistical and systematic errors. The
correlations, including as well those between the charged and neutral D channels, have been derived by
CLEO-c on the 281 pb−1 dataset [58]. We use the correlation information (including the assumption
that all of the 818 pb−1 dataset has the same correlation in the systematic errors with the untagged
analysis) to obtain an average of the data in Table 2: |Vcd|fDK+ (0) = 0.7208(33). The p value for the χ2

statistic is 0.004. The correlation between the two BESIII results is small, and is neglected. This result
is close to the HFAG average [6, 7] (0.728(5)), except that we now use the published BESIII result for
D0 → K−e+ν and we also include the BESIII D+ → KLe

+ν measurement.
It is noted in [5] that the HFAG averaging does not remove the final-state Coulomb correction in

the D0 channel prior to averaging. This and other corrections are potentially important now that the
measurements have become precise. However, this determination of |Vcs| is limited by the uncertainty
in fDK+ (0), hence neglect of these corrections is presently safe enough.

The smallness of the p value is of some concern. It is possible that we are misestimating the
correlations in our treatment of the CLEO data. However, it may also be an indication that the neglect
of the different electromagnetic corrections between D+ and D0 is no longer justified. The incorporation
of such corrections should be performed as part of the analysis. However, they naively could be as large
as O(%) [59]. To investigate the possible effect, “correcting” the D0 numbers by a factor of 0.99 improves
the p value to 2%, while changing the average to 0.7194(33); a factor of 0.98 improves it to 5%, while
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changing the average to 0.7181(33). As already noted the uncertainty for |Vcs| remains dominated by
the uncertainty in fDK+ (0), so this remains a secondary issue for our discussion. Nevertheless, we suggest
that future evaluations of fDK+ (0)|Vcs| include such corrections in the analysis over the Dalitz plot.

To extract |Vcs|, the form factor at zero recoil, fDK+ (0), is required, and lattice calculations are
available. The FLAG evaluation [4] is

fDK+ (0) = 0.747± 0.019. (40)

Due to the FLAG quality and publication requirements, this is just the HPQCD evaluation from
Ref. [60]. This yields |Vcs| = 0.965(25).

The leptonic and semileptonic results are consistent (p(χ2) = 0.24), averaging them yields:

|Vcs|2 = 0.983(30),

|Vcs| = 0.992(15).
(41)

The use of the detailed q2 dependence in D → K`ν decays to improve the measurement of |Vcs| is dis-
cussed in a preprint [61] from the HPQCD Collaboration, in which a value of |Vcs| = 0.973(5)exp(14)lattice

is obtained. It should be noted that the lattice QCD calculations are also improving for semileptonic de-
cays to vector mesons, for example Ds → φ`ν. A recent evaluation [62] extracts |Vcs| = 1.017(63) using
the branching fraction measured by BaBar [63]. The error is dominated by the theoretical uncertainties,
but not by much.

3.4. |Vcd|
Completing the upper left 2 × 2 submatrix is the “Cabibbo-suppressed” c → d transition. Early

measurements of |Vcd| were performed in neutrino production of charm, and this method remains in
principle competitive. Lattice calculation of form factors has advanced such that the semileptonic
D → π`ν decay is also useful, analogous to D → K`ν for |Vcs|. Also similarly with other elements, the
leptonic decay D+ → `+ν provides a measurement of |Vcd| if lattice calculations are used for the fD
decay constant.

The neutrino measurements consist in measuring di-muon production, where one muon is the result
of a charged current interaction (providing a d → c transition, hence dependence on |Vcd|), and the
second muon tags the decay of a charmed hadron. The measurement is reported as the product Bµ|Vcd|2,
where Bµ is the semileptonic branching fraction of charmed hadrons, as appropriate to the experimental
conditions.

There has not been much recent development in this area in the neutrino experiments. The 2004
Review of Particle Properties (RPP) [64] quotes an average for the CDHS [65], CCFR [66, 67], and
CHARM II [68] measurements of Bµ|Vcd|2 = 0.00463(34). An evaluation [69] of Bµ for the nominal
kinematic regime (visible energy >∼ 30 GeV) is combined in the 2014 RPP [3] with a measurement
from CHORUS (nuclear emulsion) [70] obtaining Bµ = 0.087(5), and thence |Vcd| = 0.230(11). There is
a further result from CHORUS based on events produced in the lead-scintillating fiber calorimeter [71],
which has not been included in this average.

However, the review in [69] notes the inconsistency in combining leading order (LO) and next-to-
leading order (NLO) determinations, and quotes separate results. The LO results from CDHS, CCFR,
and CHARM II are averaged obtaining |Vcd|LO = 0.232(10), while the NLO result from CCFR yields
|Vcd|NLO = 0.246(16). We do not include the neutrino in our average for |Vcd|, opting instead for the in
any event presently more precise results from D meson decays.

As with earlier elements, |Vcd| may be measured in leptonic and semileptonic decays, in particular,
D → `ν and D → π`ν. For the leptonic channel, the fD+ decay constant is required, and this
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Table 3: Experimental measurements of |Vcd|fDπ+ (0). The first error in statistical, the second systematic. The third error
for the BaBar result is from the uncertainty in the normalizing channel. The notation “10 GeV” refers to data taken in
the BB̄ threshold region, mostly on the Υ(4S).

Quantity Data |Vcd|fDπ+ (0) Reference
D0 → π−e+ν 10 GeV, 384 fb−1 0.1374(38)(22)(9) BaBar [74]
D0 → π−(e+, µ+)ν 10 GeV, 282 fb−1 0.140(4)(7) Belle [54, 7]
D0 → π−e+ν ψ(3770), 2.92 fb−1 0.1435(18)(9) BESIII [52]
D0 → π−e+ν ψ(3770), 281 pb−1 0.140(7)(3) CLEO-c untagged [56]
D+ → π0e+ν ψ(3770), 281 pb−1 0.138(11)(4) CLEO-c untagged [56]
D → πe+ν ψ(3770), 818 pb−1 0.150(4)(1) CLEO-c tagged [57]
D0 → π−e+ν ψ(3770), 818 pb−1 0.152(5)(1) CLEO-c tagged [57]
D+ → π0e+ν ψ(3770), 818 pb−1 0.146(7)(2) CLEO-c tagged [57]

D → π`+ν 0.1432(16) Our average

is computed in lattice QCD. These calculations are becoming rather precise (see [19] for a recent
summary), the recent result from the Fermilab Lattice/MILC colaboration [29] is

fD+ = 212.6± 0.4+1.0
−1.2 MeV. (42)

The first uncertainty is statistical, and the second is systematic, dominated by the uncertainty in the
continuum extrapolation. We note that we are entering the precision regime where the distinction
between fD+ and fD0 is becoming important.

The most precise measurements of the D → µν branching fraction are from CLEO [72], (3.82 ±
0.32± 0.09)× 10−4 and BESIII [73], (3.71± 0.19± 0.06)× 10−4, which may be averaged to obtain [7]

B(D → µν) = (3.74± 0.17)× 10−4. (43)

With the above value for fD+ , this yields, with the appropriately modified Eq. 22 and neglecting the
radiative correction term, |Vcd|2 = 0.0467(22), or |Vcd| = 0.216(5). The error is completely dominated
by the uncertainty on the branching fraction.

The most precise published results on the semileptonic decay D → π`+ν (` = e, µ) have come
from BaBar, Belle, BESIII, and CLEO-c, see Table 3. On a 2.9 fb−1 dataset taken at the ψ(3770),
BESIII reports a very precise result [52], fDπ+ (0)|Vcd| = 0.1435(18)(9) from D0 → π−e+ν decays. Just
as for the D → K`ν case, the 818 pb−1 dataset from CLEO-c includes the 281 pb−1 dataset, and
there is some correlation between the tagged and untagged analyses in both statistical and systematic
errors. As before, we use the correlation information [58] to obtain an average of the data in Table 3:
|Vcd|fDπ+ (0) = 0.1432(16). The p value for the χ2 statistic is 0.53. This result is very close to the HFAG
average [7] (0.1425(19)), except that we now have the published BESIII result.

Using the lattice QCD result for fDπ+ (0), we may extract a measurement of |Vcd|. The FLAG
collaboration [4] identifies one calculation as meeting their criteria, that of [75], with fDπ+ (0) = 0.666(29).
Using this value, we obtain the semileptonic result: |Vcd|2 = 0.0462(42), or |Vcd| = 0.215(10), where the
dominant uncertainty is from the lattice calculation. The nearly 10% uncertainty in |Vcd|2 justifies the
neglect of higher order corrections.

The leptonic and semileptonic results are consistent, combining them we obtain:

|Vcd|2 = 0.0466(19),

|Vcd| = 0.216(5).
(44)

It may be noted that there are small correlations between |Vcs| and |Vcd| due to the presence of
correlated systematic uncertainties in some of the measurements. We neglect these correlations.
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3.5. |Vcb|
Weak decays of hadrons containing a b quark decay most often to charmed hadrons, so we consider

|Vcb| next. There are two general approaches to measuring |Vcb| with competing strengths, namely
inclusive and exclusive semileptonic B decays to charm. The idea is very similar to the elements
already discussed; however, there is an important difference in practice. Both the c and b quarks are
“heavy”, on the scale of ΛQCD, and Heavy Quark Effective Field Theory (HQET; for a brief review, see
Bauer and Neubert in [3]) provides a useful theoretical framework for confronting the soft physics.

The most precise measurements in exclusive semileptonic decays are in B → D∗`ν and B → D`ν,
with ` = e or µ. The differential rate for these decay modes may be expressed in terms of a kinematic
variable, w, and a decay-specific form factor (Kowalewski and Mannel in [3], [76], [77]):

dΓ(B̄ → D(∗)`ν)

dw
=

GF

48π3
|Vcb|2m3

D(∗)

√
w2 − 1η2

EW

{
(mB +mD)2(w2 − 1)G(w)2 D,

(mB −mD∗)
2(w + 1)2

[
1 + 4w

w+1
1−2wr+r2

(1−r)2

]
F (w)2 D∗.

(45)
The variable w = v · v′ is the scalar product of the four-velocities of the B and D(∗) mesons. In the B
rest frame, w = ED(∗)/mD(∗) is just the gamma-factor of the D(∗) meson. The quantity r is the mass
ratio r = mD∗/mB. Higher order electroweak corrections are contained in ηEW = 1.00662(16) [78, 4, 79].
Coulomb corrections in neutral B decays have begun to be important on the current scale of precision,
and ηEW is now replaced with the symbol η̄EW to incorporate these corrections. The lepton masses are
assumed to be negligible, i.e., we are assuming ` = e or µ. We note that the w2 − 1 factor for the
B̄ → D`ν case is a reflection of the helicity suppression at zero recoil, since the leptonic system must
then have angular momentum zero; for B̄ → D∗`ν there is no such suppression.

The normalization is such that, in the limit of infinite c and b quark masses, the form factors G
and F equal one at zero recoil, that is at w = 1. Measuring the differential decay rates in Eq. 45
provides measurements of |Vcb|G(w) and |Vcb|F (w). In order to precisely determine |Vcb|, it is necessary
to account for finite mass effects and to in practice perform an extrapolation to w = 1. That is, the
measurements are quoted in terms of |Vcb|G(1) and |Vcb|F (1), and then lattice calculations are used
to provide G(1) and F (1). This approach is attractive also because the O(ΛQCD/mQ) corrections for
B̄ → D∗`ν vanish by Luke’s theorem [80].

For the w-dependence of the form factors it is conventional to use the formalism in [81, 82, 83, 76],
where unitarity and analyticity are used to derive constraints on the form factors. This is reminiscient
of the z-expansion employed for |Vcs| (Section 3.3). Expansions about the zero recoil point are used.
In the “CLN” approach [76] for G(w), an expansion depending on two parameters, G(1) and “slope”
ρ2, provides a good approximation. For F (w), two additional parameters, form factor ratios denoted
as R1(1) and R2(1), are needed. These parameters are determined in fits to the data. It may be
remarked that the precision in |Vcb| has improved to the point that the approximate expansion in [76]
may no longer be adequate [84], and use of [81, 82, 83] preferred. A recent result from Belle [85] obtains
ηEW|Vcb| = 40.12(1.34)×10−3 using [76] and ηEW|Vcb| = 41.10(1.14)×10−3 using [81, 82, 83] (truncating
after z3 in the expansion). The shift between these two values is approaching one standard deviation.
For consistency, we have used the results obtained with [76] in our average.

The most precise measurements of |Vcb| in B → D`ν̄ use data from BaBar [86] and a very recent
analysis from Belle [85]. A recent unquenched lattice evaluation of the form factors at non-zero recoil
applied to the BaBar data yields [87] |Vcb| = 0.0396(17)(2), where the first uncertainty is experimental
plus lattice and the second uncertainty is for the omitted QED corrections, in particular the Coulomb
correction for the B0 channel. With slight differences, the Belle result is ηEW|Vcb| = 0.0401(13), cor-
responding, with our above value for ηEW, to |Vcb| = 0.0399(13). The average of the BaBar and Belle
results is |Vcb| = 0.0398(11). This average is computed assuming 100% correlation from the lattice input,
although this is negligible here. The error estimate is dominated by the experimental uncertainties.
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There is also a recent lattice calculation of the form factor at zero recoil for B → D∗`ν̄ [78],
F (1) = 0.906(4)(12), where the first uncertainty is statistical and the second systematic. This reference
has also made an estimate for the Coulomb corrections for the neutral B mode. We update their result
for |Vcb| with the most recent HFAG average [7] of the experimental measurements from ALEPH [88],
BaBar [89, 90, 91], Belle [92], CLEO [93], DELPHI [94, 95], and OPAL [96], |Vcb|η̄EWF (1) = 0.03581(45),
obtaining |Vcb| = 0.03894(49)(53)(19), where the first uncertainty is experimental, the second from the
lattice, and the third for the Coulomb correction.

We may combine the D`ν̄ and D∗`ν̄ results to obtain the measured value of |Vcb| from exclusive
channels:

|Vcb|2(excl) = 0.00154(4)(3)

|Vcb|(excl) = 0.0392(5)(3),
(46)

where the first error bar is experimental and the second theoretical. We anticipate that precise results
on |Vcb| from Bs → Ds semileptonic decays will become available from the LHC and Belle II.

Inclusive measurements of |Vcb| have comparable precision. In this case, the measurement is per-
formed in the context of the operator product expansion (OPE). The non-perturbative contributions
are described in terms of a small number of parameters that are estimated in fits to the data. The data
inputs are moments of kinematical quantities, such as the lepton energy and the mass of the hadronic
system. A review of both the theoretical background and experimental methods may be found in [9].

A recent calculation, [97] and references therein, includes the complete O(αsΛ
2
QCD/m

2
b) effects in

the theoretical semileptonic rate. Using published data [98] on the moments of the inclusive b → c
semileptonic spectra from BaBar [99, 100], Belle [101, 102], CDF [103], CLEO [104], and Delphi [105],
the value for |Vcb| obtained is [97]:

|Vcb|2(incl) = 0.00178(3)(6)

|Vcb|(incl) = 0.0422(3)(7),
(47)

where the first uncertainty approximates the experimental uncertainty and the second the theoretical
uncertainty.

The inclusive value for |Vcb| is larger than the exclusive value by three standard deviations (two-sided
p value of 0.003 if Gaussian sampling is assumed). This has been a long-standing discrepancy with no
clear resolution, although there may be unincluded systematic effects in both experiment and theory
(e.g., [106]). The approximate z-expansion in the exclusive result, as discussed above, might be partly
responsible for the difference, however the results in [84] and [85] yield contradictory directions to the
correction. Attempts to explain the discrepancy between exclusive and inclusive determinations of |Vcb|
and of |Vub| (next section) in terms of new physics run into other experimental constraints and are hence
implausible [107]. We’ll return to this issue in Section 6.

Finally, we briefly comment on the channels B → D(∗)τν, which is also sensitive to |Vcb|. This is
experimentally much more challenging than the corresponding decays with an electron or muon, because
of the difficulty in distinguishing the tau from background. It is also sensitive to possible new physics,
for example in the Higgs sector. Indeed, experimental results, from BaBar [108], Belle [109, 110], and
LHCb [111] show some deviation from the standard model. This is an area of ongoing investigation,
with a need for more experimental input; conclusive input may have to await Belle-II and LHCb upgrade
running.

3.6. |Vub|
The furthest off-diagonal element of the first row describes the weak coupling of the b quark to the

u quark. The measurement of |Vub| is analogous with the measurement of |Vcb|, but more difficult due
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to the smaller branching fractions and larger relative backgrounds. Again, both exclusive and inclusive
approaches are taken.

So far, the most precise exclusive measurement of |Vub| is obtained with B → π`ν semileptonic
decays. However, the LHCb collaboration has recently published [112] a competitive result for the ratio
|Vub/Vcb| using semileptonic Λb decays to baryons, Λb → pµ−ν̄µ and Λb → Λ+

c µ
−ν̄µ:∣∣∣∣VubVcb

∣∣∣∣ = 0.083(6). (48)

The error estimate has equal contributions from experimental uncertainties and LQCD uncertain-
ties [113]. Using our exclusive average for |Vcb|, Eq. 46, we obtain |Vub| = 0.00325(16)(16), separating
the theoretical and experimental uncertainties. This result is correlated with the result for Vcb, with
correlation coefficient ρ ∼ 0.2.

Two recent lattice QCD calculations of the form factors for B → π`ν semileptonic decays have
been published, one using the MILC asqtad (2+1)-flavor ensembles [114] and the other using domain-
wall light quarks [115]. Both evaluations are applied to measurements from BaBar [116, 117] and
Belle [118, 119] to obtain |Vub|. Their results are close to each other, |Vub| = 0.00372(16) [114] and |Vub| =
0.00361(32) [115], we adopt the more precise determination. We infer an experimental uncertainty of
(10) and an theoretical uncertainty of (12) from the discussion in [114].

The RBC/UKQCD collaboration [115] also computes the Bs → K`ν form factors, which can be
used to measure |Vub| from that channel once experimental results are available.

Other measurements of |Vub| in exclusive reactions have been made in B → ρ`ν, B → ω`ν, and
B → τν. Both BaBar [116, 120] and Belle [119] report measurements in B → ρ`ν and B → ω`ν.
However, more theoretical work is needed to bring these evaluations of |Vub| to the same level as for the
π`ν channel. It has been suggested [121] that the model dependence in B → ρ`ν may be avoided by
a model-independent analysis of the ππ`ν final state, using dispersion theory for the ππ form factors.
We do not include these measurements in our average. We also note a recent analysis [122] using the
branching fractions for the baryonic decay modes B− → pp̄π− and B̄0 → pp̄D0 to extract the ratio
|Vub/Vcb| = 0.088+0.022

−0.016 ± 0.010, where the first error is theoretical and the second is experimental.
The decay B → τν provides for a measurement of the product |Vub|fB, where fB is the B meson

decay constant, according to the appropriately relabeled Eq. 22. The branching fraction for this decay
has been measured by BaBar [123, 124] and Belle [125, 126] and earlier references cited in these. Both
experiments provide experiment averages of their hadronic and semileptonic B-tag results. The “tag”
B refers to the other B in the event, not decaying to τν. Signatures of the tag B are used to reduce
background. This may either be through a full or partial reconstruction of the tag B in a hadronic decay
mode, or by detecting a semileptonic decay with an identified e or µ. We average the experiments to
obtain B(B+ → τ+ντ ) = 1.06(20)×10−4, with a χ2 probability for consistency between the experiments
of 10%. This translates to |Vub|2f 2

B = 60(11)× 10−8 GeV2, using Eq. 22 (relabeled), but neglecting the
radiative correction term.

To extract a value for |Vub|, we need to divide out the B+ decay constant. For fB we use lattice QCD,
where an Nf = 2 + 1 + 1 calculation [4, 127] gives fB = 0.184(4) GeV. Thus, the B → τν measurement
implies |Vub| = 0.0042(4), consistent, with a large uncertainty, with the B → π`ν semileptonic value.

The exclusive measurements of |Vub| that go into our average are summarized in Table 4. We note
that the lattice evaluation performed in [114] uses a blinded method to avoid subjective bias. The
resulting average is:

|Vub|2(excl) = 1.29(7)(6)× 10−5

|Vub|(excl) = 0.00359(9)(8),
(49)

where the first uncertainty is experimental and the second theoretical, both here and in Eq. 50 below.
The p value for consistency of the three measurements is 8%. If we exclude the purely leptonic decay
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Table 4: Summary of measurements of |Vub| in exclusive channels. The first uncertainty is experimental, the second
thoeretical.

Channel |Vub| References
B → π`ν 0.00372(10)(12) [116, 117, 118, 119, 114]
Λb → pµν 0.00325(16)(16) [112, 113]
B → τν 0.00422(40)(9) [124, 126, 127]

Table 5: Summary of average |Vub| from inclusive semileptonic B decays, according to different theoretical calculations [7].
The first uncertainty is from the experimental measurement, the second is the theoretical uncertainty.

Theoretical scheme |Vub|(10−3) [7] |Vub|(10−3) (see text)
ADFR 4.05± 0.13+0.18

−0.11 4.42± 0.19± 0.19
BLNP 4.45± 0.15+0.20

−0.21 4.40± 0.18± 0.21
DGE 4.52± 0.16+0.15

−0.16 4.53± 0.18± 0.13
GGOU 4.51± 0.16+0.12

−0.15 4.50± 0.18± 0.11

from our exclusive average, as has so far been conventional (at least partly because B → τν may be
more sensitive to new physics contributions), we obtain

|Vub|2(excl) = 1.26(6)(7)× 10−5 no B → τν

|Vub|(excl) = 0.00354(9)(10) no B → τν
(50)

with a consistency p value of 9%. Our estimate for the correlation coefficient with |Vcb|2(excl) is
ρ [|Vub|2(excl), |Vcb|2(excl)] ≈ 0.14.

As with |Vcb|, |Vub| may be measured with an inclusive semileptonic approach as well. The measure-
ment is complicated by the large background from B → Xc`ν decays. In principle, this can be dealt
with by selecting leptons above the endpoint for b → c transitions. However, this leads to theoretical
difficulties with the operator product expansion, and the determination of |Vub| in inclusive semileptonic
decays is a story in tradeoffs between the theoretical difficulties near the endpoint and experimental
backgrounds far from the endpoint. Several different theoretical calculations of the inclusive partial de-
cay rate in QCD have been proposed, most labeled by authors’ initials: ADFR [128, 129, 130], BLL [131],
BLNP [132, 133, 134], DGE (“dressed-gluon exponentiation”) [135], and GGOU [136]. Reviews of the
experimental and theoretical issues may be found in [9], Kowalewski and Mannel in [3], and [7]. The
HFAG compilation [6, 7] considers data from BaBar [137, 138, 117], Belle [139, 140, 141, 142], and
CLEO [143]. BaBar [117] and Belle [142] have published results on their entire datasets with a large
portion of the phase space included; these results provide for the smallest theoretical uncertainties.
With one exception, all of the measurements have been compiled by HFAG under the four schemes,
ADFR, BLNP, DGE, and GGOU. We present the 2014 updated averages for |Vub| under these schemes
in the middle column of Table 5.

It is concerning that the ADFR average is lower than that obtained with the other three, especially
noting that at least the experimental uncertainties are highly correlated. If we restrict to the BaBar
(MX , q

2 fit in [117]) and Belle results [142] using the greatest phase space selections, this difference
disappears. The average of these two measurements, for the four theoretical calculations, are shown
in the left column of Table 5, where a consistent picture is apparent. We thus view these averages as
potentially more reliable. To quote an overall inclusive measurement, people typically take a simple
average of the results and their uncertainties under the four calculations. However, in the spirit of
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this review, we prefer to use the most precise result, in the absence of any other discriminating factor.
Hence, we find:

|Vub|2(incl) = 2.02(16)(9)× 10−5,

|Vub|(incl) = 0.00450(18)(11),
(51)

where the first uncertainty is experimental and the second theoretical.
Comparing 51 and 49 we see, simliarly with |Vcb|, that the inclusively measured value is substantially

higher than the exclusive value. The p value for consistency, assuming Gaussian statistics, is only
4× 10−4. Note that it matters whether Gaussian sampling is assumed for the estimate of |Vub|2 or for
|Vub|; we assume it for the square, as that is the quantity that is most directly related to the experimental
measurement. However, the contribution to the uncertainty from the theoretical uncertainties may not
have a simple statistical interpretation; we should interpret the p values with some caution. Nevertheless,
the differences between inclusive and exclusive measurements of |Vcb| and |Vub| are not likely to be due
solely to statistical fluctuations.

We have already remarked in Section 3.5 that the discrepancy is difficult to explain in terms of new
physics. Most likely, there is a bias in either the inclusive or exclusive determination, plausibly from
similar sources for both |Vcb| and |Vub|. The question is which is wrong. We may attempt to answer this
under the assumption that the CKM matrix is unitary. We will discuss this possibility in Section 6.

3.7. |Vtb|
Finally, we get to the elements on the third row of the matrix, describing couplings of the top quark.

We begin with the flavor “diagonal” element, Vtb. In the three family standard model, the smallness of
the elements in the upper two rows in the third column already imply that this element is of order one.
Independent measurement is consistent with this, but still with large uncertainty.

So far the best method to independently measure |Vtb| is in single top production at the hadron
colliders. The production cross section is proportional to |Vtb|2, the dominant graphs are shown in
Fig. 3. This assumes that |Vtb| � |Vtd|, |Vts|, which gains support from the results in Section 3.8, so
that the b quark dominates at the top production vertex. We also remark that possible contributions
from heavy fourth generation quarks may reasonably be neglected because such quarks would already
have been seen and/or would be kinematically highly suppressed in associated production with the top
quark. The value for |Vtb| is extracted by comparing with the theoretical cross section (for |Vtb| = 1):

|Vtb| =
√
σmeasured/σtheory. (52)

The theoretical cross section is computed at next-to-next-to-leading-order (NNLO) in QCD [144, 145,
146, 147]
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Figure 3: Single top production via (a) the t-channel; (b) the s-channel; (c) and (d) Wt associated production.
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Recently, an analysis combining the Tevatron results in [148, 149, 150, 151, 152] has been per-
formed [153] to obtain a cross section for single top production in the s and t channels at 1.96 GeV:

σs+t = 3.30+0.52
−0.40 pb. (53)

The value of |Vtb| extracted from the measurement is

|Vtb| = 1.02+0.06
−0.05. (54)

At the LHC, the t-channel and Wt associated production mechanisms are the best, since the s
channel suffers in the absence of a valence antiquark in the initial state. A measurement, with large
uncertainty, of the s-channel cross section at 8 TeV has been reported however [154]. The LHC results
for the t-channel and Wt associated production are shown in Table 6. We exclude the unpublished
results from our average. Averaging the ATLAS and CMS 7 GeV cross sections is complicated by
the presence of correlations, as is the combination of the results for |Vtb| at different energies and
for different channels. Since the cross sections for different processes and different energies cannot be
usefully averaged, we work with |Vtb|2. This introduces an additional correlation through the theoretical
cross section. The ATLAS and CMS collaborations have begun to consider correlations in averaging the
results of the two experiments [155]. The correlation coefficient at 8 TeV for the t channel is estimated
to be ρ = 0.38. We will assume this holds also at 7 TeV. We’ll further assume this correlation for the
Wt channel between the two experiments; the uncertainties are here much larger, so an error in this
assumption will not have much effect on our final average. We note that the correlated uncertainty
from the top quark mass is perhaps being treated inconsistently in our average, but this has a small
effect on the result.

CMS has computed |Vtb| for the combined 7 and 8 TeV results for the t-channel, obtaining [156]
|Vtb| = 0.998 ± 0.038 ± 0.016, where the first uncertainty is experimental and the second theoretical.
With this information, we deduce a correlation in the experimental uncertainties in |Vtb|2 of about 40%
between the 7 and 8 TeV t-channel results. We will assume the same correlation for the Wt production;
the uncertainties are here much larger, so an error made will not have much effect on our final average.
The correlation between Wt and t-channel is taken to be zero; this is probably an underestimate, but
again the effect of this error on the final average is small.

The theoretical uncertanties are treated, perhaps conservatively, as having 100% correlation. The
uncertainties are often quoted as asymmetric, but the asymmetry is never large; we just take the average
of the upper and lower values. Our average of the published LHC data in Table 6 is |Vtb| = 1.00± 0.04.
We caution that the χ2 probability is greater than 99%, suggesting that the covariance matrix may be
misestimated. Combining this result with the Tevatron average (neglecting experimental correlations,
but assuming 100% correlation in the theoretical cross section, yields:

|Vtb|2 = 1.01(7)

|Vtb| = 1.007(36).
(55)

Under the assumption that |Vtd|2+|Vts|2+|Vtb|2 = 1 it is also possible to measure |Vtb| in tt̄ production
channels, by measuring the ratio B(t→ Wb)/B(t→ Wq), where q = d, s, or b. This has been done at
both the Tevatron [164, 165, 166] and the LHC [167]. Because of the assumption, however, we do not
include these measurements in our average.

3.8. |Vts| and |Vtd|
The remaining third-row elements Vtd and Vts are very small, and it is experimentally difficult to

precisely measure the t → d and t → s cross sections in single top production at hadron colliders.
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Table 6: Experimental measurements of single top quark (both t and t̄) production cross sections at the LHC. The first
error is statistical, the second is systematic (including theory and luminosity uncertainties).

Experiment Channel,
√
s Cross section (pb) Reference

ATLAS t-channel, 7 GeV 68± 2± 8 [157]
Wt production, 7 GeV 16.8± 2.8± 4.9 [158]
t-channel, 8 GeV 82.6± 1.2± 12.0 [159] (unpublished)
Wt production, 8 GeV 27.2± 2.8± 5.4 [160] (unpublished)

CMS t-channel, 7 GeV 67.2± 3.7± 4.8 [161]
Wt production, 7 GeV 16± 3± 4 [162]
t-channel, 8 GeV 83.6± 2.3± 7.4 [156]
Wt production, 8 GeV 23.4± 1.9± 5.2 [163]
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Figure 4: Feynman graphs of box diagrams for B0 − B̄0 mixing. The label q is u, c, or t.

Instead, these elements are currently best measured in virtual processes involving loop diagrams or box
diagrams.

The mixing of B0 or B0
s mesons provides for measuring Vtd or Vts. Figure 4 shows the box diagrams

giving rise to B0−B̄0 mixing; for B0
s−B̄0

s mixing the d quark is replaced with an s quark. The dominant
contribution in these graphs is from the t-quark exchange, hence the sensitivity to the desired matrix
elements.

Experimentally, the idea is to measure the probability that a B0 state at time 0 will decay as a B̄0

at some later time t. This probability is given by

P
[
B0(0)→ B̄0(t)

]
=

1

2τ
e−t/τ (1− cos ∆mt) , (56)

where τ is the B0 lifetime (inverse of the average width Γ of the two mass eigenstates) and ∆m =
mH −mL is the mass of the heavy B0 mass eigenstate minus the mass of the light eigenstate. Time t
is measured in the B rest frame. Thus, we measure ∆m, which is related to |Vtq| according to (for a
review, see, e.g., [168], also Section 4.2 below):

∆m =
G2
Fm

2
WmB

6π2
ηBf

2
BB̂BS0(xt)|VtqVtb|2, (57)

where fB is the B decay constant, B̂B is the (renormalization group invariant) B bag parameter,
xt ≡ (mt/mW )2, and [169]

S0(x) =
4x− 11x2 + x3

4(1− x)2
− 3x3 log x

2(1− x)3
. (58)

QCD corrections to S0 are contained in ηB = 0.551(7) [170, 171]. With the appropriate substitutions,
Eq. 57 holds for Bs mixing as well. It is conventional to define dimensionless parameters for the mixing
frequencies, xd ≡ ∆m/Γ and xs ≡ ∆m(Bs)/Γ(Bs).
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There is some ambiguity concerning the meaning of mt, the top quark mass, where various quantities
exist. However, in the present context the running mass mt(mt) in the MS scheme is needed [170]. A
recent evaluation ismt(mt) = 162.3(2.4) GeV, based on fits to the Tevatron and LHC cross sections [172].
However, we use the more precise evaluation using direct measurements with matching from pole mass
to MS mass as in [9], obtaining mt(mt) = 163.3(0.9) GeV.

The measurement of ∆m or ∆ms may be performed by explicitly measuring the time-dependence,
or by measuring a time-integrated mixing probability. However, the oscillation for the Bs system is
rapid, so integrating greatly dilutes the available precision. Even for the B system the time-dependent
measurements are more precise, and we restrict to these results.

There are many published results on time-dependent B0 mixing from both e+e− (ALEPH, BaBar,
Belle, DELPHI, L3, OPAL) and hadron collider (CDF, D0, LHCb) experiments (see [7] for a compilation
and references). We use the HFAG average, which takes into account correlations, with the result [7]:

∆m = 0.510(3)(2) ps−1, (59)

where a B0 lifetime of 1.520(4) ps has been used. Similarly, for ∆m(Bs), assuming an average lifetime
of 1.509(4) ps, the combined (CDF [173] and LHCb [174, 175, 176, 177]) result is [7]:

∆m(Bs) = 17.757(20)(7) ps−1. (60)

The B0 decay constant and bag constant are computed using lattice QCD [4]:

fB

√
B̂B = 216(15) MeV. (61)

Likewise, the Bs decay constant and bag constant are evaluated in lattice QCD [4, 178]:

fBs

√
B̂Bs = 266(18) MeV. (62)

There is substantial correlation in the quoted uncertainty between these two quantities. The uncertain-

ties are still being significantly reduced; a recent preprint [179] quotes fB
√
B̂B = 229.4(9.3) MeV and

fBs

√
B̂Bs = 276.0(8.5) MeV.

With Eq. 57 we have:

|VtdVtb|2 = 7.2(1.0)× 10−5 |VtdVtb| = 0.0085(6), (63)

|VtsVtb|2 = 1.62(22)× 10−3 |VtsVtb| = 0.0403(27). (64)

Values for |Vtd| and |Vts| are often quoted assuming |Vtb| = 1, as is essentially the case if the matrix is
unitary; that is the above values are used. However, we wish to see what we know without the unitary
assumption. Using the measured result for |Vtb| (Eq. 55), we find:

|Vtd|2 = 7.1(1.1)× 10−5 |Vtd| = 0.0084(7), (65)

|Vts|2 = 1.61(25)× 10−3 |Vts| = 0.0401(31). (66)

The uncertainty is presently dominated by the uncertainties from the lattice calculations. We caution
that the |Vtd| and |Vts| estimates are highly correlated in their dominant uncertainties, from the lattice,
and from |Vtb|. We assume 100% correlation, i.e., ρ(|VtdVtb|2, |VtsVtb|2) = 1.

The lattice calculation of the ratio ξ ≡ (fBs/fB)
√
BBs/BB is more precise than the terms for either

meson because some of the uncertainties cancel. The lattice result for this ratio is [4] ξ = 1.268(63),
from which we deduce∣∣∣∣VtdVts

∣∣∣∣2 = ξ2 ∆m

m

m(Bs)

∆m(Bs)
= 0.047(5),

∣∣∣∣VtdVts
∣∣∣∣ = 0.217(11). (67)

Finally, we note a recent interesting calculation [180] in which the penguin decays B → K`+`− and
B → π`+`− are used to obtain |Vtd/Vts| = 0.201(20), based on measurements from LHCb [181, 182].
This may be regarded as a test of the standard model in comparison with the value in Eq. 67.

20



4. Phases

If the CKM matrix is 3 × 3 unitary, then there is one complex phase, δ, needed in addition to
the θ12, θ13, and θ23 parameters in Eq. 6. If V is not unitary, e.g., if it is a submatrix of a higher
dimension unitary matrix, then there may be additional phases. It is thus a test of the standard model
whether one complex phase is sufficient to describe all CP violating phenomena in the quark sector.
Our discussion of the magnitudes of the CKM elements has avoided assumptions about the 3 × 3
unitarity of the matrix. In principle, it would be appropriate to take the corresponding approach and
report the measurements of the relative phases of each of the matrix elements. However, the available
information remains incomplete, and it is also not so convenient to express measured quantities in
this form. Instead, it is convenient and conventional to couch much of the discussion in terms of the
3 × 3 unitary parameterization in Eqs. 8 and 14. Deviations from 3 × 3 unitarity may then show up
as internal inconsistencies. Theoretical reviews of the material in this section may be found in, for
example, [170, 183, 184, 185].

4.1. CP violation in kaon mixing

CP violation may be observed in both mixing (“indirect”) and in decay amplitudes (“direct”) in
kaon decays. The larger and theoretically cleanest to relate to the CKM matrix appears in mixing, and
we concentrate on this here. If there were no CP violation, the neutral kaon mass eignestates would be
CP eigenstates. With CP violation, the mass eigenstates are mixtures of the CP eigenstates (denoted
K1 and K2):

KS =
1√

1 + |ε̃|2
(K1 + ε̃K2) (68)

KL =
1√

1 + |ε̃|2
(K2 + ε̃K1). (69)

Thus ε̃ 6= 0 is a measure of CP violation in neutral kaon mixing.
The measurement of |ε̃| is best done in the two pion decays of the neutral kaons. Defining

η+− =
A(KL → π+π−)

A(KS → π+π−)
(70)

η00 =
A(KL → π0π0)

A(KS → π0π0)
, (71)

we see that both η+− and η00 are approximately given by ε̃. However, there may be direct CP violation
in the amplitudes (indeed there is, coming from penguin amplitudes). The interfering amplitudes in
direct CP violation come from the ∆I = 1/2 and ∆I = 3/2 processes. Thus, to isolate the CP violation
in mixing, we look at only ∆I = 1/2 processes, and define a parameter ε (e.g., [168]):

ε =
A [KL → (ππ)I=0]

A [KS → (ππ)I=0]
, (72)

which is equal to ε̃ in the absence of direct CP violation. This quantity may be measured by taking the
linear combination (reference [186], where the conventions and approximations may also be noted):

ε ≈ 1

3
(2η+− + η00). (73)

The current experimental value for |ε| is obtained in a fit to kaon data as described by Wolfenstein, Lin,
and Trippe in [3], with the result:

|ε| = 2.228(11)× 10−3. (74)
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Theoretically, ε is predicted in the standard model by considering the effective Hamiltonian for
∆S = 2 transitions [170]. In terms of the CKM matrix elements [9],

|ε| = G2
Fm

2
WmK0f 2

KB̂K

12
√

2π2∆mK

{
ηccS0(xc)=

[
(VcsV

∗
cd)

2]+ ηttS0(xt)=
[
(VtsV

∗
td)

2]+ 2ηctS0(xc, xt)= (VcsV
∗
cdVtsV

∗
td)
}
,

(75)
where B̂K , or the kaon “bag” parameter, measures the strength of the four quark ∆S = 2 hadronic
matrix element [187], in renormalization group invariant form. It is calculated using lattice QCD,
with present value (average for Nf = 2 + 1) [4]: B̂K = 0.7661(99), consistent with a more recent

preliminary FLAG average of B̂K = 0.7627(97) [188]. It may be remarked that the present lattice
average slightly exceeds the upper bound of B̂K ≤ 0.75 deduced in the 1/Nc expansion [189, 190, 191];
this is something to watch. For the kaon form factor we also use the lattice QCD calculation (for
Nf = 2 + 1, in the isospin-symmetric limit) [4]: fK = 0.1563(9) GeV. The KL − KS mass difference
is [3] ∆mK = 3.484(6) × 10−15 GeV. The Inami-Lim function S0(x) is defined in Eq. 58 (note that
S0(xc) ≈ xc ≡ (mc/mW )2), and [169, 168]

S0(xc, xt) = xc

[
log

xt
xc
− 3xt

4(1− xt)
− 3x2

t

4(1− xt)2
log xt

]
. (76)

With mt(mt) = 163.3(0.9) GeV, as in Section 3.8, and mc(mc) = 1.275(25) GeV, where we use the
Particle Data Group average including their inflation of the uncertainty [3], we obtain

S0(xt) = 2.317(20) (77)

S0(xc, xt) = 2.22(8)× 10−3 (78)

S0(xc) = 2.52(10)× 10−4. (79)

The quantities ηcc, ηct, and ηtt (also known as η1, η3, and η2, respectively) are short distance QCD
corrections:

ηcc = 1.87(76) NNLO [192] (80)

ηct = 0.496(47) NNLO [193] (81)

ηtt = 0.5765(65) NLO [194]. (82)

To account for long distance effects, Eq. 75 is nowadays multiplied by the factor kε = 0.94± 0.02 [195].
Using the parameterization of the CKM matrix in Eq. 8 we obtain, with appropriate translation

from (ρ, η) to (ρ̄, η̄) at the same order in λ [194, 196]:

|ε| = G2
Fm

2
WmK0f 2

KB̂K

6
√

2π2∆mK

kεA
2λ6η̄

[
A2λ4(1− ρ̄)ηttS0(xt) + ηctS0(xc, xt)− ηccS0(xc)

]
. (83)

We evaluate the constant

Cε ≡
G2
Fm

2
WmK0f 2

K

6
√

2π2∆mK

= 3.663(43)× 104. (84)

The theoretical uncertainties from charm contributions, especially through ηcc, presently restrict the
available precision. Some mitigation for this has recently been proposed in [197], where it is shown
that a rephrasing of the neutral kaon fields can eliminate the dependence on ηcc. The gain in precision
is somewhat offset by an increased uncertainty from the long distance contribution, hence it becomes
important to improve the uncertainty from this source.

The |ε| measurement, Eq. 74, and its relation to the CKM elements via Eq. 75 (including the kε
factor) will be incorporated into our discussion of the unitarity of V in Section 6.
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4.2. Mixing-induced CP violation in B decays

The phenomenom of B0–B̄0 mixing may be used to study CP violation in the B system. In this
case, the CP violating phase is extracted from the interference of two amplitudes leading to a given final
state, f . One of the amplitudes may be a direct B0 → f tree-level process, and the other amplitude
involves the mixing B0 → B̄0 → f process. This is referred to as “mixing-induced CP violation”. An
early discussion of the formalism may be found in [198].

For neutral B mesons (we could be talking about either Bd or Bs), the flavor basis is given by B0

and B̄0. We adopt the convention

CP |B0〉 = − |B̄0〉 , CP |B̄0〉 = − |B0〉 (85)

for a meson at rest. The mass eigenstates (with H for “heavy” and L for “light”) are combinations of
these, which we may express as

|BL〉 = p |B0〉+ q |B̄0〉 (86)

|BH〉 = p |B0〉 − q |B̄0〉 , (87)

normalized with |p|2 + |q|2 = 1. If |q/p| 6= 1, CP is violated, and this is referred to as “CP violation in
mixing”. For the neutral kaon system, we see CP violation in mixing in the real part of ε. If |q/p| = 1,
we may still have CP violation via interference in mixing and decay amplitudes as noted above, that
is, mixing-induced CP violation. This source is important in the neutral B system.

Assuming CPT conservation (so far supported by experiment, including for the B0 system [199, 200,
201]), the effective Hamiltonian for this two-state system may be written in the flavor basis as

Heff =

(
M − i

2
Γ M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12 M − i

2
Γ

)
. (88)

This is not a Hermitian matrix, hence BL and BH are not orthogonal states in general.
To solve the eigenvalue problem, we write down the secular equation and find that the difference in

eigenvalues is (
∆m+

i

2
∆Γ

)2

= 4

(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
, (89)

where ∆m ≡ mH − mL > 0 and ∆Γ ≡ ΓL − ΓH . Our conventions are such that we define ∆m to
be positive, and ∆Γ is expected to be positive for the B system in the standard model, though this
has been confirmed only for the Bs system [202] (see Section 4.2.4). The literature does not have a
consistent convention for the definition of ∆Γ. Letting m ≡ (mH +mL)/2 = M and Γ ≡ (ΓH + ΓL)/2,
the meson masses and widths are:

mH,L = m±<
√(

M12 −
i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
(90)

ΓL,H = Γ± 2=
√(

M12 −
i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
(91)

With basis transformation T =

(
p p
q −q

)
from the mass basis to the flavor basis, we obtain

(
q

p

)2

=
M∗

12 − i
2
Γ∗12

M12 − i
2
Γ12

(92)
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The off-diagonal elements of Heff may be computed in the standard model. The weak interaction
provides for ∆B = 2 transitions as shown already in the box diagrams in Fig. 4. The dispersive part,
M12, is computed from the |∆B| = 2 Hamiltonian. However, there is no absorptive contribution from
this operator, and determining Γ12 involves a second order ∆B = 1 calculation [203]. The prediction
is that |Γ12| � |M12| (|Γ12/M12| ∼ O(0.005) for both Bd and Bs, e.g., [204]). Referring to Eq. 92 we
thus expect that |q/p| ≈ 1. In this limit, the mass eigenstates are also CP eigenstates, and there is no
CP violation in mixing in the B0 system, in contrast with CP violation in mixing being an important
contribution to CP violation in the neutral kaon system (Eqs. 68, 69). Experimental measurements of
|q/p| ≈ 1 in the Bd system bear this out. Reference [9] (see also [205]) gives a B-factory average of
|q/p| − 1 = 0.3(2.8)× 10−3, from measurements of CP asymmetries in both semileptonic and hadronic
B decays. LHCb [206] obtains a consistent precise result from the semileptonic asymmetry, |q/p| −
1 = −0.1(9)(1.5) × 10−3. Using semileptonic decays with Ds instead of D, LHCb [207] obtains a
corresponding result for the Bs system: |q/p|s− 1 = −0.6(5.0)(3.6)× 10−3. It should be remarked that
a measurement by D0 [208], including both B and Bs contributions, obtained a result for the dilepton
asymmetry differing from the standard model by 3.6 standard deviations.

As the overall phase is not physical, mixing can be described in terms of the magnitudes of M12 and
Γ12 and their relative phase. Thus, we define the “mixing phase” as

ϕq ≡ arg

(
−M12

Γ12

)
, (93)

where q = d or s depending on whether the Bd or Bs system is being discussed. The reader is cautioned
that notation here varies; we use ϕ to distinguish it from other uses for φ. From Eq. 92, if ϕ 6= 0, π,
then |q/p| 6= 1 and we have CP violation in mixing. This phase is thus accessible in CP asymmetry in
mixing, for example in the semileptonic asymmetry mentioned above. This asymmetry is expected to
be very small in the standard model, suppressed by |Γ12/M12|.

The standard model prediction for M12 and Γ12 is dominated by the top quark in the box diagrams
(Fig. 4), with the result (e.g., [203, 209, 185] and Schneider in [3]):

M12 =
G2
Fm

2
WmB

12π2
ηBf

2
BB̂BS0(xt)(VtbV

∗
tq)

2, (94)

Γ12 = −G
2
FmB

8π
η′Bf

2
BB̂Bm

2
b

[
(VtbV

∗
tq)

2 + VtbV
∗
tqVcbV

∗
cqO

(
m2
c

m2
b

)
+ (VcbV

∗
cq)

2O

(
m4
c

m4
b

)]
, (95)

where the quantities are as defined for Eq. 57, except QCD correction η′B ≈ 1 is given as η
(B)
4 in [209].

Examining the CKM terms in equations 94 and 95 we see first that the ratio |Γ12/M12| is expected to
be about the same for both the Bd and Bs systems, as already suggested above. Second, since Γ12 and
M12 are, to lowest order, proportional to λ4 for the Bs system and to λ6 for the Bd system, we expect
both the mixing frequency (as in Section 3.8) and the width difference to be of order 1/λ2 larger in the
Bs system. We further confirm that the phase ϕq is expected to be small in both neutral B sytems as
the leading phases of Γ12 and M12 differ by π. This also provides the standard model expectation that
∆Γ > 0 in our convention.

We note that the mixing frequency ∆m in Eq. 57 is obtained, in the limit Γ12 → 0, from Eqs. 90
and 94. In this approximation we also have, using Eq. 92,

q

p
≈ − M∗

12

|M12|
. (96)

The minus square root has been taken here, according to the convention we have adopted for the BH

and BL states and requiring ∆m > 0 [185]. The reader is again cautioned that the conventions are not
universal. Thus, measuring q/p measures the phase of (VtbV

∗
tq)

2.
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As mentioned earlier, the CP violation can be measured in the interference between the amplitudes
for B0 → f and B0 → B̄0 → f , or the charge conjugate reactions, where f is a CP eigenstate. Two
important examples are f = J/ψKS for B0

d decays, and f = J/ψφ for B0
s decays. Experimentally,

we prepare our B mesons in flavor eigenstates. Thus, if we initially prepare a pure B0 state, it may
eventually decay to f either directly or via mixing as a B̄0. Assuming Γ12 = 0 the time evolution
operator in the flavor basis is

U(t) = e−itHeff = e−imt−
Γ
2
t

(
cos ∆mt

2
ip
q

sin ∆mt
2

i q
p

sin ∆mt
2

cos ∆mt
2

)
. (97)

A state that is pure B0 at time t = 0 thus evolves in time as:

|B0(t)〉 = e−imte−Γt/2

(
cos

∆mt

2
|B0〉+ i

q

p
sin

∆mt

2
|B̄0〉

)
. (98)

Let Af be the ∆B = 1 amplitude for a B0 to decay to f , and Āf be the amplitude for a B̄0 to
decay to f . We assume for simplicity here that a single tree-level process dominates. It is convenient
and conventional to define

λf ≡
q

p

Āf
Af

. (99)

Then the time-dependent decay rate for a B0 at t = 0 to decay into final state f is:

Γ(B0(t)→ f) ∝ |Af |2e−Γt1 + |λf |2
2

(
1 +

1− |λf |2
1 + |λf |2

cos ∆mt− 2=λf
1 + |λf |2

sin ∆mt

)
. (100)

The corresponding rate for a B̄0 at t = 0 to decay to f is:

Γ(B̄0(t)→ f) ∝ |Āf |2e−Γt1 + |λf |2
2|λf |2

(
1− 1− |λf |2

1 + |λf |2
cos ∆mt+

2=λf
1 + |λf |2

sin ∆mt

)
. (101)

If f is a CP eigenstate and the rates in Eqs. 100 and 101 are different, then CP is not conserved. In
the case where ∆Γ is not negligible (i.e., Γ12 6= 0, Eq. 91), the above two equations must be modified
by replacing the “1” (that is, the first term in the brackets) with

cosh
∆Γt

2
− 2<λf

1 + |λf |2
sinh

∆Γt

2
. (102)

Here we come to an important experimental consideration. We must have some way of determining
whether we started at t = 0 with a B0 or a B̄0. Two methods have so far been used to address this:
(i) The most common technique has been the “opposite-side tag”, in which associated production of bb̄
occurs. In this case we use the flavor of one of the mesons (as determined, eg, by the sign of the lepton
in semi-leptonic decays) to tag the flavor of the other meson at the time the tagging meson decays,
using the coherence of the wave function; (ii) Long used in charm physics, and adapted to B physics is
the “same-side tag” [210, 211, 212, 213, 214], in which the meson flavor is identified using the charge of
associated particles in the production process (for example, the decay of an excited B state).

In method (ii), the origin of time (t = 0) is determined by the vertex with the extra particles. The
time associated with the B traveling from this production vertex to its decay vertex is always positive
(up to possible resolution effects). In method (i), however, t = 0 is determined by the vertex of the
tagging B decay. This decay could happen before or after the decay of the “signal” B. Thus, the
signal decay time t could equally probably be positive or negative. In quantum mechanics, the wave
function may be propagated forward or backward in time, so both signs of t have equal utility. It has
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the consequence, however, that if we imagine doing an experiment where we don’t measure the time,
then the coefficient of the sin ∆mt term in Eq. 100 is inaccessible. We must measure the time, or at
least its sign, to measure this coefficient. In any event, the most precise measurements of the coefficients
of cos ∆mt and sin ∆mt are obtained using time information.

Experimentally, it is convenient (i.e., systematic effects tend to cancel) to form a normalized CP
asymmetry between the B0 and B̄0 decay rates in Eqs. 100 and 101:

Af (t) ≡
Γ(B̄0(t)→ f)− Γ(B0(t)→ f)

Γ(B̄0(t)→ f) + Γ(B0(t)→ f)
= Sf sin ∆mt− Cf cos ∆mt, (103)

where

Sf ≡
2=λ

1 + |λ|2 , Cf ≡
1− |λ|2
1 + |λ|2 . (104)

Another notation employed in the literature is −Af for Cf (not to be confused with the amplitude Af ).

4.2.1. The angle β

We may classify the CP violation measurements in hadronic B decays according to the quark-level
sub-process involved. The b → cc̄s process, Fig. 5, with the final state, f , a CP eigenstate admits
a clean theoretical treatment, as well as being practical experimentally. A B0 can decay to a CP
eigenstate of charmonium and a K0

S or a K0
L CP eigenstate providing an overall final eigenstate of CP .

The decay can happen in tree-level B0 → f decays and via the mixing B0 → B̄0 → f , providing two
interfering amplitudes. This can be done for both initial B0 and B̄0 states and the results compared.
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Figure 5: The b→ cc̄s process: (a) at tree level, (b) penguin diagram.

For an explicit, and important, example, consider the measurement of CP violation in B → J/ψK0
S.

The final state is here a CP eigenstate, with ηJ/ψKS = −1, neglecting the small CP violation in mixing
in the K0 system.

For amplitude Āf , we include the CKM factors for the process B̄0 → J/ψK̄, K̄ → ππ, and for Af
the corresponding factors for B0 → J/ψK, K → ππ. We pick up a minus sign from 85, as well as
ηJ/ψKS , obtaining finally:

ĀJ/ψK0
S

AJ/ψK0
S

= −ηJ/ψKS
VcbV

∗
cs

V ∗cbVcs

VusV
∗
ud

V ∗usVud
. (105)

We also have, from Eqs. 94 and 96
q

p
= −V

∗
tbVtd
VtbV ∗td

(106)

Incorporating all the factors gives:

λJ/ψKS = ηJ/ψKS
VtdV

∗
tb

V ∗tdVtb

VusV
∗
ud

V ∗usVud

VcbV
∗
cs

V ∗cbVcs
(107)
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Recall from Eq. 16 that

β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
(108)

With ηJ/ψKS = −1 and our adopted conventions in Eq. 8, we find, up to terms of order A2λ4, that
Eqs. 107 and 108 give

λ = −e−2iβ. (109)

We have used unitarity in making this correspondence; for more general interpretations we measure the
combination in Eq. 107. The treatment as measuring β may be regarded as a test of unitarity when
compared with other constraints. Thus, the expected time-dependent CP asymmetry for this process
is

Af (t) = sin 2β sin ∆mt, (110)

i.e., SJ/ψKS = sin 2β, CJ/ψKS = 0. This changes sign if the KS is replaced by KL with opposite CP .
The J/ψ is especially attractive experimentally because of its frequent decay to e+e− or µ+µ−. This

provides the most precise measurement. However, other charmonium states (ψ(2S), ηc, χc1) are also
used, somewhat improving the statistical precision. The even CP channel J/ψKL is also used, again
improving the precision of the result somewhat. Hadronic J/ψ decays have been used as well [215].
Belle [214] has also made a measurement in Υ(5S) data with tagging based on the sign of the pion in
channels with a charged pion, a charged B, and a neutral B → J/ψKS.

Averages are maintained by HFAG. The 2014 average [7] for the charmonium channels is dominated
by results from the B factories BaBar [216, 217, 215] and Belle [218, 214]. Early, not very precise
measurements from ALEPH [219] and OPAL [220] at LEP and CDF [212] are included, as is an early
result from LHCb [221] using 1 fb−1 of data. This average has been updated [8] with one more recent
measurement; LHCb has now analyzed their full Run I dataset (3 fb−1 at 7 and 8 TeV center of mass
energies) [213] with a precision now approaching that of the B factories. The resulting average is

sin 2β = 0.691± 0.017 (charmonium modes). (111)

The dominant uncertainty is statistical, and further precision improvements can be expected from LHCb
and Belle-II.

An important question is whether other diagrams exist for the B0 → J/ψK0
S and related decays, in

particular standard model penguin processes, such as Fig. 5b (though for the present purposes the term
is broadened beyond particular diagrams). Such processes could pollute the sin 2β measurement with
additional phases. While such contributions are expected to be small (an early estimate [222] implies a
penguin amplitude less than 1% of the tree amplitude for B → J/ψKS), the measurement precision is
steadily improving, and this is a subject of ongoing investigation. A traditional approach to checking
possible penguin pollution has been to look at SU(3)-related decays in which the penguin diagrams are
not so strongly Cabibbo suppressed, such as Bs → J/ψKS, B0 → J/ψπ0, and B+ → J/ψ(K+, π+), as
discussed, e.g., in [223, 224, 225, 226, 227]. The results of reference [227] favor larger values of β (and
the inclusive value for |Vub|), although remaining consistent at the 1-2σ level. Another approach is to
avoid SU(3) symmetry arguments and perform standard model calculations, for example [228, 229].
The recent calculation in [229] conservatively evaluates a maximum penguin effect of ±0.34◦ on β in
the J/ψKS mode, with somewhat larger potential effects in other modes. An alternative strategy for
measuring penguin effects has been proposed [230] using a generalization of the method used by BaBar
to demonstrate T violation [231].

It is possible to measure sin 2β in other processes that do not go through charmonium states, al-
though it is hard to find other channels that are both theoretically clear and experimentally competitive.
The b→ cūd tree-level process (Fig. 6a) B̄0 → D(∗)0h0, where h0 is a light neutral hadron (π0, η, or ω)
and the D decay is observed in a CP eigenstate has such a clear interpretation, with no competing pen-
guin diagram. A different phase comes in through the b → uc̄d transition, Fig. 6b, but this amplitude
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is CKM suppressed by a factor of about 50. A measurement has recently been published from a joint
analysis of BaBar and Belle data [232], with the result sin 2β = 0.66 ± 0.12, a statistically significant
observation that is consistent with the charmonium average.
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Figure 6: The (a) b→ cūd and (b) b→ uc̄d processes.

We have assumed that Cf = 0 in our interpretation of the above measurements as sin 2β, so it
is important to check this assumption. The analyses used to obtain sin 2β can be used to measure
the presence of a possible cos ∆mt term in the CP asymmetry, Eq. 103. The HFAG average for
measurements of Cf is [8]

Cf = −0.004± 0.015 (charmonium modes), (112)

supporting the assumption.
There are many other channels in which the CP violation is sensitive to sin 2β. These other channels

typically have difficulties with contributions from possible additional phases that complicate the inter-
pretation. The b → s “penguin” transition has approximately the same weak phase as the b → c(c̄s)
transition we have been discussing (e.g., [233]). However, this process is more interesting from the
perspective of searches for new physics as new virtual particles may contribute to the loop. The issue
for these is how different the effective value of sin 2β can be in these channels from sin 2β as measured
in J/ψKS, according to the standard model. If the observed difference is greater, then that is a sign of
new physics.

The measurement of sin 2β has a four-fold ambiguity as a measurement of the angle β ∈ (0, 2π),
since for any θ ∈ (0, π/2), the angles θ, π/2− θ, π+ θ, 3π/2− θ all have the same sine of twice the angle.
This ambiguity is not entirely resolved by direct measurements, although the unitarity constraint with
other measurements picks out the solution at β = 21.85(67) degrees.

However, there is some experimental information favoring cos 2β > 0, which eliminates two of
the four values of β. One approach uses the time-dependent angular measurement of B0 → J/ψKπ
decays in the K∗(892) region [234]. A second approach is a time-dependent Dalitiz plot analysis of
B0 → D̄0h0, h = π, η, ω, D̄0 → K0

Sπ
+π− [235], in which the interference between D0 and D̄0 channels

yields sensitivity to 2β. The published data from these two approaches is shown and averaged in Table 7.
A third approach to determing cos 2β is to measure the time-dependent distribution of B0 →

D∗+D∗−K0
S events in the Dalitz plot variables [236]. Such a measurement has been carried out by

BaBar [237], disfavoring the cos 2β < 0 hypothesis with a p value of 0.06, with some assumptions, and
by Belle [238], measuring cos 2β consistent with zero (hence either sign).

The average in Table 7 for cos 2β may be compared with the possible values ±0.723 from the
measured value of sin 2β. While none of the measurements alone is compelling that cos 2β > 0, the
average provides strong evidence, even allowing that there probably remain substantial non-Gaussian
tails in its sampling distribution. Thus, we conclude that

β = 21.9(7) or 201.9(7) degrees. (113)

We note that all of these measurements of cos 2β are based on early partial datasets; the opportunity
exists to significantly improve the situation by using the presently available data.
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Table 7: Measurements of cos 2β. The first error is statistical, the second is systematic, and if present, the third is Dalitz
plot model uncertainty. The averages are computed by first symmetrizing the intervals. It is important to note that the
68% confidence intervals for these measurements can not be reliably used to infer other confidence intervals. The final
average will be more accurate in this respect, but caution is still advised in the tails of the distribution.

Experiment cos 2β Reference
B → J/ψKπ

BaBar 2.72+0.5
−0.79 ± 0.27 [239]

Belle 0.56± 0.79± 0.11 [240]
Average 1.7± 0.5

B0 → D(∗)h0, D → KSπ
+π−

BaBar 0.42± 0.49± 0.09± 0.13 [241]
Belle 1.87+0.40

−0.53
+0.22
−0.32 [242]

Average 1.1± 0.4
Average, both channels 1.3± 0.3

4.2.2. The angle α

The angle α measures the phase of VudV
∗
ub relative to VtdV

∗
tb (Eqn. 15), thus we may determine α by

looking at time-dependent CP violation in the b→ uūd process, the analog of b→ cc̄d for β. As with
b→ cc̄d, one must worry about the contribution of penguin amplitudes carrying a different phase.

The simplest channel to consider here is B → ππ with tree-level and penquin diagrams illustrated
in Fig. 7. It is in principle possible to separate the contributions from the tree-level amplitude from
the penguin amplitude using measurements of B0 → π+π−, B0 → π0π0, and B+ → π+π0 [243]. The
idea is as follows: First, we note that the ππ system must be either in an I = 0 or I = 2 state,
from Bose statistics. The tree-level process may have contributions from both isospins. However,
the gluonic penguin amplitude can only have I = 0 contributions since the gluon is I = 0. For
example, B+ → π+π0 has no gluonic penguin contribution. At present we may safely neglect electroweak
penguin amplitudes. Thus, isospin may be used to extract the desired tree process as described in [243].
The small rates and an eight-fold ambiguity make this so far experimentally challenging to carry out.
BaBar [244], Belle [245], and LHCb [246] all report measurements of CP asymmetry in B → π+π−.
BaBar and Belle perform the isospin analysis to extract α. Both experiments find that the region
∼ 23◦ < α <∼ 67◦ is disfavored but there is little further discrimination without making additional
standard model assumptions. The uncertainties are dominantly statistical, and improved results may
be anticipated in future larger datasets. LHCb has measured the CP violation parameters (Sπ+π− and
Cπ+π−) in B0 → π+π− [246] with results consistent with those from BaBar and Belle.

We may replace a pion with a rho meson and consider the B → ρπ channel. The isospin analysis
for the ππ channel unfortunately does not suffice in this case, as there are now too many amplitudes
to determine [243]. However, it is possible to measure α with a time-dependent Dalitz plot analysis of
B0, B̄0 → π+π−π0 [247, 248, 249]. The idea is that one can once again separate out the tree and penguin
amplitudes, now using the distribution of events over the three-pion Dalitz plot. Both BaBar [250] and
Belle [251, 252] have carried out such an analysis. Belle finds, using a dataset with 449×106 BB̄ events
at the Υ(4S), several disconnected regions in α in the 68% confidence set, including a standard model
preferred region of 68◦ < α < 95◦. BaBar, with 471 × 106 BB̄ events, performs a study of statistical
robustness of the determination of α and finds that the available statistics is insufficient for a reliable
extraction of α.

The most precise results for α are presently obtained in the time-dependent analysis of B → ρρ
events. The basic idea for distinguishing tree and penguin amplitudes is the same as for B → ππ and
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Figure 7: Graphs depicting B̄0 → ππ: (a) tree-level B̄0 → π0π0 (color-suppressed, I(ππ) = 0, 2); (b) tree-level
B̄0 → π+π− (I(ππ) = 0, 2); (c) penguin B̄0 → π0π0 (I(ππ) = 0); (d) penguin B̄0 → π+π− (I(ππ) = 0).

B → ρπ [243, 247]. However, this turns out to be a fortunate channel. The B0 → ρ0ρ0 tree diagram
is color-suppressed compared with the other charge modes, and with the penguin diagram. Thus, the
ρ0ρ0 decay is expected to be more strongly influenced by the penguin diagram. It is observed that [3]
(see also [253]):

B(B0 → ρ0ρ0) = 0.73(29)10−6 � B(B0 → π+π−) = 2.42(31)10−5 ≈ B(B+ → π+π0) = 2.40(19)10−5.
(114)

Hence, the penguin diagram evidently contributes at a small level compared with the tree diagram. A
further happy circumstance concerns the CP structure. The ρρ final state can be either CP -even or
CP -odd. However, the longitudinal polarization fraction fL for ρ+ρ− and ρ+ρ0 is observed to be large,
implying that they are nearly pure CP -even states. BaBar [254, 255, 256] and Belle [257, 258, 259, 260]
(also a recently published Belle analysis of B → ρ+ρ− [261] obtaining α = 93.7(10.6)◦ up to a π + α
ambiguity) have carried out isospin analyses to measure α in B → ρρ.

Other channels also provide information on α, generally with additional complexity and assumptions.
Most notable perhaps is B → a1(1260)π and SU(3)-related channels in an analysis using approximate
SU(3) symmetry [262, 263, 264].

BaBar and Belle have combined their results (excluding Belle’s recent ρ+ρ− result [261]) on α in the
ππ, π+π−π0 and ρρ channels [9]. The 68% confidence interval obtained in this combination, including
the π + α amiguity, is

α = 88(5)◦, 268(5)◦. (115)

The uncertainty due to isospin breaking is of order one degree. The region around α = 0 is not entirely
ruled out, with p values of a few per cent.

4.2.3. The angle γ

The third angle of the unitarity triangle is γ:

γ ≡ arg (ρ̄+ iη̄) = arg

(
−VudV

∗
ub

VcdV ∗cb

)
. (116)
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The situation is a bit different than for β and α with no dependence on CKM elements Vtq. Measure-
ments of γ are not done with the aid of B0 − B̄0 mixing, involving t quarks in the box diagram loops
of Fig. 4. Instead, γ is accessible in interference between various pairs of tree-level diagrams. This does
not imply an easy measurement, unfortunately, and γ remains the most poorly measured of the three
unitarity triangle angles, in spite of many possible channels that have been proposed.

There are three general approaches to the measurement of γ, each with its own trade-offs. The basic
idea is to use the interference between b → cūs and b → c̄us processes leading to the same final state
f [265, 266, 267]. For example, consider the decays B− → D0K− and B− → D̄0K− where the D0 and
D̄0 are observed in a common final state. Thus, we have two interfering amplitudes. Let us investigate
the phase difference between the two amplitudes. We may safely neglect D0−D̄0 mixing [268, 269, 270].
Let

RB ≡
amplitude for B+ → D0h

amplitude for B+ → D̄0h
(117)

RD ≡
amplitude for D0 → f

amplitude for D̄0 → f
(118)

R = RBRD (119)

From Fig. 8 we see that

R = R0
V ∗ubVcs
V ∗cbVus

V ∗cq3Vuq4
Vcq1V

∗
uq2

(120)

≈ R0

(
−V

∗
ubVud
V ∗cbVcd

)
, (121)

where R0 is the ratio other than the dependence on the CKM elements, including any strong phase
difference. The quark labels q1, . . . , q4 may be d or s with the constraint that the pairs (q1, q2) and
(q3, q4) have the same flavor content. Similarly with Eq. 109, the approximation in Eq. 121 holds up to
corrections of order λ4. As with our discussion of β, this result assumes unitarity; more generally we
use Eq. 120. The D decay portion actually plays no role in the weak phase here. Referring to Eq. 116
the phase difference is

arg(R) = arg(R0) + γ. (122)

The CP -violating weak phase changes sign if we look at B− decays instead, but the CP -conserving
strong phase does not. In principle then we can disentangle the weak and strong phases and measure
γ.

It is conventional to define

rB ≡
∣∣∣∣amplitude for B+ → D0K+

amplitude for B+ → D̄0K+

∣∣∣∣ , (123)

that is, rB = |RB| for h = K+. Noting that B+ → D0K+ is color-suppressed compared with B+ →
D̄0K+, we expect rB ≈ 1

3

∣∣∣V ∗ubVcsV ∗cbVus

∣∣∣ ∼ 0.1. It is also conventional to define the strong phase difference

between the two B decays as δB, hence RB = rBe
i(δB+γ). Correspondingly, for the ratio of the two

D decay amplitudes we may write RD = rDe
iδD , where δD is a strong phase difference. Neglecting D

mixing, the phase δD will cancel out of our expressions.
In the GLW [266, 267] method, the D decays to a CP eigenstate f , such as K+K−, π+π−, or K0

Sπ
0.

Consider the CP eigenstates of the neutral D meson (neglecting CP violation in the D system):

D+ =
1√
2

(D0 + D̄0) (124)

D− =
1√
2

(D0 − D̄0). (125)
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ū

V ∗
ub Vcs

V ∗
cq3

Vuq4c

B+

D0

K+

1

(a) (b)

Figure 8: (a) B+ → D̄0K+, D̄0 → f(uūq̄1q2), (b) B+ → D0K+, D0 → f(uūq̄4q3).

We define a (B+, B−)-summed branching ratio for decays to D eigenstates of CP compared with flavor
eigenstates:

R± ≡ 2
Γ(B− → D±K−) + Γ(B+ → D±K+)

Γ(B− → D0K−) + Γ(B+ → D̄0K+)
= 1 + r2

B ± 2rB cos δB cos γ, (126)

and a corresponding direct CP -violation asymmetry:

A± ≡
Γ(B− → D±K−)− Γ(B+ → D±K+)

Γ(B− → D±K−) + Γ(B+ → D̄±K+)
=

±2rB sin δB sin γ

1 + r2
B ± 2rB cos δB cos γ

. (127)

Thus, by measuring the two ratios and the two asymmetries we have four measurements which can
be used to determine the three parameters rB, δB, and γ. Unfortunately, there is an ambiguity under
(δB, γ)↔ (π − δB, π − γ)↔ (π + δB, π + γ)↔ (γ, δB).

A difficulty with the GLW method is the smallness of rB, which suppresses the interference terms in
Eqs. 126 and 127. The ADS method [271, 272] is designed to mitigate this with interfering amplitudes
of comparable magnitude. The idea is, instead of using D → fCP decays to CP eigenstates, to use
decay modes that counter the difference in the B decay amplitudes with different Cabibbo suppression
for the D0 and D̄0 decays. For example (Fig. 9), D0 → K+π− is doubly Cabibbo-suppressed while
D̄0 → K+π− is Cabibbo-favored. For D0 and D̄0 to K−π+ this pattern reverses. With rD ≡ |RD|,
the interference term is strongest when rBrD ∼ 1. Unfortunately, this also means working with small
branching fractions.

Another variation [270, 273] is sometimes referred to as the GGSZ method. In this approach, a
multibody decay of the D meson is used, such as D → KSπ

+π−. This permits the use of only Cabibbo-
favored D decays, although the rB suppression remains. The idea is to study the interference as a
function of the Dalitz plot variables for both B+ and B− decays. This method presently provides the
most precise values for γ.

The color-suppression contributing to rB can also potentially be mitigated by looking at multibody
Xs in B → XsD decays. The simplest case is perhaps the neutral B0 → D0K∗0andD̄0K∗0 decay [274,
275]. The K∗0 decay tags the B flavor, and a time-independent analysis may be used. A DKπ Dalitz
plot analysis can be used to extract γ from the relative amplitudes. LHCb has recently performed such
an analysis [276], demonstrating the principle.

We remark that the analyses must deal with D hadronic decay parameters, such as rD and δD
(including variation over the Dalitz plot). This is handled in various ways, but measurements at the
ψ(3770), where the coherence of the DD̄ state may be employed, provide important information, so far
from CLEO-c [277, 278, 279]. There is some correlation among γ results from different analyses due
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Figure 9: (a) Doubly Cabibbo-suppressed decay D0 → K+π−, (b) Cabibbo-allowed decay D̄0 → K+π−.

to common input; however at present the statistical uncertainties dominate so this is not a significant
issue.

For the average for the ADS/GLW/GGSZ B → D(∗)K(∗) analyses, we may consider the results
of the CKMfitter collaboration [280], discussed further in section sec:fits. The CKMfitter average is
γ =

(
73.2+6.3

−7.0

)◦
, based on data compiled by HFAG [7] from BaBar, Belle, and LHCb. However, this

average contains unpublished results.
We also perform our own average of published results from the three experiments. BaBar has

published a combined analysis of the ADS, GLW, and GGSZ methods with the result [281] (modulo an
ambiguity of 180 degrees):

γ = (69+17
−16)◦ BaBar (ADS, GLW, GGSZ). (128)

The uncertainty is dominated by statistics. Belle has unfortunately not yet published their GLW
analysis on their full dataset (which is their most precise measurement), but provides a combination of
their published GGSZ [282] and ADS [283] results [284]:

γ = (68± 22)◦ Belle (ADS, GGSZ). (129)

LHCb has embarked on an extensive program to measure γ with several published ADS, GLW, and
GGSZ analyses [285, 286, 287, 288, 289, 290]. This includes the Bs → D∓s K

± channel mentioned below.
Their average of these measurements is (“robust combination”, which excludes B → Dπ) [291]:

γ = (73+9
−10)◦ LHCb (ADS, GLW, GGSZ, Bs → D∓s K

±). (130)

We make a slight symmetrization adjustment to the intervals and obtain the average of the BaBar,
Belle, and LHCb published results, including the two-fold ambiguity:

γ = (71± 8, 251± 8)◦ our average. (131)

It is of interest that the χ2 probability (p value) for the three measurements is 97.5%. While there
are common systematics, the dominant uncertainties are statistical; we may be seeing an effect of
non-Gaussian sampling distributions.

The angle γ can also be measured in the combination 2β + γ in b → cūd, c̄ud and b̄ → cūd̄, c̄ud̄
transitions [292] in a time-dependent analysis of neutral B decays. The interference is again between a
Cabibbo-favored and a Cabibbo-suppressed decay, but in this case there is an additional contribution
from B0B̄0 mixing, hence the 2β + γ combination. Experimental measurements have been performed
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by BaBar [293] using partial reconstruction of B → D∗∓π± decays [294], with full reconstruction of
B → D(∗)∓π± and B → D∓ρ± decays and similarly from Belle [295] (partial reconstruction), [296] (full
and partial reconstruction). To use these measurements to extract γ, additional theoretical assumptions
are required, such as SU(3) symmetry. The precision obtained is so far not competitive with the best
measurements above.

A similar situation holds in the time-dependent b→ cūs (eg., B → D±KSπ
∓) case [297]. The LHCb

collaboration reports results from b → cūs in a time-dependent analysis of B0
s → D∓s K

± [287] decays.
This provides a measurement of γ − 2βs, but since βs is small (see Section 4.2.4 below) on the scale of
present precision, effectively a measurement of γ. The result of this analysis is γ =

(
115+28

−43, 295+28
−43

)◦
,

consistent within large uncertainty with other determinations. Such measurements provide in any event
useful consistency cross-checks. With forthcoming data and analysis efforts at LHCb and Belle II it
may be expected that the precision on γ will soon be substantially improved. CP violation has also
been measured in Bs → K+K− [246]. This channel is senstive to a combination of γ and βs, depending
on relative tree and penguin contributions.

Summing the measured values of the three angles yields:

α + β + γ = 181(9)◦. (132)

This is consistent with the standard model triangle prediction of 180◦.

4.2.4. The angle βs (and φs)

We may measure the angle βs by considering Bs → J/ψφ (or more generally Bs → J/ψK+K−) in an
anagolous way to sin 2β in Bd → J/ψKS. The d quark is replaced by an s quark, and we do not include
neutral kaon mixing. Since the φ is also spin one, the orbital angular momentum can be ` = 0, 1, 2.
Allowing for this, Eq. 109 becomes, in the absence of additional phases from penguin diagrams and at
the same level of approximation as before,

λJ/ψφ = (−)`
VtsV

∗
tb

V ∗tsVtb

VcbV
∗
cs

V ∗cbVcs
= (−)`e2iβs . (133)

The βs appears now with a positive sign in the exponent because of the difference in definition compared
with β.

It is conventional to define
φs ≡ argM12. (134)

Then, to out present level of approximation, in the standard model φs = −2βs. It is presently common
to quote the measurement in terms of φs, using this relation.

As with the measurement of β in B0 → J/ψKS, penguin pollution is expected to be small, suppressed
by ∼ |VusVub/VcsVcb| ≈ |ρ + iη|λ2 ≈ 0.02. A discussion of the theoretical and experimental status may
be found in [298]. A recent calculation using an operator product expansion in [229] conservatively
estimates a maximum penguin effect of ∼ ±1◦ on φs, depending on the polarization state. Since φs is
itself small, it will be important to watch this possible pollution as the experimental precision improves.

In the Bs case, it turns out that ∆Γs ≡ ∆Γ(Bs) cannot be neglected, and Eqs. 100, 101, and 102
give the time-dependent CP asymmetry:

Af (t) =
Γ(B̄0

s (t)→ f)− Γ(B0
s (t)→ f)

Γ(B̄0
s (t)→ f) + Γ(B0

s (t)→ f)
=
Sf sin ∆m(Bs)t− Cf cos ∆m(Bs)t

cosh ∆Γst
2
− 2<λ

1+|λ|2 sinh ∆Γst
2

. (135)

Hence, both ∆Γs and φs are extracted in time-dependent fits to the decay distributions. This determina-
tion is ambiguous under (φs,∆Γs)↔ (π−φs,−∆Γs). However, the ambiguity has been experimentally
resolved [202] by examining the interference between the S-wave (CP (J/ψK+K−) = −1) and P -wave
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Table 8: Experimental measurements of φs and ∆Γ(Bs). Where two errors are given, the first is statistical, the second
systematic. The CDF 68% confidence region is re-quoted here with a central value and symmetric errors. The sta-
tistical and systematic uncertainties are quadratically combined before forming the average. Asymmetric intervals are
symmetrized before averaging.

Experiment Mode φs (radians) ∆Γ(Bs) ps−1 Reference
ATLAS J/ψφ 4.9 fb−1 0.12(25)(5) 0.053(21)(10) [303]
CDF J/ψφ 9.6 fb−1 −0.24(36) 0.068(26)(9) [304]
D0 J/ψφ 8.0 fb−1 −0.55+0.33

−0.36 0.163+0.065
−0.064 [305]

LHCb J/ψK+K− 3.0 fb−1 −0.058(49)(6) 0.0805(91)(32) [176]
LHCb D+

s D
−
s 3.0 fb−1 0.02(17)(2) – [299]

Our average -0.057(46) 0.077(8)

(CP = ±1) contributions as a function of K+K− mass near the φ resonance in Bs → J/ψK+K−

decays. The result is that the solution with ∆Γs > 0 and φs near zero are preferred, in accordance with
the standard model expectation. We thus quote only this solution for our average for φs.

Our average of published results for φs is given in Table 8. This includes a new result using the
Bs → D+

s D
−
s channel [299]. There are also results from the decay Bs → J/ψπ+π− [300]. However,

the subleading contributions in this case remain unclear [298] and we do not include the result in our
average. There are additionally preliminary results from ATLAS (both the 7 and 8 GeV datasets)
in [301] and from CMS (8 GeV dataset) in [302]. Our result for the average is

φs = −0.057(46) or − 3.3(2.6)◦ (136)

∆Γs = 0.077(8). (137)

It is noticed that the average is dominated by the LHCb measurement in the J/ψK+K− channel. The
value of φs is so far consistent with zero, as well as with the unitarity expectation (Eq. 20) of ∼ −0.035
(−2◦).

5. Global Fits

There are at least three substantial efforts, with different approaches, that concentrate on the global
compatibility of the measurements related to the CKM matrix with the standard model and possible
new physics scenarios. These efforts also often perform their own averages of expermeintal results, and
provide best-fit estimates of the standard model CKM parameters (A, λ, ρ̄, η̄). The most familiar
product of these efforts are graphs of allowed regions in the (ρ̄, η̄) plane, but many other matters are
addressed as well. As they all have the same base of measurements, it is not surprising that they usually
lead to similar conclusions, but this is not guaranteed and it is useful to have the different approaches to
compare. We briefly discuss and contrast the three approaches here, as there has been some confusion
and controversy about their intent and validity.

The CKMfitter collaboration [171, 280] (home page http://ckmfitter.in2p3.fr/) is based on frequen-
tist statistics. The SCAN method [306, 307] is also based on frequentist statistics, but with a different
approach for interval estimation. It has its genesis in the methodology of the “BaBar physics book” [308].
The UTfit collaboration [309, 310, 311] (home page http://www.utfit.org/UTfit/) is based on Bayesian
statistics. It may be noted that [312] also performs a fit using Bayesian statistics.

A point of controversy has been the treatment of “theoretical errors”. These arise when a theoretical
calculation of a quantity (e.g., a bag parameter) is performed, perhaps at some order in an expansion.
The uncalculated higher orders are, while presumed small, not known, and hence there is an uncertainty
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in the true value of the quantity because the calculation is only approximate. The difference between the
approximate calculation and the true value is a theoretical error. We should remark that distinctions are
usually made between theoretical uncertainties that have a statistical basis, such as sampling statistics
in lattice computations, and systematic uncertainties, such as neglect of higher orders. We’ll discuss
the different treatments of these errors in the following. It should perhaps be cautioned here that the
different fits don’t always use the same theoretical input, as noted in [197] concerning ηcc.

We first discuss the two frequentist approaches, CKMfitter and SCAN method. We leave aside for the
moment the problematic issue of theoretical uncertainties and start with the distinguishing statistical
algorithms. It should be remarked that both use standard frequentist statistical methodology with
correct coverage under the assumed model in the limit of no theoretical uncertainty. The model in both
cases is that the measurements are sampled from normal distributions with mean values according to
the standard model (or new physics model) predictions. Because of the normality, the least-squares
statistic (using the appropriate covariance matrix) follows a χ2 distribution.

The different statistical treatment of these two methods is in the interval estimation. The basic
methods are discussed and contrasted in [313], and generically in standard statistics textbooks, such
as [314] . The CKMfitter approach looks for specified changes in χ2 from the minimum value, e.g., a
change of ∆χ2 = 1 for a 68% confidence interval in one dimension of parameter space. This familiar
approach can be regarded as the use of pivotal quantities. It presents the confidence interval in such a
way that the size of the interval reflects the underlying precision of the measurement.

The SCAN method had motivation in the testing of the consistency of measurements with the
standard model (or new physics models). This motivation extends to the methodology for the confidence
intervals. As the χ2 test for consistency is used, the χ2 statistic is again used in the construction of
a confidence interval. In this construction, say for a 1 − α = 68% confidence interval, we consider the
χ2 test at the α significance level. The critical value χ2

crit for such a test is give by solving for it in
Prob(χ2 ≥ χ2

crit|H0) = α, where the null hypothesis is the model in which the parameter resides (e.g.,
the standard model). If a confidence region in a d-dimensional subspace of a p-dimensional parameter
space is desired, the number of degrees of freedom is n−p+d, where n is the number of measurements.
Knowing χ2

crit the confidence region is constructed by including all those points in the d dimensional
subspace for which the χ2 is not greater than χ2

crit (under H0). Intervals constructed in this way provide
a sense of the size of the region that is consistent with the model, at the stated significance level. It is
quite possible that null intervals will arise, indicating inconsistency of the data with the model at the
stated significance. Nevertheless, if the model is correct, the quoted intervals have the correct coverage.

The treatment of theoretical uncertainties is implemented differently in the two frequentist ap-
proaches, but this is more a difference in technology than in principle. Both interpret the theoretical
uncertainties as reflecting ranges within which the true value is reasonably expected to lie, rather than
as providing some sort of ”confidence interval”. In frequentist statistics, there is no sampling distribu-
tion for these theoretical parameters. Any value in the specified range is deemed a possible value (and
any value outside is deemed not possible, although CKMfitter optionally relaxes this).

CKMfitter implements the theoretical uncertainties by including in the likelihood a term for each
theoretical uncertainty, in which the term is one for any value in the range and zero for any value outside
the range. Since there is no relative “penalty” for different allowed values of the theoretical parameter,
the confidence intervals for a quantity of interest (e.g. ρ̄) will be the union of the confidence intervals
for each allowed value of the theoretical parameter. The SCAN method implements a theoretical
parameter range by trying values throughout the range. The resulting confidence interval is then the
union of the confidence intervals corresponding to each value tried. That is, one “scans” over the
theoretical parameters within their allowed ranges. The net result for the two methods is the same,
except for the different construction of confidence intervals, as well as other implementation details for
which the reader is referred to the primary references.

It is important to notice that these frequentist approaches (assuming an overall correct model of
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course) lead to confidence intervals that err toward overcovering (and to statistical tests that tend to
accept H0 with more than the stated probability). This is because the model space is extended from
the true model (the correct values of the theoretically uncertain parameters) to a set of models that
includes the true model. This is generally considered the appropriate direction to err, but it does mean
that, for example, our statisical tests are not as powerful as they would be with more precise theoretical
parameters.

UTfit is based instead on Bayesian statistics. We consider the case in which a posterior distribution
in the (ρ̄, η̄) plane is desired. The prior distribution for the physically allowed region of this plane is
taken to be uniform in UTfit. The likelihoods corresponding to the experimental measurements is in
principle the same as for the frequentist approaches, being based on the same sampling distributions.
Likelihood terms are also included for the theoretically uncertain parameters. These likelihoods may be
uniform, Gaussian, or something else, based on the expert judgement of the researchers. They represent
relative degree-of-belief statements about the possible values of these parameters.

None of these approaches is “wrong”, although this is unfortunately a controversial statement. The
frequentist approaches assert under their stated assumptions that their results have at least the stated
coverage, in the frequency sense. There is no arguing with this. If there is to be an argument, it should
be over whether this is useful, since further (Bayesian!) steps are required to turn it into statements
about truth. The Bayesian approach states that their posterior provides a probability statement about
the truth. If you agree with the prior distribution and the expert degree-of-belief statements then you
come to the same degree-of-belief conclusions about truth. Again, no argument. It is even useful since
it provides your relative betting odds on different versions of truth according to your degree-of-belief.
The argument here is whether you agree with the subjective (degree-of-belief) premises. If not, all bets
are (literally) off.

Attempts have been made to compare these approaches on common inputs, recognizing that they are
not meant to do the same thing [9, 307]. The results of the fit for ρ̄, η̄, α, β, and γ are compared. The
central values (point estimates) for all of these are similar for all three approaches, with differences well
within the one standard deviation error bars, which shouldn’t be surprising). The interval estimates from
UTfit are generally smaller than from the frequentist calculations, presumably due to the somewhat
more agressive treatment of the theoretical uncertainties. The SCAN method intervals tend to be
larger than the CKMfitter intervals. This is probably due to a fluctuation towards consistency with the
standard model, the p value is 0.76, hence the inverted test acceptance region intervals will tend to be
large.

6. Summary and Discussion

Table 9 provides a summary of what we consider to be the present status of measurements of the
CKM quantities as reviewed herein. For the magnitudes of the elements, we express the results as
the squares, because these are probably closer to being normally-distributed samplings than simply
the magnitudes. Thus, when we perform a least squares fit, we’ll use these squared values, improving
the validity of the assumption of a χ2 distribution for the least-squares statistic. The quantities in
Table 9 are selected to avoid correlations as well, although there are two exceptions where correlation
coefficients are noted. These correlations are included in our fits, all others are assumed to be zero.

It is of course of interest to investigate how consistent these measurements agree with the standard
model expectation of 3 × 3 unitarity, as well as to infer best estimates for the four standard model
parameters. We perform a number of studies to answer several questions of this nature.

We remark that the error estimates in Table 9 sometimes include quadratically combined experi-
mental and theoretical uncertainties. Our least squares fits thus treat these two sources of uncertainty
symmetrically. In particular, the interpretation of the χ2 statistic as being distributed according to a χ2

distribution depends on the quantities used as measurements being sampled from normal distributions
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Table 9: Summary of measurements related to the CKM matrix. The abbreviations “ex” and “in” stand for the “exclusive”
and “inclusive” averages, respectively.

Quantity Measured value
|Vud|2 0.94900(42)
|Vus|2 0.05046(20)
ρ(|Vus|2, |Vud|2) 0.08
|Vcs|2 0.983(30)
|Vcd|2 0.0466(19)
|Vcb|2 (ex) 0.00154(5)
|Vcb|2 (in) 0.00178(7)
|Vub|2 (ex) 1.26(9)× 10−5

ρ(|Vub|2, |Vcb|2) (ex) 0.14
|Vub|2 (in) 2.02(19)× 10−5

|Vtb|2 1.01(7)
|VtsV ∗tb|2 0.00164(23)
|Vtd/Vts|2 0.047(5)
|ε| 0.002228(11)
sin 2β 0.691(17)
cos 2β 1.3(3)
α (degrees) 88(5) or 268(5)
γ (degrees) 71(8) or 251(8)
φs (degrees) -3.3(2.6)

with the error estimates taken to be the standard deviations. We have already discussed in Section 5
that such a treatment is controversial, since there is no expectation that theoretical errors arise in
sampling from a normal distribution. Our derived interval estimates and p values must be taken with
caution. Compared with the CKMfitter or SCAN methods of Section 5, we may expect our interval
estimates to tend to be smaller (and may overcover or undercover) as well as our p values. However, if
we find that the standard model is consistent with the data, according to our p values, then we have
confidence that this is a valid conclusion. On the other hand, if it looks like there is an inconsistency,
further investigation may be required, especially if the conclusion is marginal.

A simple first question is the consistency of the upper left 2×2 matrix with the Cabibbo model. We
thus perform a least-squares fit to the first four quantities in Table 9 to a 2× 2 orthognal matrix with
one parameter. As the measurements are the squares of the matrix elements, this is a strictly linear fit
for sin2 θC , where θC is the Cabibbo angle. The result is

sin2 θC = 0.05152(19) sin θC = 0.2248(4). (138)

According to convention, we pick the positive sign for sin θC . The p(χ2) value is 8%, that is, the Cabibbo
model remains consistent with the magnitudes of the elements in the upper two-by-two submatrix of
the CKM matrix.

Turning to the full 3× 3 matrix, we investigate first what we learn from only measurements of the
magnitudes of the elements. Our fits are all in the context of the standard model. The parameterization
we adopt is A, λ, ρ, η. In terms of these parameters, we use equations 6, and 7 to obtain the expressions
for the expectation values of our measured quantities (there is no need to use the approximations in Eq.8
for this). With the fit results we also make the transformation to ρ̄, η̄ according to Eq. 14, as well as
the Jarlskog invariant, J (Eq. 12), and the CKM phase δ in the parameterization of Eq. 6.
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Table 10: Fit results, either based on the measurement of the magnitudes of the CKM elements alone, or including also
the measurements of the phases.

Parameter Using magnitudes Using magnitudes and phases
Exclusive Inclusive Exclusive Inclusive

A 0.778(12) 0.834(16) 0.790(10) 0.841(13)
λ 0.2248(4) 0.2248(4) 0.2248(4) 0.2248(4)
ρ 0.14(5) 0.18(5) 0.115(22) 0.143(25)
η 0.375(23) 0.440(28) 0.374(10) 0.369(11)
ρ̄ 0.14(5) 0.17(5) 0.112(22) 0.140(24)
η̄ 0.365(22) 0.429(27) 0.364(9) 0.359(11)
J 2.93(18)10−5 3.95(25)10−5 3.01(7)10−5 3.37(8)10−5

δ 69(7)◦ 68(6)◦ 73(3)◦ 69(4)◦

p value 20% 26% 14% 1.8%

Since there is inconsistency between exclusive and inclusive measurements for |Vcb|2 and |Vub|2, we
investigate the two types of measurement separately. It will be assumed that either the exclusive
measurements are “right” in both cases, or the inclusive. This seems to be the most plausible scenario
since the problem could arise from similar origins for both quantities. The fit results are shown in
Table 10. The magnitude alone are sufficient to determine all four Wolfenstein parameters, well enough
to conclude that CP violation must be present. We do not learn anything about whether the inclusive
or exclusive measurements are preferred from this exercise. There is enough freedom in the standard
model to accommodate either set of measurements with acceptable and comparable p values.

The linear correlation coefficients for the fitted parameters are shown in Table 11 for the fit using
exclusive values for |Vcb|2 and |Vub|2. The pattern is the same for the fit using the inclusive measurements,
although the values move around substantially in some cases. As can be expected, the ρ̄− η̄ correlation
is negative, due to the presence of ρ̄2 + η̄2 terms in the expectation values.

We may repeat this exercise by including as well all of the phase measurements in Table 9. To do
this, it is necessary to add auxillary parameters to incorporate the |ε| measurement and its expectation
according to Eq. 75 (including the kε factor). Referring to Section 4.1, we choose to define four auxiliary
parameters:

CT ≡ CεB̂Kkε = 2.64(7)× 104

Ctt ≡ ηttS0(xt) = 1.336(19)

Cct ≡ ηctS0(xc, xt) = 1.10(11)× 10−3

Ccc ≡ ηccS0(xc) = 4.7(1.9)× 10−4

(139)

Four terms are added to the χ2 for these, with expectation values given by the point estimates. Again,
even though there are considerable theoretical components to the error estimates for these quantities,
we treat them symmetrically with the experimental errors and the above discussion applies. At the
current level of precision, Eq. 83 could equally well have been used as Eq. 75.

With the phase information, we encounter a preference for the exclusive |Vub|2 and |Vcb|2 measure-
ments under the standard model. With the exclusive measurements, the data is consistent with the
standard model 3 × 3 unitarity (even given the questionable treatment of theoretical uncertainties).
On the other hand, the inclusive measurements result in a low p value for consistency, less than 2%.
However, as discussed above, the treatment of the theoretical uncertainties is an issue in the interpre-
tation of this. If the theoretical uncertainties are to be treated as ranges of allowed values, as in the
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Table 11: Linear correlation coefficients among the CKM parameters for selected fits. Results from the fits with exclusive
values for |Vcb|2 and |Vub|2 are shown.

λ ρ η
Using magnitudes

A -0.22 -0.036 -0.15
λ 0.030 -0.058
ρ -0.70
Using magnitudes and phases
A -0.32 0.25 -0.56
λ 0.050 -0.072
ρ -0.51

CKMfitter and SCAN method approaches, somewhat larger p values can be achieved. Even so, the
inclusive determination of |Vub|2 and |Vcb|2 is disfavored. Because 2% (or a few percent, allowing for
the theoretical errors) is not extremely unlikely, we cannot make a strong statement. We have already
remarked in Section 3.5 that explaining the discrepancy in terms of new physics is difficult. Thus,
unless new physics is affecting other measurements in a somewhat perverse way, we conclude that the
presently somewhat favored scenario is that there is a problem with the inclusive determinations of
|Vub|2 and |Vcb|2.

The CP -violation phase of Eq. 6 is approximately 70◦, i.e., not far below the maximal CP -violating
90◦. However, another way to look at the amount of CP violation is the Jarlskog invariant. In the
parameterization of Eq. 6, striking out the second row and column and using Eq. 9 we evaluate

J = c12s12c
2
13s13c23s23 sin δ. (140)

This is maximal for sin θ12 = sin θ23 = 1/
√

2, sin θ13 = 1/
√

3, and sin δ = 1, for a maximum of
max J = 1/6

√
3 ≈ 0.0962. Our measured value is J ≈ 3× 10−5, 3.5 orders of magnitude smaller. The

smallness of this measure of CP violation arises from the uneven magnitudes of the elements of V ; the
matrix is approximately diagonal.

We may obtain additional insight into the fit results by looking at the residuals. The normalized
residuals are given by

ri =
xi − fi(p̂)

σi
, (141)

where x is the measurement vector, f is the vector of expectation values for the measurements based
on the parameter estimates p̂, and σ is the standard deviation vector for the measurements. Except for
the small correlations, the residuals are the square roots of the individual measurement contributions to
the χ2 for the fit. The normalized residuals are summarized in Table 12 for the fits using the exclusive
measurements of |Vub|2 and |Vcb|2. There are no obvious difficulties seen in these residuals. For the most
part, adding the phase measurements doesn’t move the residuals for the magnitudes by very much.

The experimental and theoretical effort to understand the CKM matrix has been vast, reflecting its
fundamental status in the standard model and as a potential window into physics beyond. The precision
of the measurements and theoretical input continues to advance. Here, we have taken a snapshot of the
experimental information measuring the CKM matrix. There are some issues, such as the disagreement
between inclusive and exclusive determinations of |Vub|2 and |Vcb|2. However, the general picture of V
as a 3× 3 unitary matrix remains a remarkable achievement.
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Table 12: Normalized residuals of measurements related to the CKM matrix. Column “A” is from the fit using the
magnitudes only; column “B” is from the fit using both magnitude and phase measurements. Both fits use the exlcusive
averages for |Vub|2 and |Vcb|2.

Quantity Normalized residual
A B

|Vud|2 -1.1 -1.0
|Vus|2 -0.4 -0.4
|Vcs|2 1.1 1.1
|Vcd|2 -2.0 -2.0
|Vcb|2 -0.2 -1.2
|Vub|2 -0.0 -0.3
|Vtb|2 0.2 0.2
|VtsV ∗tb|2 0.8 0.6
|Vtd/Vts|2 -0.0 -0.6
|ε| 0.1
CT -0.5
Ctt -0.2
Ccc 1.3
Cct -0.7
sin 2β -0.7
cos 2β 2.0
α (degrees) 0.6
γ (degrees) -0.2
φs (degrees) -0.4
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