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Nonlinear interactions isolated through scale synthesis
in experimental wall turbulence
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An experimental investigation of nonlinear scale interactions in a forced turbulent
boundary layer is presented here. A dynamic wall perturbation mechanism was used to
externally force two distinct large-scale synthetic modes with well-defined spatial and
temporal wave numbers in a fully turbulent flow. The focus is on characterizing the nonlinear
flow response at triadically consistent wave numbers that arises from the direct interactions
of the two synthetic modes. These experimental results isolate triadic scale interactions
in wall turbulence in a unique fashion, and provide the ability to explore the dynamics of
scale coupling in a systematic and detailed manner. The ideas advanced here are intended
to contribute towards modeling efforts of high-Reynolds-number wall turbulence.
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The dynamics of turbulent flows are characterized by the presence of a wide range of energetic
scales with inherent nonlinear coupling. The high-dimensional and nonlinear nature of the problem,
as viewed from a systems perspective, makes it innately challenging. Our interest is in wall-bounded
turbulent flows, in boundary layers, channels, pipes, etc., where the presence of a bounding surface
accentuates the role of fluid viscosity in its vicinity and establishes a mean shear-stress gradient.
The resulting nonhomogeneity in the wall-normal direction alters the characteristics of turbulence
at a fundamental level and introduces unique considerations that set wall turbulence apart from
other classes of turbulent flows. In addition to its scientific importance, the immense practical scope
of applications involving wall turbulence continues to drive concerted research efforts involving
experimental, theoretical, and computational approaches to the problem [1].

While considerable progress has been made in explaining the linear mechanisms involved in the
dynamics of wall turbulence, the nonlinear aspects are often treated indirectly through modeling
approaches. The present work is aimed at investigating the dynamics of nonlinear scale coupling
at a fundamental level. Consider a fully developed turbulent wall flow with a three-dimensional
velocity fluctuation field u(x,y,z,t), where x,y,z denote the streamwise, wall-normal, and spanwise
coordinates, respectively, and t denotes time. We restrict our attention to two distinct scales of
motion, denoted by ũ1 and ũ2, that constitute the velocity field u together with other scales of
turbulence. They are expressed in the form of normal modes, each with positive (ũ+) and negative
(ũ−) complex oblique wave components

ũ1 = û1e
i(kx1x+kz1z−ω1t) + û∗

1e
−i(kx1x+kz1z−ω1t) = ũ+

1 + ũ−
1 ,

ũ2 = û2e
i(kx2x+kz2z−ω2t) + û∗

2e
−i(kx2x+kz2z−ω2t) = ũ+

2 + ũ−
2 . (1)

Here k1 = (kx1,kz1,ω1) and k2 = (kx2,kz2,ω2) denote spatial and temporal wave numbers along the
homogeneous directions (x,z,t), respectively.1 The complex amplitudes ûj (and conjugates û∗

j ) in the
above equation are a function of the nonhomogeneous coordinate y and contain phase information
for the modes. It is worth noting that complex exponentials provide the optimal basis functions

*subrahmanyam@caltech.edu
1The locally parallel flow approximation is implicitly invoked for a boundary layer flow by treating the

statistics of u to be invariant in the streamwise direction. Results from the present experimental scenario
suggest this to be a reasonable approximation for the purposes of this paper.
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FIG. 1. Schematic of the flat plate setup (not to scale). A thin spanwise-aligned straight rib is positioned at
the wall (x = 0) and actuated in the wall-normal direction to force the flow simultaneously at two frequencies.
Phase-locked hot-wire anemometer measurements were made at three downstream (x > 0) stations as marked.
The BL thickness δ and Reynolds number Reθ for the flow at station 1 (x = 2.7δ) are indicated; only a minor
increase in these quantities was noted over the range 0 < x < 5.4δ.

(energy norm) for decomposition of the velocity field in the homogeneous directions and thus are
routinely employed in descriptions of turbulent flow fields that possess some degree of translational
invariance. For instance, the resolvent operator model [2] exploits the low-rank nature of linear
dynamics that results from such a decomposition to successfully capture some key features of wall
turbulence. In addition to its attractive mathematical properties, the Fourier basis provides a clear
and simple quantitative definition of scale in terms of a wave number kj .

We now consider the nature of interaction between the two modes ũ1 and ũ2 and begin by noting
that the nonlinear convective acceleration term (u · ∇)u in the governing Navier-Stokes equation is
quadratic in u. The implications of this are readily seen from Eq. (1): Quadratic interactions between
wave components ũ+

1 ,ũ−
1 ,ũ+

2 ,ũ−
2 establish a direct coupling between the modes under consideration

and their sum and difference wave-number modes, denoted by ũ3 and ũ4, with wave numbers
k3 = k1 + k2 and k4 = k1 − k2, respectively. Also, self-interactions of ũ1 and ũ2 establish a direct
coupling with their respective harmonic modes, denoted by ũ5 and ũ6, with wave numbers k5 = 2k1

and k6 = 2k2. Such sets of three wave numbers {k1,k2,k3} and {k1,k2,k4} are said to possess
triadic consistency, with harmonic wave-number sets like {k1,k1,k5} and {k2,k2,k6} being the self-
interaction cases. The coupling between triadically consistent wave numbers, referred to as triadic
interactions, is a key aspect of the flow dynamics from which the observed statistics and structure
of wall turbulence emanate. A forcing-response-type approach is used here to experimentally study
triadic interactions in a turbulent boundary layer. Two distinct spatiotemporal modes are externally
forced, or excited, and the linear and nonlinear responses of the flow are measured and analyzed.

A flat plate zero-pressure-gradient boundary layer (BL) flow was forced by a spatially impulsive
dynamic wall perturbation; the flow has a constant free-stream velocity of U∞ = 22.1 m/s and
is fully turbulent at the perturbation location with a layer thickness δ ≈ 16.6 mm and momentum
thickness Reynolds number Reθ ≈ 2780 (see Fig. 1). The wall perturbation geometry was adapted
from earlier experiments [3,4] and consists of a thin straight rib of thickness 1.5 mm aligned along
the spanwise direction. The rib is connected to a linear motor mechanism placed underneath the
plate; a plate insert allows for smooth rib reciprocation in the wall-normal direction. The rib is
actuated by the motor with a waveform consisting of two frequency components, given by

h(t)/δ = a[2 + cos(ω1t) + cos(ω2t)], (2)

where h(t)/δ is the instantaneous nondimensional height (y location of the rib) with h = 0
corresponding to the wall. The following amplitude and frequency values were chosen for the
experiment: a = 0.024, ω1/2π = 50 Hz, and ω2/2π = 35 Hz. Note that the maximum instantaneous
height of the rib is around 10% of the local BL thickness; hmax = 0.096δ and hrms ≈ 0.054δ from
Eq. (2). The entire actuation mechanism was carefully tuned to ensure that the rib displacement
closely matched Eq. (2); the same was confirmed by measurements of the actual rib displacement
obtained from a linear encoder. The overall quality of the flow setup was found to be satisfactory
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with no vibration or noise contamination in the tunnel test section. Phase-locked measurements of
time-resolved streamwise velocity U were made using a hot-wire anemometer at three different
measurement stations downstream of the perturbation (marked in Fig. 1). At each measurement
station the wall-normal flow profile was sampled at 50 logarithmically spaced locations between
y = 0.008δ and 3δ, with sufficient temporal resolution to fully resolve the turbulence spectrum
at all locations. Measurements were also made of the canonical flow (smooth flat plate without
the perturbation) for reference and were found to be in satisfactory agreement with previous
literature. The BL thickness and Reynolds number grow at a very slow pace in the region of interest
(0 < x < 5.4δ) and hence are treated to be constants for the purposes of the present analysis. Also, in
comparison with the canonical flow, no significant changes in δ or Reθ were noticed in the presence
of the dynamic forcing in the region of measurements. An estimate of friction Reynolds number Reτ

for the flow is made from Reθ using the Coles-Fernholz empirical relationship to be Reτ ≈ 940; the
friction length scale, or inner scale, ν/uτ (ν is the kinematic viscosity of air and uτ is the friction
velocity) thus obtained is used along with the outer scale δ for reference in later figures. However,
it is important to note that the estimate of Reτ is strictly valid only for the canonical flow. Interested
readers are referred to [5] for a more detailed description of the experiment.

Before proceeding to the results, we make the following remarks with regard to the experimental
design. A spanwise-constant perturbation results in nominally two-dimensional (2D) disturbances
(x-y plane) and was chosen for ease in experimentation. The choice of perturbation frequencies and
amplitudes was guided by the objective of targeting the large-scale region of the turbulence spectrum.
The significance of large-scale fluctuations, particularly the very-large-scale motions (VLSMs), on
the overall flow dynamics is increasingly clear [6] and hence they are a natural starting point for
attempts at understanding the complex network of coupled spatiotemporal scales of wall turbulence.
The large scales also present a practical avenue to experimentally effect external perturbations
(or forcing) on the flow, particularly at high Reynolds numbers. Previous work by Jacobi and
McKeon [3] and by the present authors [4] demonstrates the effectiveness of a spatially impulsive
wall perturbation in forcing a single synthetic large-scale mode. The 50-Hz component in the present
case was chosen to match [4] and a 35-Hz component was added to simultaneously force another
distinct large-scale mode. The combination of these frequencies results in triadic responses with no
duplication and sufficient separation in the turbulence spectrum (see results). Finally, the amplitude
a was chosen to induce disturbances of sufficient strength in the downstream region while keeping
the blockage effects associated with the rib to a minimum. We now proceed to the experimental
results and model the wall-perturbation-induced disturbances as spanwise-constant (kz = 0) normal
modes.

Time-resolved streamwise velocity from the anemometer is decomposed into local mean and
fluctuating components U (y,t) = U (y) + u(y,t). A slight deficit in the mean momentum relative
to the canonical flow, brought about by blockage effects of the rib and also possibly due to the
dynamic forcing effects, was observed in the logarithmic region (see [5]). Since our interest is
in the triadic interactions associated with the synthetic modes, we restrict our attention to the
fluctuations. The power spectral density (PSD) � of u provides the distribution of energy across
temporal scales; � is calculated using the standard Welch method and is shown in Fig. 2(a) as a
function of frequency f at station 1 (x = 2.7δ). Linear flow response to external forcing in the
large-scale region can immediately be seen at f1 = 50 Hz and f2 = 35 Hz in the form of energetic
narrow-band vertical streaks. The two-frequency dynamic forcing excites two distinct large-scale
motions, referred to as the forcing modes,2 with frequencies f1 and f2. From the earlier discussion
of triadic coupling, the interactions between the two forcing modes is expected to result in direct
nonlinear response with some degree of coherence. A closer inspection of Fig. 2(a) reveals what is
perhaps the most striking feature of this experiment: A clear energetic response is seen at the sum

2Note that the use of terminology “forcing modes” in the present context differs from that of the resolvent
operator framework [2].
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FIG. 2. (a) Premultiplied and scaled power spectral density of streamwise velocity fluctuations at station 1.
Dashed vertical lines indicating the forcing (gray) and response (black) frequencies are shown for reference.
(b) Raw power spectral density at y = 0.2δ from the above composite spectrum is shown to highlight the
amplitude peaks at the frequencies of interest. Round markers in red and blue indicate the forcing and response
frequencies, respectively. There seems to be no increase in the power level of f5 = 100 Hz at this wall-normal
location.

frequency f3 = f1 + f2 = 85 Hz spanning a significant region in the BL. The nonlinear interaction
between the externally forced frequencies gives rise to internal forcing at f3 that results in a noticeable
increase in power level (or intensity). A similar response is also noted at the difference frequency
f4 = f1 − f2 = 15 Hz and harmonics f5 = 2f1 = 100 Hz and f6 = 2f2 = 70 Hz, though not
visually prominent in the premultiplied spectra. The raw PSD curve at y = 0.2δ is shown separately
in Fig. 2(b) as an example to highlight these frequency peaks. The triadic response modes, with
frequencies f3, f4, f5, and f6, are referred to simply as response modes. It is important to note at
this point that the amplitude and phase behavior of the response modes is dictated by the dynamics
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FIG. 3. Amplitude and phase maps ũ(y,t) for modes of interest over one corresponding temporal period
of oscillation at station 1. Color levels are in raw velocity units (m/s). The left column shows the forcing
modes ũ1 and ũ2, the middle column the sum and difference response modes ũ3 and ũ4, and the right column
the harmonic response modes ũ5 and ũ6. Contour lines, approximately indicating ũ = 0, highlight phase
variation with wall-normal distance. Note that constant phase shifts 	φj were applied across y in each
panel for better presentation. The data shown correspond to the streamwise component of the mode velocity
(ũ+

j )ei(	φj ) + (ũ−
j )ei(−	φj ); values chosen for constants 	φj are indicated in the respective panels.

of the particular set of triadic scales under consideration and there is no simple way to predict them
a priori. Direct coupling between scales in itself does not necessitate net energy transfer in the
presence of external forcing.

Having seen clear evidence of forced triadic interactions from the frequency spectra, we now
seek to obtain spatial length scales and characterize the phase behavior of the two forcing modes
and the corresponding triadic response modes. Velocity measurements phase locked to the input
signal [rib displacement h(t) obtained from the linear encoder] allow us to carefully isolate
frequency components of interest from a turbulent signal. A phase-averaging scheme was developed
and implemented to construct coherent amplitude and phase maps of the synthetic modes from
measurements at various wall-normal locations; only the final results are shown here; see [5]
for the detailed procedure. Figure 3 shows streamwise components ũj over one period for the
forcing and response modes constructed using data from station 1. Similar constructions were made
using data from the other two downstream stations (not shown here) and by tracking the change
in the phase of each mode with streamwise distance their spatial length scales were estimated.
Table I shows the streamwise wave numbers kx (and corresponding wavelengths λx = 2π/kx);
note that this is actual spatial information obtained from measurements at multiple x locations
without any assumptions about the mode convection velocity (such as Taylor’s hypothesis).
Triadic relationships between the spatial wave numbers can be verified with these data; we have
kx3(=0.74δ−1) ≈ kx1 + kx2(=0.75δ−1), kx4(=0.12δ−1) ≈ kx1 − kx2(=0.11δ−1), kx5(=0.84δ−1) ≈
2kx1(=0.86δ−1), and kx6(=0.66δ−1) ≈ 2kx2(=0.64δ−1). The slight differences are within the
experimental uncertainty involved in estimation of the spatial wavelengths. With that we have
triadic consistency among the wave-number triplets k, i.e., k3 = k1 + k2, k4 = k1 − k2, k5 = 2k1,
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TABLE I. Spatiotemporal wave numbers and wave speeds for the forcing and triadic response modes.

Mode ωδ/U∞ kxδ (λx/δ)a c/U∞

ũ1 0.24 0.43 (14.6) 0.56
ũ2 0.17 0.32 (19.8) 0.53
ũ3 0.41 0.74 (8.5) 0.55
ũ4 0.07 0.12 (54.2) 0.58
ũ5 0.48 0.84 (7.5) 0.57
ũ6 0.34 0.66 (9.5) 0.52

aThe experimental uncertainty in the estimates of λx is ∼ ±1δ.

and k6 = 2k2. These observations suggest that the disturbances excited by the wall perturbation
are described reasonably well by a normal mode model. It is noted that the wave numbers kx are
not purely real and have a complex component associated with amplitude decay in the streamwise
direction. Since the forcing is applied in a spatially impulsive manner a finite decay rate is observed
and can be easily quantified (see [5]). Mode convection velocities, or wave speeds c (=ω/kx), are also
shown in Table I. It is observed that the two forcing modes excited by the wall perturbation propagate
downstream at nearly the same speed, i.e., c1 ≈ c2. The two spatiotemporal modes can thereby be
interpreted as being part of a single physical coherent structure generated by the perturbation,
propagating downstream at roughly 55% of the free-stream velocity. The triadic response modes,
by implication, also propagate downstream at nearly the same speeds. The flow consists of two
dominant forcing modes and four triadic response modes and this six-mode structure possesses a
good degree of coherence in space and time downstream of the perturbation.

We now make brief qualitative observations with reference to Fig. 3 on the amplitude and phase
characteristics of the forcing and response modes. The two forcing modes ũ1 and ũ2 exhibit almost
identical behavior, characterized by a gradual phase change of π rad going from the near-wall region
to the BL edge, and closely match the single synthetic mode reported in Ref. [4]. The similarity in the
linear flow response is not entirely surprising given the identical nature of external forcing applied
at two frequencies that are nearby in spectral space. Moving to the response modes, an interesting
contrast between the sum and difference wave-number modes ũ3 and ũ4 is noted. Starting at the
wall, ũ3 has a backward phase tilt in time t (forward leaning in streamwise direction x) followed
by an abrupt phase jump of π rad at y ≈ 0.4δ, reminiscent of critical layer mechanisms in 2D
normal mode instability of a laminar inviscid boundary layer [7]. The direction of tilt is then found
to be reversed above the phase jump location. In comparison, ũ4 is vertically aligned for the entire
height and exhibits a π -rad phase jump at the BL edge. The contrasting behavior between the two
triadic response modes can be attributed to a combination of two factors. First, the two modes have
disparate streamwise length scales. The difference response mode ũ4 is found to be extremely long
with a streamwise wavelength of approximately 50δ; longitudinal confinement effects3 of the wind
tunnel test section could potentially be significant at these length scales and deviations from normal
mode behavior are to expected. In addition to this experimental limitation, the structure of internal
nonlinear forcing from the synthetic modes is different at the sum and difference wave numbers,
hence contrasting behaviors are to be expected. Finally, it is noted that the harmonic modes ũ5 and ũ6

look similar, and from the above discussion this can be attributed to the nearly identical nature of the
forcing modes ũ1 and ũ2. The results seem to suggest that the harmonic modes exhibit a π -rad phase
jump at y ≈ 0.4δ similar to the sum or difference wave-number modes, but with the opposite sense.
While this is an interesting observation, it is important to take note of the relative mode intensities
at this point. The harmonic modes are weaker than the sum and difference wave-number modes,
which in turn are weaker than the forcing modes (compare colorbar levels in Fig. 3). The drop in

3The trailing edge airfoil on the flat plate is roughly 92δ downstream of the wall perturbation (x = 0).
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intensity has a bearing on the results of the phase-averaging procedure where the accuracy decreases
with mode intensity; this is reflected in the increased phase jitter going from panel columns 1 to 3
in Fig. 3. Therefore, further scrutiny is required for proper interpretation of the π -rad phase jump
exhibited by the harmonic modes. The data presented here allow for a more detailed analysis of the
phase relationships between triadically coupled scales and this is a subject of ongoing work.

These results demonstrate the effectiveness of a forcing-response type approach towards
understanding the dynamical structure of wall turbulence. Deterministic external inputs to the flow
provide the ability to highlight specific scales and then carefully study the nature of their nonlinear
coupling with other scales of turbulence. Parallels can be drawn with regard to the dynamics of mode
interactions between the present work and ideas previously developed in the context of laminar BL
transition (for instance [8]) and receptivity to freestream disturbances [9]. However, a fully developed
turbulent flow presents a much more complicated scenario with a rich set of dynamics over a wide
range of scales. While the focus of this paper has been on the direct interactions between the
two externally forced large-scale modes, we note that their influence propagates further through
secondary interactions, tertiary interactions, and so on. Also, the presence of energetic coherent
large scales in the flow has an influence on the small-scale activity. For instance, it manifests as a
phase-locking effect on the small scales in the presence of a single energetic scale [4]. The long-term
goal of this line of investigation is to aid modeling efforts towards building a closed picture of the
network of interacting scales in wall turbulence. A robust model of wall turbulence thus derived
could potentially enable practical manipulation of energetic turbulence through targeted large-scale
inputs by capitalizing on the dynamics of nonlinear scale coupling.
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