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Dissipative Kerr cavity solitons experience a so-called
self-frequency shift (SFS) as a result of Raman interactions.
The frequency shift has been observed in several micro-
cavity systems. The Raman process has also been shown
numerically to influence the soliton pumping efficiency.
Here, a perturbed Lagrangian approach is used to derive
simple analytical expressions for the SFS and the soliton
efficiency. The predicted dependences of these quantities
on soliton pulse width are compared with measurements
in a high-Q silica microcavity. The Raman time constant
in silica is also inferred. Analytical expressions for the
Raman SFS and soliton efficiency greatly simplify the pre-
diction of soliton behavior over a wide range of microcavity
platforms. © 2016 Optical Society of America

OCIS codes: (140.3945) Microcavities; (190.5650) Raman effect;

(190.7110) Ultrafast nonlinear optics.
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Recently, a new type of temporal soliton, the dissipative Kerr
cavity soliton, has been observed in both fiber [1] and micro-
cavity resonators [2–6]. In microcavities, these solitons are
being explored as possible routes to create a chip-based fre-
quency comb system [7,8]. Like all optical solitons, dissipative
Kerr cavity (DKC) solitons balance waveguide dispersion with
the Kerr effect (intensity dependence of refractive index).
Beyond this, however, DKC solitons also use the Kerr effect
to compensate cavity loss through parametric amplification [2].

While the Kerr effect is essential to soliton formation, other
nonlinearities can alter soliton properties. Soliton interaction
with the Raman nonlinearity causes the so-called self-frequency
shift (SFS). In optical fiber transmission, this effect causes the
soliton’s central frequency to experience increasing redshifting
with propagation distance [9]. Intuitively, this is understood
as a continuous energy transfer from the blue to red side of
the soliton spectrum that is mediated by the Raman interaction
[10]. The effect is of practical importance in supercontinuum
generation using optical fibers [11]. It has also been used in
difference frequency generation of mid-IR frequency combs
[12]. Recently, the Raman SFS has been numerically modeled

[13] and observed to influence DKC solitons [3,14]. Here,
rather than producing a continuously increasing redshift, the
Raman effect produces a constant frequency offset between
the optical pump and the soliton spectral maximum (i.e., a
frequency locked Raman soliton [13]). Without the Raman
SFS, the optical pump would be centered on the soliton comb
spectrum (at the spectral maximum). Instead, the soliton spec-
tral maximum is red-shifted away from the pump. The amount
of shift increases with soliton peak power and, so far, has
been numerically calculated [3,13,14] by solving the Lugiato–
Lefever equation [15].

Here, we present an analysis of the SFS for DKC solitons
using the perturbed Lagrangian formalism and develop an ana-
lytical expression for the frequency shift in terms of soliton and
cavity properties. In addition, an analytical expression for the
soliton efficiency, including the Raman effect, is found and
compared with new measurements, as well as those reported
earlier [3]. The Raman SFS and soliton efficiency expressions
are first compared with measurements to confirm the predicted
behavior; then the derivation of these expressions is outlined.

To form DKC solitons, a microresonator must have a trans-
verse mode family with dispersion that is both anomalous and
free of avoided mode crossings [16]. Pumping of a single mode
belonging to this mode family will generate solitons when the
pumping frequency is red detuned relative to the mode reso-
nance. Further details on the excitation of DKC solitons are
provided in [2–6]. DKC solitons were generated in a 3 mm
silica resonator (free spectral range ≈22 GHz). General infor-
mation on the resonators and the techniques used to measure
the solitons are described in [3,17]. Soliton spectra measured in
a silica microresonator at two different operating points are
shown in Fig. 1(a). Soliton generation is confirmed by time
domain intensity autocorrelation and frequency resolved opti-
cal gating (FROG) [3]. Additional confirmation is provided
by fitting to the theoretically predicted hyperbolic secant-
squared spectrum [see the spectral envelopes in Fig. 1(a)].
The Raman SFS offset of the pump line relative to the soliton
spectral center is also indicated in the figure. It can be seen that
the broader soliton spectrum (narrower pulse width) features a
larger Raman SFS. Finally, soliton pulse width, power, and
Raman SFS depend on a single operating point parameter,
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the frequency detuning of the resonator mode being pumped
relative to the pump frequency, δω � ω0 − ωp. (ωp is the
pump frequency, and ω0 is the frequency of the resonator mode
that is pumped.) To set and hold this parameter (and, in turn,
other soliton properties), soliton power was used to servo con-
trol the pump laser frequency as described elsewhere [3,17].
In the measurements, the protocol was to hold frequency de-
tuning close to the soliton existence maximum detuning [2,3]
and to then vary this maximum detuning by adjusting the
pumping power.

The key theoretical results of this Letter are the following
expressions for the Raman SFS, Ω; the minimum input pump
power required to generate a soliton, Pmin; and the soliton
pumping efficiency, Γ � Psol∕Pmin [18] (Psol is the average
soliton power):

Ω � −
8D2QτR
15ω0D2

1

1

τ4s
� 8cτRQβ2

15n0ω0

1

τ4s
; (1)

Pmin � P0 cosh
2 πΩτs

2
; (2)

Γ � Γ0 sech
2�πΩτs∕2�; (3)

where c, n0, n2 and β2 are the speed of light, refractive index,
Kerr nonlinear refractive index coefficient, and group velocity
dispersion, respectively. D1∕2π is the cavity-free spectral range
in Hertz units at the pumping mode (i.e., soliton repetition
frequency). Q (QE ) is the total (external) optical Q factor and
η � Q∕QE is the coupling factor. In addition, τs is the soliton
pulse width, τR is the Raman time constant [19], and D2∕2π
gives the second-order dispersion in units of change in free-
spectral range per mode (D2 � − c

no
D2

1β2). In addition, P0 and
Γ0 are the soliton minimum pumping power and soliton effi-
ciency in the absence of the Raman SFS (i.e., Ω � 0) and are
given by [3]:

P0 � −
2c
π

Aeffβ2
ηn2QD1

1

τ2s
; (4)

Γ0 � πη2D1τs ; (5)

where Aeff is the effective nonlinear mode area. Before deriving
Eqs. (1)–(3), they are compared with measurements.

To test the theory, a series of soliton spectra of increasing
spectral width were obtained using the operating point locking
method [17]. The Raman SFS,Ω, and the pulse width, τs, were
measured by least-squares fitting of the soliton optical spectrum
[see Fig. 1(a)] to the theoretical soliton spectral envelope
P�ω� � Pc sech

2�πτs�ω − ωp −Ω�∕2�, where Pc is the spectral
maximum power. Figure 1(b) plots the measuredΩ versus 1∕τ4s
in two devices. For reference, device I is a device characterized
previously [3]. A linear fitting to the two sets of data is also
provided, confirming the predicted theoretical dependence in
Eq. (1). Furthermore, with measured parameters (device I:
Q � 200 million, D1∕2π � 22 GHz, D2∕2π � 17 kHz;
and device II: Q � 235 million, D1∕2π � 22 GHz,
D2∕2π � 17 kHz), a value of τR � 1.8 fs, both for device I
and for device II, is inferred from the linear fitting, which is
in a reasonable agreement with the value of 2–4 fs reported
in silica optical fibers [19]. The small non-zero intercept of
the linear fitting is in the range of 1 free-spectral range
(22 GHz) of the two resonators.

To measure the soliton efficiency, Γ, the operating point is
fixed (i.e., laser-cavity detuning δω is fixed) while the pump
power is decreased until the soliton disappears. Near the dis-
appearance point, the soliton average power, Psol, and the mini-
mum pump power, Pmin, are recorded and used to obtain
efficiency as Γ � Psol∕Pmin. The pulse width is obtained from
the optical spectrum as before. Measured efficiency is plotted
versus the pulse width in Fig. 2 for devices I and II. The pre-
diction given by Eq. (3) is shown as the solid line. The value of
τR used in the plots is that inferred from fitting in Fig. 1(b).
Also, η � 0.29, 0.37 for devices I and II. Device II has a higher
efficiency as a result of a larger coupling coefficient. The agree-
ment between the theory and measurement in Fig. 2(b) is very
good, especially considering that there are no free parameters.
The dashed lines in the plots give the uncorrected efficiency
prediction of Eq. (5) (i.e., Γ0 versus τs).

The derivation of Eqs. (1)–(3) is now presented. For trans-
verse mode families that are relatively free of avoided mode
crossings, the slowly varying internal cavity field A�T ; t� can
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Fig. 1. (a) Optical spectra measured for a dissipative Kerr cavity sol-
iton at two operating points. The pump power is suppressed using a
fiber grating filter. A sech2 fit is shown (orange curves), and pulse
widths inferred from the fitting are shown in the legend. The location
of the pump line is indicated as the black line. The centers of the spec-
tra are indicated by the green lines. (b) Measured Raman SFS plotted
versus 1∕τ4s for two devices. The red line is a linear fit according to
Eq. (1).
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be described by the Lugiato–Lefever equation [15] augmented
with an additional Raman effect term [3,13,14]:

i
∂A
∂T

−
cβ2
2no

∂2A
∂t2

� gjAj2A � −

�
i
κ

2
− δω

�
A� i

ffiffiffiffiffiffiffiffiffiffiffi
κηPin

ℏωo

s

� gτRA
∂jAj2
∂t

; (6)

where T and t are the slow and fast times, g � ℏω2
o n2D1∕

2πnoAeff denotes the normalized Kerr effect nonlinear coeffi-
cient, κ � ω0∕Q is the power dissipation rate of the soliton
mode family, and Pin is the pump power. Exact solutions of
Eq. (6) are only known in the absence of dissipation and the
Raman effect [20,21]. However, an approximate solution, in-
cluding the dissipation term, has been calculated using the
Lagrangian perturbation approach [22,23]. Here, we extend
this method by including the Raman term as a perturbation.

The Lagrangian density for this system is given by [22–24]

L� i
2

�
A� ∂A

∂T
−A

∂A�

∂T

�
� cβ2
2no

����∂A∂t
����2�1

2
gjAj4−δωjAj2; (7)

and the dissipation, pumping, and Raman terms are combined
in a perturbation R, where

R � −
iκ
2
A� i

ffiffiffiffiffiffiffiffiffiffiffi
κηPin

ℏωo

s
� gτRA

∂jAj2
∂t

: (8)

Equation (6) is recovered by taking δL∕δA� � R [24]. The
form for the slowly varying field envelope of the solitons
wherein the central frequency is shifted by Ω is given by

A � B sech��t − to�∕τs�e−iΩ�t−to�eiϕ; (9)

which is an exact solution for the case with no perturbation
(R � 0). This form is also consistent with measurement
and numerical modeling of the DKC solitons in the presence
of Raman interactions [3,13,14]. For the proceeding analysis,
the soliton phase (ϕ), temporal position (to), amplitude (B),
pulse width (τs), and shift frequency (Ω) are considered func-
tions of T , the slow time variable. Finally, Eq. (9) assumes
δω ≫ κ (i.e., large pump detuning). In this case, the back-
ground field associated with DKC solitons is much weaker than
the soliton peak power and is not included in Eq. (9). However,
it can be retrieved from Eq. (6) for j�t − t0�∕τsj ≫ 1, where the
soliton pulse is no longer dominant [2,23,25].

It is observed experimentally that the central soliton comb
line power is a constant (independent of the operating point)
and in good agreement with the Raman-free Lugiato–Lefever
prediction [3]. By Fourier transform of a train of periodic pulses
(period � 2π∕D1) of the form in Eq. (9), the power per comb
line at the central maximum of the soliton spectrum is given by
ℏω2

0D
2
1∕4Qext × B2τ2s . Accordingly, to be consistent with ex-

perimental observations, the product Bτs is assumed to be given
by the Raman-free result, Bτs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−cβ2∕gno

p
. This is used to

eliminate τs in the calculation below. It is also possible to show
that this result follows directly from variation of the Raman-
perturbed system [Eqs. (7) and (8)] with B and τs treated as
independent variables.

The equations of motion for the perturbed Lagrangian have
the form [23–25],

∂L
∂ri

−
d
dT

∂L
∂_ri

�
Z �

R
∂A�

∂ri
�R� ∂A

∂ri

�
dt; (10)

where the coordinates ri in the Lagrangian are taken as the
parameters B, Ω, to, and ϕ. Using Eq. (9) in the Lagrangian
density, Eq. (7) gives the following result:

L �
Z
Ldt � 2B

ffiffiffiffiffiffiffiffiffi
−cβ2
gno

s �
gB2

6
� cβ2Ω2

2no
− δω − Ω

∂t0
∂T

−
∂ϕ
∂T

�
:

(11)
Inserting Eqs. (9) and (11) into Eq. (10) yields the equations

of motion for parameters B, to, Ω, and ϕ:

dB
dT

� −κB � π

ffiffiffiffiffiffiffiffiffiffiffi
κηPin

ℏωo

s
cos ϕ sech

� ffiffiffiffiffiffiffiffiffi
−cβ2
gn0

s
πΩ
2B

�
; (12)

dϕ
dT

� g
2
B2 − δω� cβ2

2n0
Ω2 −

∂to
∂T

Ω; (13)

dBΩ
dT

� −κBΩ� 8n0τRg2

15cβ2
B5; (14)

dto
dT

� cβ2
n0

Ω; (15)

where δω ≫ κ and (to be consistent with the measurement
protocol) operation near the soliton maximum existence detun-
ing are assumed. The latter is equivalent to assuming ϕ is near
zero in the analysis. Equation (15) corresponds to the change of
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Fig. 2. Measured efficiency versus soliton pulse width is plotted
(blue points) for two devices and compared with theory. A theory com-
parison with Raman (solid blue lines) and without Raman (dashed
blue lines) is presented. There are no free parameters in the compari-
son. The small deviations between the measurement and the theory
could result from the presence of weak avoided mode crossings in
the dispersion spectrum [16].
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soliton repetition rate due to the SFS [22] and has recently been
observed [26]. The steady-state solution of Eq. (14) gives
Eq. (1) for the SFS Ω (also using Bτs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−cβ2∕gno

p
), while

Eqs. (12) and (13) give the following steady-state results:

B �
ffiffiffiffiffiffiffiffiffi
−cβ2
gno

s
1

τs
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

g

�
δω� cβ2

2no
Ω2

�s
; (16)

cos ϕ � 1

πτs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−cβ2κℏωo

ηgnoPin

s
cosh

πΩτs
2

: (17)

Combining Eqs. (1) and (16), the SFS and soliton pulse
width can be related to the laser-cavity detuning,

δω �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15cβ2ω0

32noQ
Ω
τR

s
−
cβ2
2no

Ω2; (18)

δω � −
cβ2
2no

1

τ2s

�
1� 64c2τ2RQ

2β22
225n2oω2

0

1

τ6s

�
: (19)

It is important to remember that despite the form of these equa-
tions, detuning (δω) is the parameter that is controlled in
a measurement. In addition, in Eq. (18), note that in the limit
of τR → 0, Ω → 0 for finite δω.

The minimum input power for soliton existence given
by Eq. (2) can be obtained by requiring j cos ϕj ≤ 1 in
Eq. (17). The average soliton power is given by [2,3]

Psol � −
2cηAeffβ2

n2Q
1

τs
: (20)

This expression follows from Eq. (9) and the relation between
B and τs noted above. Using Eqs. (2) and (20), the soliton
efficiency in Eq. (3) can be obtained from Γ � Psol∕Pmin.

By numerical simulation of Eq. (6), the relations among
Ω, τs, and δω given by Eqs. (1), (18), and (19) were con-
firmed for both the silica resonator in this Letter and for
silicon nitride resonators (parameters as in [14]: D1∕2π �
100 GHz, D2∕2π � 2 MHz, κ∕2π � 350 MHz, and τR �
0.2 × 20∕2π � 0.64 fs). The form of the Raman interaction
used here assumes that higher order terms beyond the shock
term are negligible. This imposes a restriction on pulse times
to be much longer than the damping time of vibrations [27].
This assumption is satisfied here. Finally, even though the
behavior of the Raman SFS in microcavities differs in compari-
son to conventional soliton propagation in optical fiber (i.e.,
frequency locking behavior in microcavities [13]), it is interest-
ing to note that both systems exhibit an inverse quartic depend-
ence on soliton pulse width [10].

In summary, closed-form expressions for the Raman self-
frequency-shift and the efficiency of dissipative Kerr cavity
solitons have been derived using the Lagrangian perturbation
approach. The results are in good agreement with measure-
ments in silica microcavities. The expressions should be appli-
cable to predict soliton behavior in any microcavity system.
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