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Abstract

We study the problem of parameter estimation using maximum likelihood for fast/slow systems of
stochastic differential equations. Our aim is to shed light on the problem of model/data mismatch at small
scales. We consider two classes of fast/slow problems for which a closed coarse-grained equation for the
slow variables can be rigorously derived, which we refer to as averaging and homogenization problems. We
ask whether, given data from the slow variable in the fast/slow system, we can correctly estimate parameters
in the drift of the coarse-grained equation for the slow variable, using maximum likelihood. We show that,
whereas the maximum likelihood estimator is asymptotically unbiased for the averaging problem, for the
homogenization problem maximum likelihood fails unless we subsample the data at an appropriate rate. An
explicit formula for the asymptotic error in the log-likelihood function is presented. Our theory is applied
to two simple examples from molecular dynamics.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Fitting stochastic differential equations (SDEs) to time-series data is often a useful way of ex-
tracting simple model fits which capture important aspects of the dynamics [19]. However, whilst
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the data may well be compatible with an SDE model in many respects, it is often incompatible
with the desired model at small scales. Since many commonly applied statistical techniques see
the data at small scales this can lead to inconsistencies between the data and the desired model
fit. This phenomenon appears quite often in econometrics [1,2,25], where the term market mi-
crostructure noise is used to describe the high frequency/small scale part of the data as well as in
molecular dynamics [36]. In essence, the problem that we are facing is that there is an inconsis-
tency between the coarse-grained model that we are using and the microscopic dynamics from
which the data is generated, at small scales. Similar problems appear quite often in statistical in-
ference, in the context of parameter estimation for misspecified or incorrect models [23, Sec. 2.6].

The aim of this paper is to create a theoretical framework in which it is possible to study this
issue, in order to gain better insight into how it is manifest in practice, and how to overcome
it. In particular our goal is to investigate the following problem: how can we fit data obtained
from the high-dimensional, multiscale full dynamics to a low-dimensional, coarse-grained model
which governs the evolution of the resolved (“slow”) degrees of freedom? We will study this
question for a class of stochastic systems for which we can derive rigorously a coarse-grained
description for the dynamics of the resolved variables. More specifically, we will work in the
framework of coupled systems of multiscale SDEs for a pair of unknown functions (x(t), y(t)).
We assume that y(t) is fast, relative to x(t), and that the equations average or homogenize to give
a closed equation for X (t) to which x(t) converges in the limit of infinite scale separation. The
function X (t) then approximates x(t), typically in the sense of weak convergence of probability
measures [13,37]. We then ask the following question: given data for x(t), from the coupled
system, can we correctly identify parameters in the averaged or homogenized model for X (t)?

Fast/slow systems of SDEs of this form have been studied extensively over the last four
decades; see [6,15,17,21,20,29,37] and the references therein. Recently, various methods have
been proposed for numerically solving these SDEs [11,18,40]. In these works, the coefficients of
the limiting SDE are calculated “on the fly” from simulations of the fast/slow system. There is
a direct link between these numerical methods and our approach in that our goal is also to infer
information about the coefficients in the coarse-grained equation using data from the multiscale
system. However, our interest is mainly in situations where the “microscopic” multiscale system
is not known explicitly. From this point of view, we merely use the multiscale stochastic system
as our “data generating process”; our goal is to fit this data to the coarse-grained equation for
X (t), the limit of the slow variable x(t).

A first step towards the understanding of this problem was taken in [36]. There, the data
generating process x(t) was taken to be the path of a particle moving in a multiscale potential
under the influence of thermal noise. The goal was to identify parameters in the drift as well
as the diffusion coefficient in the homogenized model for X (t), the weak limit of x(t). It was
shown that the maximum likelihood estimator is asymptotically biased and that subsampling is
necessary in order to estimate the parameters of the homogenized limit correctly, based on a time
series (i.e. single observation) of x(t).

In this paper we extend the analysis to more general classes of fast/slow systems of SDEs for
which either an averaging or homogenization principle holds [37]. We consider cases where the
drift in the averaged or homogenized equation contains parameters which we want to estimate
using observations of the slow variable in the fast/slow system. We show that in the case of
averaging the maximum likelihood function is asymptotically unbiased and that we can estimate
correctly the parameters of the drift in the averaged model from a single path of the slow
variable x(t). On the other hand, we show rigorously that the maximum likelihood estimator
is asymptotically biased for homogenization problems. In particular, an additional term appears
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in the likelihood function in the limit of infinite scale separation. We then show that this term
vanishes, and hence that the maximum likelihood estimator becomes asymptotically unbiased,
provided that we subsample at an appropriate rate.

To be more specific, in this paper we will consider fast/slow systems of SDEs of the form

dx

dt
= f1(x, y)+ α0(x, y)

dU

dt
+ α1(x, y)

dV

dt
, (1.1a)

dy

dt
=

1
ε

g0(x, y)+
1
√
ε
β(x, y)

dV

dt
; (1.1b)

with t ∈ [0, T ] or the SDEs

dx

dt
=

1
ε

f0(x, y)+ f1(x, y)+ α0(x, y)
dU

dt
+ α1(x, y)

dV

dt
, (1.2a)

dy

dt
=

1

ε2 g0(x, y)+
1
ε

g1(x, y)+
1
ε
β(x, y)

dV

dt
(1.2b)

with t ∈ [0, T ]. We will refer to Eqs. (1.1) as the averaging problem and to Eqs. (1.2) as the
homogenization problem. In both cases our assumptions on the coefficients in the SDEs are
such that a coarse-grained (averaged or homogenized) equation exists, which is of the form

dX

dt
= F(X; θ)+ K (X)

dW

dt
. (1.3)

The slow variable x(t) converges weakly, in the limit as ε → 0, to X (t), the solution of (1.3).
We assume that the vector field F(X; θ) depends on a set of parameters θ that we want to
estimate based on data from either the averaging or the homogenization problem. We suppose
that the actual drift compatible with the data is given by F(X) = F(X; θ0). We ask whether it is
possible to identify the value of the parameter θ = θ0, in the large time asymptotic, by finding
the maximum likelihood estimator (MLE) when using a statistical model of the form (1.3), but
given data from (1.1) or (1.2). In this paper we will consider, for simplicity, the case where the
state space of the fast/slow system is compact: (x, y) ∈ X × Y = T` × Td−` where T` denotes
the unit torus in ` dimensions. Our main results can be stated, informally, as follows.

Theorem 1.1. Assume that we are given continuous time data. The MLE for the averaging
problem (i.e. fitting data from (1.1a) to (1.3)) is asymptotically unbiased. On the other hand,
the MLE for the homogenization problem (i.e. fitting data from (1.2a) to (1.3)) is asymptotically
biased and an explicit formula for the asymptotic error in the likelihood, E∞, can be obtained.

Precise statements of the above results can be found in Theorems 3.9, 3.11 and 3.12.
The failure of the MLE when applied to the homogenization problem is due to the presence of

high frequency data. Naturally, in order to be able to identify the parameter θ = θ0 in (1.3), in the
large time asymptotic and using data from (1.2a), subsampling at an appropriate rate is necessary.

Theorem 1.2. The MLE for the homogenization problem becomes asymptotically unbiased if we
subsample at an appropriate rate.

Roughly speaking, the sampling rate should be between the two characteristic time scales of the
fast/slow SDEs (1.2), 1 and ε2. The precise statement of this result can be found in Theorems 4.1
and 4.5. In practice real data will not come explicitly from a scale-separated model like (1.1a)
or (1.2a). However real data is often multiscale in character. Thus the results in this paper shed
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light on the pitfalls that may arise when fitting simplified statistical models to multiscale data.
Furthermore the results indicate the central, and subtle, role played by subsampling data in order
to overcome mismatch between model and data at small scales.

The rest of the paper is organized as follows. In Section 2 we study the fast/slow stochastic
systems introduced above, and prove appropriate averaging and homogenization theorems. In
Section 3 we introduce the maximum likelihood function for (1.3) and study its limiting behavior,
given data from the averaging and homogenization problems (1.1a) and (1.2a). In Section 4 we
show that, when subsampling at an appropriate rate, the maximum likelihood estimator for the
homogenization problem becomes asymptotically unbiased. In Section 5 we present examples of
fast/slow stochastic systems that fit into the general framework of this paper. Section 6 is reserved
for conclusions. Various technical results are proved in the Appendix.

2. Set-up

In this section we describe the basic framework for averaging and homogenization in SDEs.
We consider fast/slow systems of SDEs for the variables X × Y = Tl

× Td−l , where Td is the
unit torus in d dimensions, Td

= Rd/Zd . The choice of a compact state space for the fast/slow
system considerably simplifies the analysis.1 In Section 6 we comment on how the proofs of our
results have to be modified in order to cover the case where the state space is not compact.

Let ϕy,ξ
t denote the Markov process which solves the SDE

d
dt

(
ϕ

y,ξ
t

)
= g0

(
ξ, ϕ

y,ξ
t
)
+ β

(
ξ, ϕ

y,ξ
t
)dV

dt
, ϕ

y,ξ
0 = y. (2.1)

Here ξ ∈ X is a fixed parameter and, for each t ≥ 0, ϕt
ξ (y) ∈ Y , g0 : X × Y → Rd−l ,

β : X × Y → R(d−l)×m and V is a standard Brownian motion in m dimensions.2 The generator
of the process is

L0(ξ) = g0(ξ, y) · ∇y +
1
2

B(ξ, y) : ∇y∇y (2.2)

with B(ξ, y) := β(ξ, y)β(ξ, y)′ where ′ denotes the transpose and : denotes the matrix inner
product:

B(ξ, y) : ∇y∇y :=
∑
i, j

Bi j (ξ, y)
∂2

∂yi∂y j
.

Notice that L0(ξ) is a differential operator in y alone, with ξ a parameter.
Our interest is in data generated by the projection onto the x coordinate of systems of SDEs

for (x, y) in X × Y. In particular, for U a standard Brownian motion in Rn we will consider

1 In order to define diffusion processes on the torus, one can consider the drift as 1-periodic in all directions, take the
diffusion on Rd and then look at its values mod Zd , i.e. on Td . See, for example, [4,8,26,6]. Alternatively, one can define
a diffusion process on the torus as the Markov process with generator L, equipped with periodic boundary conditions.
See [31] and the references therein. See also [12].

2 Throughout this paper we write stochastic differential equations as identities in fully differentiated form, even though
Brownian motion is not differentiable. In all cases the identity should be interpreted as holding in integrated form, with
the Itô interpretation of the stochastic integral.
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either of the following coupled systems of SDEs:

dx

dt
= f1(x, y)+ α0(x, y)

dU

dt
+ α1(x, y)

dV

dt
, (2.3a)

dy

dt
=

1
ε

g0(x, y)+
1
√
ε
β(x, y)

dV

dt
; (2.3b)

or the SDEs

dx

dt
=

1
ε

f0(x, y)+ f1(x, y)+ α0(x, y)
dU

dt
+ α1(x, y)

dV

dt
, (2.4a)

dy

dt
=

1

ε2 g0(x, y)+
1
ε

g1(x, y)+
1
ε
β(x, y)

dV

dt
. (2.4b)

Here fi : X × Y → Rl , α0 : X × Y → Rl×n, α1 : X × Y → Rl×m, g1 : X × Y → Rd−l and
g0, β and V are as above.

Assumptions 2.1. Consider Eqs. (2.3) and (2.4) on X × Y = T` × Td−`.

• All coefficients in equations (2.3) and (2.4) are smooth in both x and y.
• The matrix B(ξ, y) = β(ξ, y)β(ξ, y)′ is positive definite, uniformly in ξ and y: There exists

a constant C > 0 such that

〈a, B(ξ, y)a〉 ≥ C |a|2, ∀(x, y) ∈ X × Y, a ∈ Rd−`,

where 〈·, ·〉 denotes the Euclidean inner product.

Under Assumptions 2.1 we can prove the following result. The proof is based on standard re-
sults from the theory of elliptic PDEs in bounded domains. We refer to [37, Ch. 7] and [14, Ch. 6].

Theorem 2.2. Let Assumptions 2.1 hold. Then

• The equation

−L∗0(ξ)ρ(y; ξ) = 0,
∫

Y
ρ(y; ξ)dy = 1,

where L∗0(ξ) denotes the L2-adjoint of L0(ξ) (i.e. the Fokker–Planck operator) has a unique
non-negative solution ρ(y; ξ) ∈ L1(Y) for every ξ ∈ X ; furthermore ρ(y; ξ) is C∞ in y and
ξ.

• For each ξ ∈ X define the weighted Hilbert space L2
ρ(Y; ξ) with inner product

〈a, b〉ρ :=
∫

Y
ρ(y; ξ)a(y)b(y)dy.

Assume that the function h(y; ξ) is smooth in both of its arguments. Then for all ξ ∈ X the
Poisson equation

−L0(ξ)Θ(y; ξ) = h(y; ξ),
∫

Y
ρ(y; ξ)Θ(y; ξ)dy = 0 (2.5)

has a unique solution Θ(y; ξ) ∈ W 2,p
ρ (Y; ξ), provided that∫

Y
ρ(y; ξ)h(y; ξ)dy = 0.
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• Θ , the solution of (2.5) is smooth in ξ . In particular, there exists a constant C > 0 so that

‖∇ξΘ(y; ξ)‖L p ≤ C, ‖D2
ξΘ‖L p ≤ C (2.6)

for every p ≥ 1, where D2
ξΘ denotes the Hessian matrix of Θ(y; ξ) with respect to ξ and

‖ · ‖L p denotes the L p
ρ (Y; ξ) norm.

The first part of Theorem 2.2 essentially states that the process (2.1) is ergodic, for each
ξ ∈ X . Let L0 = L0(x) and define

L1 = f0 · ∇x + g1 · ∇y + C : ∇y∇x ,

L2 = f1 · ∇x +
1
2

A : ∇x∇x ,

where

A(x, y) = α0(x, y)α0(x, y)′ + α1(x, y)α1(x, y)′,

C(x, y) = α1(x, y)β(x, y)′.

The generators for the Markov processes defined by Eqs. (2.3) and (2.4) respectively are

Lav =
1
ε

L0 +
1
√
ε

L1 + L2, (2.7)

Lhom =
1

ε2 L0 +
1
ε

L1 + L2, (2.8)

with the understanding that f0 ≡ 0 and g1 ≡ 0 in the case of Lav.We let Ω denote the probability
space for the pair of Brownian motions U, V .

In (2.3) (resp. (2.4)) the dynamics for y with x viewed as frozen has solution ϕy(0),x
t/ε (resp.

ϕ
y(0),x
t/ε2 ). Of course x is not frozen, but since it evolves much more slowly than y, intuition based

on freezing x and considering the process (2.1) is useful in understanding how averaging and
homogenization arise for Eqs. (2.3) and (2.4) respectively. Specifically, for (2.3) on time scales
long compared with ε and short compared to 1, x will be approximately frozen and y will traverse
its invariant measure with density ρ(y; x). We may thus average over this measure and eliminate
y. Similar ideas hold for Eq. (2.4), but are complicated by the presence of the term ε−1 f0. These
ideas underlie the averaging and homogenization results contained in the next two subsections.
The averaging result is essentially the classical Bogolubov averaging principle (see [20]) whilst
the homogenization result is a variant of the results contained in, for example, the works of
Papanicolaou and coworkers [29,28,27,30]. We include proofs of the results because we then
employ the basic methodology, based around repeated use of application of the Itô formula
to Poisson equations, when studying parameter estimation problems in subsequent sections.
However we emphasize that the results in this section are classical and well known. In particular,
proofs of ergodic theorems for diffusion processes on the torus (or, more generally, on compact
state spaces) can be found in many papers and textbooks. See for instance [6, Ch. 3], [37, Ch.
6], [4,7,5,31,16,8,26,13]. In these references both PDE-based proofs (based on proving that the
generator of the process has a spectral gap in the appropriate weighted L2-space) or probabilistic
techniques (based on Markov chain techniques and coupling arguments) can be found.
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2.1. Averaging

Define F : X → Rl and K : X → Rl×l by

F(x) :=
∫

Y
f1(x, y)ρ(y; x)dy

and

K (x)K (x)′ :=
∫

Y

(
α0(x, y)α0(x, y)′ + α1(x, y)α1(x, y)′

)
ρ(y; x)dy.

Note that K (x)K (x)′ is positive semidefinite and hence K (x) is well defined via, for example,
the Cholesky decomposition.

Theorem 2.3. Let Assumptions 2.1 hold and let x(0) = X (0). Then x ⇒ X in C([0, T ],X ) and
X solves the SDE

dX

dt
= F(X)+ K (X)

dW

dt
, (2.9)

where W is a standard l-dimensional Brownian motion.

We use the notation Ω0 to denote the probability space for the Brownian motion W .

Proof. Consider the Poisson equation

−L0Ξ (y; x) = f1(x, y)− F(x),
∫

Y
ρ(y; x)Ξ (y; x)dy = 0

with unique solution Ξ (y; x) ∈ W 2,p
ρ (Y; x). Applying Itô’s formula to Ξ we obtain

dΞ
dt
=

1
ε

L0Ξ +
1
√
ε

L1Ξ + L2Ξ +
1
√
ε
∇yΞβ

dV

dt
+∇xΞα0

dU

dt
+∇yΞα1

dV

dt
.

From this we obtain∫ t

0

(
f1(x(s), y(s))− F(x(s))

)
ds = e0(t),

where

e0(t) =
√
ε

∫ t

0

(
L1Ξ ds +∇yΞβdV

)
+ ε

∫ t

0

(
L2Ξ ds +∇xΞα0dU +∇yΞα1dV

)
+ ε (Ξ (y(0); x(0))− Ξ (y(t); x(t))) .

Thus, by Theorem 2.2 (in particular, the uniform L p-bounds on Ξ (y; x) and its first two
derivatives with respect to both x and y) and the Burkholder–Davis–Gundy inequality,(

E sup
t∈[0,T ]

|e0|
p

)1/p

≤ C(
√
ε + ε).

In particular,

lim
ε→0
‖e0‖L p(L∞) = 0,
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where we have introduced the notation

‖ · ‖L p(L∞) :=

(
E sup

t∈[0,T ]
|·|

p

)1/p

.

Hence

x(t) = x(0)+
∫ t

0
F(x(s))ds + M(t)+ e0(t)

with

M(t) :=
∫ t

0
α0(x(s), y(s))dU (s)+

∫ t

0
α1(x(s), y(s))dV (s).

The quadratic variation process for M(t) is

〈M〉t =
∫ t

0
A(x(s), y(s))ds,

where

A(x, y) = α0(x, y)α0(x, y)′ + α1(x, y)α1(x, y)′.

By use of the Poisson equation technique applied above to show that f0(x, y) can be
approximated by F(x) (its average against the fast y process), we can show similarly that∫ t

0
A(x(s), y(s))ds =

∫ t

0
K (x(s))K (x(s))′ds + e1(t)

where, as above,

lim
ε→0
‖e1‖L p(L∞) = 0.

Let

B(t) = x(0)+
∫ t

0
F(x(s))ds + e0(t),

q(t) =
∫ t

0
K (x(s))K (x(s))′ds + e1(t),

then

x(t) = B(t)+ M(t),

where M(t) and M(t)M(t)′ − q(t) are Ft martingales, with Ft the filtration generated by
σ((U (s), V (s)), s ≤ t). Let C∞c (X ) denote the space of compactly supported C∞ functions.
The martingale problem for

A = {( f, K : F · ∇ f +∇x∇x f ) : f ∈ C∞c (X )}

is well posed and x(s), y(s) and X (s) are continuous. By L2 convergence of the ei to 0 in
C([0, T ],X ) we deduce convergence to 0 in probability, in the same space. Hence by a slight
generalization of Theorem 4.1 in Chapter 7 of [13] we deduce the desired result. �
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2.2. Homogenization

In order for Eq. (2.4) to produce a sensible limit as ε → 0 it is necessary to impose a condition
on f0. Specifically we assume the following which, roughly, says that f0(x, y) averages to zero
against the invariant measure of the fast y process, with x fixed. It is sometimes termed the
centering condition.

Assumption 2.4. The function f0 satisfies the centering condition∫
Y
ρ(y; x) f0(x, y)dy = 0.

Let Φ(y; x) ∈ L2
ρ(Y; x) be the solution of the equation

−L0Φ(y; x) = f0(x, y),
∫

Y
ρ(y; x)Φ(y; x)dy = 0, (2.10)

which is unique by Assumption 2.4 and Theorem 2.2. Define

F0(x) :=
∫

Y
(L1Φ)(x, y)ρ(y; x)dy

=

∫
Y

((
∇xΦ f0

)
(x, y)+

(
∇yΦg1

)
(x, y)+

(
α1β
′
: ∇y∇xΦ

)
(x, y)

)
ρ(y; x)dy,

F1(x) :=
∫

Y
f1(x, y)ρ(y; x)dy and

F(x) = F0(x)+ F1(x).

Also define

A1(x)A1(x)
′
:=

∫
Y

((
∇yΦβ + α1

)(
∇yΦβ + α1

)′)
(x, y)ρ(y; x)dy,

A0(x)A0(x)
′
:=

∫
Y
α0(x, y)α0(x, y)′ρ(y; x)dy and

K (x)K (x)′ = A0(x)A0(x)
′
+ A1(x)A1(x)

′.

Note that K (x)K (x)′ is positive semidefinite by construction so that K (x) is well defined by, for
example, the Cholesky decomposition.

Theorem 2.5. Let Assumptions 2.1, 2.4 hold. Then x ⇒ X in C([0, T ],X ) and X solves the
SDE

dX

dt
= F(X)+ A(X)

dW

dt
(2.11)

where W is a standard l-dimensional Brownian motion.

Proof. We consider three Poisson equations: that for Φ given above and

−L0χ(y; ξ) = f1(x, y)− F1(x),
∫

Y
ρ(y; x)χ(y; x)dy = 0, (2.12a)

−L0Ψ(y; ξ) = (L1Φ)(x, y)− F0(x),
∫

Y
ρ(y; x)Ψ(y; x)dy = 0. (2.12b)
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All of these equations have a unique solution since the right-hand sides average to zero against
the density ρ(y; x) by assumption (Φ) or by construction (χ , Ψ ).

By the Itô formula we obtain

dΦ
dt
=

1

ε2 L0Φ +
1
ε

L1Φ + L2Φ +
1
ε
∇yΦβ

dV

dt
+∇xΦα0

dU

dt
+∇xΦα1

dV

dt
.

From this we obtain, using arguments similar to those in the proof of Theorem 2.3,

1
ε

∫ t

0
f0(x, y)ds =

∫ t

0
(L1Φ)(x(s), y(s))ds +

∫ t

0
(∇yΦβ)(x(s), y(s))dV (s)+ e0(t)

where

lim
ε→0
‖e0‖L p(L∞) = 0

and where, recall, Ω is the probability space for (U, V ). Applying Itô’s formula to χ , the solution
of (2.12a), we may show that∫ t

0

(
f1(x(s), y(s))− F1(x(s))

)
ds = e1(t)

where

lim
ε→0
‖e1‖L p(L∞) = 0.

Thus

x(t) = x(0)+
∫ t

0

(
L1Φ

)
(x(s), y(s))ds +

∫ t

0
F1(x(s))ds +

∫ t

0

(
∇yΦβ

)
(x(s), y(s))dV (s)

+

∫ t

0
α0(x(s), y(s))dU (s)+

∫ t

0
α1(x(s), y(s))dV (s)+ e2(t)

and

lim
ε→0
‖e2‖L p(L∞) = 0.

By applying Itô’s formula to Ψ , the solution of (2.12b), we obtain

dΨ
dt
=

1

ε2 L0Ψ +
1
ε

L1Ψ + L2Ψ +
1
ε
∇yΨβ

dV

dt
+∇xΨα0

dU

dt
+∇xΨα1

dV

dt
.

From this we obtain∫ t

0

(
L1Φ − F0

)
(x, y)ds = e3(t)

where

lim
ε→0
‖e3‖L p(L∞) = 0.

Thus

x(t) = x(0)+
∫ t

0
F(x(s))ds + M(t)+ e4(t) and

M(t) :=
∫ t

0
α0(x(s), y(s)) dU (s)+

(
∇yΦβ + α1

)
(x(s), y(s)) dV (s).
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Here

lim
ε→0
‖e4‖L p(L∞) = 0.

Define

A2(x, y) =
(
∇yΦβ + α1

)(
∇yΦβ + α1

)′
(x, y)+ α0(x, y)α0(x, y)′.

The quadratic variation of M(t) is

〈M〉t =
∫ t

0
A2(x(s), y(s))ds.

By use of the Poisson equation technique we can show that∫ t

0
A2(x(s), y(s))ds =

∫ t

0
K (x(s))K (x(s))′ds + e5(t)

where, as above,

lim
ε→0
‖e5‖L p(L∞) = 0.

The remainder of the proof proceeds as in Theorem 2.3. �

3. Parameter estimation

In this section we study parameter estimation problems for data with a multiscale character.
Recall that Ω0 is the probability space for W . Imagine that we try to fit data {x(t)}t∈[0,T ] from
(2.3) or (2.4) to a homogenized or averaged equation of the from (2.9) or (2.11), but with
unknown parameter θ ∈ Θ , where Θ is an open subset of Rk , in the drift:

dX

dt
= F(X; θ)+ K (X)

dW

dt
. (3.1)

Suppose that the actual drift compatible with the data is given by F(X) = F(X; θ0). We ask
whether it is possible to correctly identify θ = θ0 by finding the maximum likelihood estimator
(MLE) when using a statistical model of the form (3.1), but given data from (2.3) or (2.4). Recall
that the averaging and homogenization techniques from the previous section show that x(t) from
(2.3) and (2.4) converges weakly to the solution of an equation of the form (3.1). We make the
following assumptions concerning the model equations (3.1) which will be used to fit the data.

Assumptions 3.1. We assume that K is uniformly positive definite on X . We also assume that
(3.1) is ergodic with invariant measure ν(dx) = π(x)dx at θ = θ0 and that

A∞ :=
∫

X

(
K (x)−1 F(x)⊗ K (x)−1 F(x)

)
π(x)dx (3.2)

is invertible.

Given data {z(t)}t∈[0,T ], the log-likelihood function for θ satisfying (3.1) is given by

L(θ; z) =
∫ T

0
〈F(z; θ), dz〉a(z) −

1
2

∫ T

0
|F(z; θ)|2a(z)dt, (3.3)
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where

〈p, q〉a(z) = 〈K (z)
−1 p, K (z)−1q〉.

To be precise

dP
dP0
= exp (L(θ; X))

where P is the path space measure for (3.1) and P0 is the path space measure for (3.1) with
F ≡ 0 [38].3 The MLE is

θ̂ = arg max
θ

L(θ; z). (3.4)

As preliminary to understanding the effect of using multiscale data, we start by exhibiting an
underlying property of the log likelihood when confronted with data from the model (3.1) itself.
The following theorem shows that, in this case: (i) in the limit T → ∞ the log likelihood is
asymptotically independent of the particular sample path of (3.1) chosen — it depends only on
the invariant measure π ; (ii) as a consequence we see that, asymptotically, time-ordering of the
data is irrelevant to parameter estimation; (iii) under some additional assumptions, the large T
expression also shows that choosing data from the model (3.1) leads to the correct estimation of
drift parameters, in the limit T →∞.

Theorem 3.2. Let Assumptions 3.1 hold and let {X (t)}t∈[0,T ] be a sample path of (3.1) with
θ = θ0. Then, in L2(Ω0) and almost surely with respect to X (0),

lim
T→∞

2
T

L(θ; X) =
∫

X
|F(X; θ0)|

2
a(X)π(X)dX −

∫
X
|F(X; θ)− F(X; θ0)|

2
a(X)π(X)dX.

This expression is maximized by choosing θ̂ = θ0, in the limit T →∞.

Proof. By Lemmas A.2 and A.3 in the Appendix we deduce that, with all limits in L2(Ω),

lim
T→∞

1
T

L(θ; X) = lim
T→∞

( 1
T

∫ T

0
〈F(X; θ), F(X; θ0)〉a(X)dt

+
1
T

∫ T

0
〈F(X; θ), K (X)dW 〉a(X)dt −

1
2T

∫ T

0
|F(X; θ)|2a(X)dt

)
=

∫
X
〈F(X; θ), F(X; θ0)〉a(X)π(X)dX −

1
2

∫
X
|F(X; θ)|2a(X)π(X)dX.

Completing the square provides the proof. �

In the particular case where the parameter θ appears linearly in the drift it can be viewed as
an Rl×l matrix Θ and

F(X; θ) = Θ F(X). (3.5)

The correct value for Θ is thus the Rl×l identity matrix I . The maximum likelihood estimator is

Θ̂(z; T ) = A(z; T )−1 B(z; T ) (3.6)

3 For a proof of Girsanov’s theorem for diffusion processes on manifolds, including the unit torus, see [12, Ch. iX].
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where

A(z; T ) =
1
T

∫ T

0
K (z)−1 F(z)⊗ K (z)−1 F(z)dt,

B(z; T ) =
1
T

∫ T

0
K (z)−1dz ⊗ K (z)−1 F(z);

if A(z; T ) is not invertible then we set Θ̂(z; T ) = 0. A result closely related to Theorem 3.2 is
the following 4:

Theorem 3.3. Let Assumptions 3.1 hold and let {X (t)}t∈[0,T ] be a sample path of (3.1) with
θ = θ0 so that F(X; θ) = F(X). Then

lim
T→∞

Θ̂(X; T ) = I

in probability.

Proof. We observe that

B(X; T ) = A(X; T )+ J1

where

J1 =
1
T

∫ T

0
dW ⊗ K (X)−1 F(X)

and where E|J1|
2
= O(1/T ) by Lemma A.2. By ergodicity, and Lemma A.3, we have that

A(X; T ) = A∞ + J2

where E|J2|
2
= O(1/T ) and A∞ is given by (3.2). By Assumptions 3.1 and for T sufficiently

large, A(z; T ) is invertible and we have

Θ̂(X; T ) = I + (A∞ + J2)
−1 J1

and the result follows. �

Remark 3.4. The invertibility of A∞ is necessary in order to be able to successfully estimate the
drift of the linear system.

In order to prove an analogue of Theorem 3.3 when the drift depends nonlinearly on the
parameter θ we need to make additional assumptions.

Assumptions 3.5. • We assume that

inf
|u|>δ

∫
X
|F(X; θ0 + u)− F(X; θ0)|

2
a(X)π(X)dX > κ(δ) > 0, ∀δ > 0. (3.7)

When (3.7) holds we will say that the system is identifiable.
• There exist an α > 0 and F̂ : X → R, square integrable with respect to the invariant measure,

i.e.
∫

X F̂(X)2π(X)dX <∞, such that

|F(X; θ)− F(X; θ ′)|a(X) ≤ |θ − θ
′
|
α F̂(X). (3.8)

4 The proof is standard and we outline it only for comparison with the situation in the next subsection where data from
a multiscale model is employed.
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Under the above assumption we can prove convergence of the MLE to the correct value θ0.

Theorem 3.6. Suppose that Assumptions 3.1 and 3.5 hold. If, in addition, the parameter space
Θ is compact, then

lim
T→∞

θ̂ (X; T ) = θ0

in probability.

Proof. This is a straightforward application of the results in [39]. �

We now ask whether the likelihood behaves similarly when confronted with data {x(t)} from
the underlying multiscale systems (2.3) or (2.4). To address this issue we make use of the
properties of the invariant measure for these underlying multiscale systems. We will need to
assume that the fast/slow system is uniformly elliptic.

Assumption 3.7. Define the matrix field Σ = γ γ T where

γ =

(
α0 α1

0
1
ε
β

)
.

Assume that there exists a constant Cγ > 0, independent of ε → 0 such that

〈ξ,Σ (x, y)ξ〉 ≥ Cγ |ξ |
2
∀(x, y) ∈ X × Y, ξ ∈ Rd .

The proof of the theorem below follows from properties of periodic functions. e.g [9], and
from elliptic PDEs theory in bounded domains, e.g. [37, Ch. 7], [14, Ch. 6]. Related results were
proved in [36].

Theorem 3.8. Let Assumptions 2.1 and 3.7 hold. Then.

• The fast/slow SDE (2.3) (resp. (2.4)) is ergodic with invariant measure µε(dxdy) which is
absolutely continuous with respect to the Lebesgue measure on X × Y with smooth density
ρε(x, y).

• The limiting SDE (2.9) or (2.11) is ergodic with invariant measure ν(dx) which is absolutely
continuous with respect to the Lebesgue measure on X with smooth density π(x).

• The measure µε(dxdy) = ρε(x, y)dxdy converges weakly to the measure µ(dxdy) =
π(x)ρ(y; x)dxdy where ρ(y; x) is the invariant density of the fast process (2.1) given in
Assumptions 2.1 and π(x) is the invariant density for (2.9) (resp. (2.11)).

• The invariant measure µε(dxdy) = ρε(x, y)dxdy satisfies a Poincaré inequality with a
constant independent of ε: there exists a constant C p independent of ε such that for every
mean zero H1(X × Y;µε(dxdy)) function f we have that

‖ f ‖ ≤ C p‖∇ f ‖ (3.9)

where ∇ represents the gradient with respect to (x ′, y′)′ and ‖ · ‖ denotes the L2(X ×
Y;µε(dxdy)) norm.
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3.1. Averaging

In the limit ε → 0, X (t) from (3.1) approximates x(t) from (2.3), in the sense of weak
convergence. It is thus natural to ask what happens when the MLE for the averaged equation
(3.1) is confronted with data from the original multiscale equation (2.3). The following result
shows that, in this case, the estimator will behave well, for large time and small ε. Large time is
always required for convergence of drift parameter estimation, even when model and data match
(see Theorem 3.2).

Theorem 3.9. Let Assumptions 2.1, 3.1 and 3.7 hold. Let {x(t)}t∈[0,T ] be a sample path of (2.3)
and {X (t)}t∈[0,T ] a sample path of (3.1) at θ = θ0. Then the following limits, to be interpreted
in L2(Ω) and L2(Ω0) respectively, and almost surely with respect to x(0), y(0), X (0), are
identical:

lim
ε→0

lim
T→∞

1
T

L(θ; x) = lim
T→∞

1
T

L(θ; X).

Proof. We start by observing that, by Lemma A.3 and Theorem 3.8,

lim
ε→0

lim
T→∞

1
T

∫ T

0
|F(x; θ)|2a(x)dt = lim

ε→0

∫
X×Y
|F(x; θ)|2a(x)ρ

ε(x, y)dxdy

=

∫
X×Y
|F(x; θ)|2a(x)π(x)ρ(y; x)dxdy

=

∫
X
|F(x; θ)|2a(x)π(x)dx,

where the limits are in L2(Ω). Now, from Eq. (2.3) it follows that

1
T

∫ T

0
〈F(x; θ), dx〉a(x) =

1
T

∫ T

0
〈F(x; θ), f1(x, y)〉a(x)dt

+
1
T

∫ T

0
〈F(x; θ), α0(x, y)dU 〉a(x) +

1
T

∫ T

0
〈F(x; θ), α1(x, y)dV 〉a(x).

The last two integrals tend to zero in L2(Ω) as T →∞ by Lemma A.2. In order to analyze the
first integral on the right-hand side we consider solution of the Poisson equation

−L0Λ = 〈F(x; θ), f1(x, y)− F(x; θ0)〉a(x),

∫
Y
ρ(y; ξ)Λ(y)dy = 0.

This has a unique solution Λ(y; x) ∈ L2
ρ(Y; x) by construction of F .

Applying Itô’s formula to Λ gives

dΛ
dt
=

1
ε

L0Λ+
1
√
ε

L1Λ+ L2Λ+
1
√
ε
∇yΛβ

dV

dt
+∇xΛα0

dU

dt
+∇xΛα1

dV

dt

which shows that

1
T

∫ T

0
〈F(x; θ), f1(x, y)〉a(x)dt =

1
T

∫ T

0
〈F(x; θ), F(x; θ0)〉a(x)dt

+
ε

T

∫ T

0

(
L2Λ

)
(x(t), y(t))dt −

ε

T

(
Λ(x(T ), y(T ))− Λ(x(0), y(0))

)
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+
1
T

∫ T

0

√
ε
(
(∇yΛβ)(x(t), y(t))dV (t)+ (L1Λ) (x(t), y(t))dt

)
+

1
T

∫ T

0
ε
(
(∇xΛα0)(x(t), y(t))dU (t)+ (∇yΛα1)(x(t), y(t))dV (t)

)
.

The stochastic integrals tend to zero in L2(Ω) as T → ∞. By Theorem 2.2 Λ is bounded.
Furthermore, in L2(Ω),

1
T

∫ T

0

(
LiΛ

)
(x(t), y(t))dt →

∫
X×Y

(
LiΛ

)
(x, y)ρ(y; x)dy, i = 1, 2.

Hence we deduce that

lim
ε→0

lim
T→∞

1
T

∫ T

0
〈F(x; θ), f1(x, y)〉a(x)dt = lim

ε→0
lim

T→∞

1
T

∫ T

0
〈F(x; θ), F(x; θ0)〉a(x)dt

= lim
ε→0

∫
X×Y
〈F(x; θ), F(x; θ0)〉a(x)ρ

ε(x, y)dxdy

=

∫
X
〈F(x; θ), F(x; θ0)〉π(x)dx .

The result follows. �

In the particular case of linear parameter dependence, when the MLE is given by (3.6) we have
the following result, showing that the MLE recovers the correct answer from high frequency data
compatible with the statistical model in an appropriate asymptotic limit.

Theorem 3.10. Let Assumptions 2.1, 3.1 and 3.7 hold. Assume that F(X; θ) is given by (3.5).
Let {x(t)}t∈[0,T ] be a sample path of (2.3). Then Θ̂ given by (3.6) satisfies

lim
T→∞

Θ̂(x; T ) = Θε in probability

for some Θε to be identified in the proof and

lim
ε→0

Θε = I.

Proof. Using Eq. (2.3) we find that

B(x; T ) = A(x; T )+ Cε + (J3 − Cε)+ J4, where

Cε =
∫

X×Y
K (x)−1 ( f1(x, y)− F(x))⊗ K (x)−1 F(x)ρε(x, y)dxdy,

J3 =
1
T

∫ T

0
K (x)−1 ( f1(x, y)− F(x))⊗ K (x)−1 F(x)dt,

J4 =
1
T

∫ T

0
K (x)−1 (α0(x, y)dU + α1(x, y)dV )⊗ K (x)−1 F(x).

Here, for fixed ε > 0, E|J4|
2
= O(1/T ) by Lemma A.2 and E|J3 − Cε |2 = O(1/T ) by

ergodicity and Lemma A.3. Also

A(x; T ) = A∞,ε + J5
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where

A∞,ε :=
∫

X×Y

(
K (x)−1 F(x)⊗ K (x)−1 F(x)

)
ρε(x, y)dxdy,

with E|J5|
2
= O(1/T ), again by ergodicity and Lemma A.3. Thus,

Θ̂(X; T ) = I + (A∞,ε + J5)
−1 (Cε + (J3 − Cε)+ J4) ,

which converges to

lim
T→∞

Θ̂(X; T ) = I + (A∞,ε)
−1 (Cε)

in probability. If A∞,ε is not invertible, we set the limit equal to zero.
By Assumptions 3.1 A∞,ε is invertible for ε sufficiently small, and by the weak convergence

of the measures with density ρε ,

lim
ε→0

A∞,ε = A∞

and

lim
ε→0

Cε = 0.

The result follows. �

We would like to show that this also holds for the general case of nonlinear parameter
dependence. Let

θ̂ (x; T ) := arg max
θ

L(θ; x)

be the set of maximizers of L(θ; x). We show that the following holds:

Theorem 3.11. Let Assumptions 2.1, 3.1, 3.5 and 3.7 hold and assume that θ ∈ Θ , a compact
set. Let {x(t)}t∈[0,T ] be a sample path of (2.3) at θ = θ0. Then,

lim
T→∞

dist
(
θ̂ (x; T ), θε

)
= 0 in probability,

where dist is the asymmetric Hausdorff semi-distance and θε a subset of the parameter space
that will be identified in the proof. Also

lim
ε→0

dH (θε, θ0) = 0

where dH is the Hausdorff distance.

Proof. We set gε,T (x, θ) := 1
T L(θ; x) and

gε(θ) := lim
T→∞

1
T

L(θ; x).

This limit exists (in L2(Ω)), as a result of the ergodicity of the multiscale system. In fact, looking
at the proof of Theorem 3.9, one can see that it will be equal to∫

X×Y

(
〈F(x; θ), f1(x, y)〉a(x) −

1
2
|F(x; θ)|2a(x)

)
ρε(x, y)dxdy

=

∫
X×Y

(
〈F(x; θ), F(x; θ0)〉a(x) −

1
2
|F(x; θ)|2a(x) +

√
ε
(

L1Λ
)
(x, y)
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+ ε
(

L2Λ
)
(x, y)

)
ρε(x, y)dxdy

for Λ as defined in that proof. We also set g0(θ) = limε→0 gε(θ). We have seen that θ0 maximizes
g0 and by definition θ̂ (x; T ) maximizes gε,T (x; θ).

Let us define the equivalence relation ∼ by

θ1 ∼ θ2 ⇐⇒ gε(θ1) = gε(θ2).

Let Θ̃ = (Θ/ ∼) be the corresponding quotient space and define

θ̂ε,T (x) = arg max
θ∈Θ̃

gε(x; θ) and θ̂ε = arg max
θ∈Θ̃

gε(θ).

We show that θ̂ε,T (x)→ θ̂ε as T →∞ in probability, by applying Lemma A.4, replacing ε by
1
T , gε by gε,T and g0 by gε . We need to verify conditions (A.2)–(A.4). Condition (A.2) follows
by the construction of gε as the limit of gε,T . We can show that (A.3) holds by following the
arguments in [39] and using the assumption that α0, α1 and f1 are uniformly bounded. Finally,
the identifiability condition (A.4) will be satisfied because we are working on the quotient space
where the maximizer is unique.

Let θε be the equivalence class of θ̂ε . We have shown that any maximizer of gε(x, θ) will
converge in probability to a point in θε , which implies the convergence in probability of the
Hausdorff semi-distance between θ̂ (x, T ) and θε to zero.

We will now show that θ → θ0 as ε → 0 for any θ ∈ θε . Since Θ is a compact set, this
will be true provided that gε(θ) → g0(θ) uniformly with respect to θ . F(X; θ) is continuous
with respect to θ by Assumption (3.8) and consequently Λ is also continuous by construction.
Since Θ is a compact set, both F and Λ are bounded with respect to θ . Thus, terms three and
four converge uniformly to zero. We can also show that terms one and two converge uniformly to
g0(θ), using the boundedness of F and the weak convergence of

∫
ρε(x, y)dydx to π(x)dx . The

convergence of every point in the set θε to θ0 implies the convergence of the Hausdorff distance
between θε and θ0 (or, more precisely, the singleton containing θ0) to zero. �

3.2. Homogenization

We now ask what happens when the MLE for the homogenized equation (3.1) is confronted
with data from the multiscale equation (2.4), which homogenizes to give (3.1). The situation
differs substantially from the case where data is taken from the multiscale equations (2.3) which
averages to give (3.1): the two likelihoods are not identical in the large T limit.

In order to state the main result of this subsection we need to introduce the Poisson equation

−L0Γ = 〈F(x; θ), f0(x, y)〉a(x),
∫

Y
ρ(y; ξ)Γ (y; x)dy = 0 (3.10)

which has a unique solution Γ (y; x) ∈ L2
ρ(Y; x). Note that

Γ = 〈F(x; θ),Φ(x, y)〉a(x),

where Φ solves (2.10). Define

E∞(θ) =
∫

X×Y

(
L1Γ (x, y)−

〈
F(x; θ),

(
L1Φ(x, y)

)〉
a(x)

)
π(x)ρ(y; x)dxdy. (3.11)

Note that Γ depends on θ but that Φ does not.
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The following theorem shows that the correct limit of the log likelihood is not obtained unless
E∞ is a constant in θ , something which will not be true in general. However in the case where
f0, g1 ≡ 0 we do obtain E∞ = 0 and in this case we recover the averaging situation covered in
the Theorems 2.3 and 3.9 (with ε replaced by ε2).

Theorem 3.12. Let Assumptions 2.1, 2.4, 3.1, 3.7, and (3.8) hold. Let {x(t)}t∈[0,T ] be a sample
path of (2.4) and {X (t)}t∈[0,T ] a sample path of (3.1) at θ = θ0. Then the following
limits, to be interpreted in L2(Ω) and L2(Ω0) respectively, and almost surely with respect to
x(0), y(0), X (0), are identical:

lim
ε→0

lim
T→∞

1
T

L(θ; x) = lim
T→∞

1
T

L(θ; X)+ E∞(θ).

Proof. As in the averaging case of Theorem 3.9 we have

lim
ε→0

lim
T→∞

1
T

∫ T

0
|F(x; θ)|2a(x)dt =

∫
X
|F(x; θ)|2a(x)π(x)dx .

Now

1
T

∫ T

0
〈F(x; θ), dx〉a(x) = I1 + I2 + I3

where

I1 =
1
εT

∫ T

0
〈F(x; θ), f0(x, y)〉a(x)dt,

I2 =
1
T

∫ T

0
〈F(x; θ), f1(x, y)〉a(x)dt,

I3 =
1
T

∫ T

0
〈F(x; θ), α0(x, y)dU + α1(x, y)dV 〉a(x).

Now I3 is O(1/
√

T ) in L2(Ω) by Lemma A.2. Techniques similar to those used in the proof of
Theorem 3.9 show that, in L2(Ω),

lim
ε→0

lim
T→∞

I2 →

∫
X
〈F(x; θ), F1(x; θ0)〉a(x)π(dx).

Now consider I1. Applying Itô’s formula to the solution Γ of the Poisson equation (3.10), we
obtain

dΓ
dt
=

1

ε2 L0Γ +
1
ε

L1Γ + L2Γ +
1
ε
∇yΓβ

dV

dt
+∇xΓα0

dU

dt
+∇xΓα1

dV

dt
.

From this we deduce that

1
εT

∫ T

0
〈F(x; θ), f0(x, y)〉dt =

1
T

∫ T

0

(
L1Γ

)
dt + I4

where

lim
ε→0

lim
T→∞

I4 = 0.
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Thus

I1 =
1
εT

∫ T

0
〈F(x; θ), f0(x, y)〉dt = I4 + I5 + I6

where, in L2(Ω),

I5 =
1
T

∫ T

0

〈
F(x; θ),

(
L1Φ(x, y)

)〉
a(x) dt,

I6 =
1
T

∫ T

0

(
L1Γ (x, y)−

〈
F(x; θ),

(
L1Φ(x, y)

)〉
a(x)

)
dt.

By the methods used in the proof of Theorem 3.9 we deduce that

lim
ε→0

lim
T→∞

I5 →

∫
X
〈F(x; θ), F0(x; θ0)〉a(x)π(x)dx .

Putting together all the estimates we deduce that, in L2,

lim
ε→0

lim
T→∞

1
T

L(x; θ) = lim
T→∞

1
T

L(X; θ)+ lim
ε→0

lim
T→∞

I6

= lim
T→∞

1
T

L(X; θ)+ E∞(θ). �

4. Subsampling

In the previous section we studied the behavior of estimators when confronted with multiscale
data. The data is such that, in an appropriate asymptotic limit ε → 0, it behaves weakly as if
it comes from a single scale equation in the form of the statistical model. By considering the
behavior of continuous time estimators in the limit of large time, followed by taking ε → 0,
we studied the behavior of estimators which do not subsample the data. We showed that in the
averaging set-up this did not cause a problem — the likelihood behaves as if confronted with
data from the statistical model itself; but in the homogenization set-up the likelihood function
was asymptotically biased for large time. In this section we show that subsampling the data can
overcome this issue, provided the subsampling rate is chosen appropriately.

In the following we use Eπ to denote expectation on X with respect to measure with density π
and Eρε to denote expectation on X ×Y with respect to measure with density ρε . Recall that, by
Assumption 3.7 the latter measure has weak limit with density π(x)ρ(y; x). Let Ω ′ = Ω×X×Y
and consider the probability measure induced on paths x, y solving (2.4) by choosing initial
conditions distributed according to the measure π(x)ρ(y; x)dxdy. With expectation E under
this measure we will also use the notation

‖ · ‖p :=
(
E| · |p

)1/p
.

We define the discrete log-likelihood function found from applying the likelihood principle
to the Euler–Marayama approximation of the statistical model (3.1). Let z = {zn}

N−1
n=0 denote a

time series in X . We obtain the likelihood

Lδ,N (θ; z) =
N−1∑
n=0

〈F(zn; θ), zn+1 − zn〉a(zn) −
1
2

N−1∑
n=0

|F(zn; θ)|
2
a(zn)

δ.
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Let xn = x(nδ), noting that x(t) depends on ε, and set x = {xn}
N−1
n=0 . The basic theorem in this

section proves the convergence of the discrete log-likelihood function, given multiscale data, to
the true log likelihood of the homogenized equation. The theory works provided that we subsam-
ple (i.e. choose δ) at an appropriate ε-dependent rate. We state and prove the theorem, relying on
a pair of intuitively reasonable propositions which we then prove at the end of the section.

Theorem 4.1. Let Assumptions 2.1, 2.4, 3.1, 3.7 and (3.8) hold. Let {x(t)}t∈[0,T ] be a sample
path of (2.4) and X (t) a sample path of (3.1) at θ = θ0. Let δ = εα with α ∈ (0, 1) and let
N = [ε−γ ] with γ > α. Then the following limits, to be interpreted in L2(Ω ′) and L2(Ω0)

respectively, and almost surely with respect to X (0), are identical:

lim
ε→0

1
Nδ

LN ,δ(θ; x) = lim
T→∞

1
T

L(θ; X). (4.1)

The proof of this theorem is based on the following two technical results, whose proofs are
presented in the Appendix.

Proposition 4.2. Let (x(t), y(t)) be the solution of (2.4) and assume that Assumptions 2.1 and
2.4 hold. Then, for ε, δ sufficiently small, the increment of the process x(t) can be written in the
form

xn+1 − xn = F(xn; θ0) δ + Mn + R(ε, δ), (4.2)

where Mn denotes the martingale term

Mn =

∫ (n+1)δ

nδ

(
∇yΦβ + α0

)
(x(s), y(s))dV +

∫ (n+1)δ

nδ
α1(x(s), y(s))dU

with ‖Mn‖p ≤ C
√
δ and

‖R(ε, δ)‖p ≤ C(δ3/2
+ εδ

1
2 + ε).

Proposition 4.3. Let g ∈ C1(X ) and let Assumption 3.7 hold. Assume that ε and N are related
as in Theorem 4.1. Then

lim
ε→0

1
N

N−1∑
n=0

g(xn) = Eπg, (4.3)

where the convergence is in L2(Ω ′).

Proof of Theorem 4.1. We define

I1(x, θ) =
N−1∑
n=0

〈F(xn; θ), xn+1 − xn〉a(xn)

and

I2(x) =
1
2

N−1∑
n=0

|F(xn; θ)|
2
a(xn)

δ.
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By Proposition 4.3 we have that

1
Nδ

I2(x)→
1
2

∫
X
|F(x; θ)|2a(x)π(dx).

We use Proposition 4.2 to deduce that

1
Nδ

I1(x; θ) =
1

Nδ

N−1∑
n=0

〈F(xn; θ), F(xn; θ0)δ + Mn + R(ε, δ)〉a(xn)

=
1
N

N−1∑
n=0

〈F(xn; θ), F(xn; θ0)〉a(xn) +
1

Nδ

N−1∑
n=0

〈F(xn),Mn〉a(xn)

+
1

Nδ

N−1∑
n=0

〈F(xn), R(ε, δ)〉a(xn)

=: J1 + J2 + J3.

Again using Proposition 4.3 we have that

J1 →

∫
X
〈F(x; θ), F(x; θ0)〉a(x) π(dx).

Furthermore, using the fact that Mn is independent of xn and has quadratic variation of order δ it
follows that

‖J2‖
2
2 ≤

1

N 2δ2

N−1∑
n=0

E
∣∣〈F(xn; θ),Mn〉a(xn)

∣∣2
≤

C

Nδ
.

Here Q is defined to obtain the correct quadratic variation of the Mn . Consequently, and since
γ > α,

‖J2‖2 ≤ o(1)

as ε → 0. Similarly, using martingale moment inequalities [22, Eq. (3.25) p. 163] we obtain

‖J2‖p ≤ o(1).

Finally, again using Proposition 4.2, we have, for q−1
+ p−1

= 1,

‖J3‖p ≤
1

Nδ

N−1∑
n=0

‖F(xn)‖q‖R(ε, δ)‖p ≤ C
1

Nδ
N
(
δ3/2
+ ε + εδ1/2

)
≤ o(1),

as ε → 0, since we have assumed that α ∈ (0, 1).
We thus have

lim
ε→0

1
Nδ

LN ,δ(θ; x) =
∫

X
〈F(x; θ), F(x; θ0)〉a(x) π(x)dx −

1
2

∫
X
|F(x; θ)|2a(x)π(x)dx .

By completing the square we obtain (4.1). �
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As before, we would like to use this theorem in order to prove the consistency of our estimator.
The theory developed in [39] no longer applies because it is based on the assumption that the
function we are maximizing (i.e. the log-likelihood function) is a continuous semimartingale,
which is not true for the discrete semimartingale L N ,δ(θ; x). The most difficult part in proving
consistency is to prove that the martingale converges uniformly to zero (Assumption (A.3) in
Lemma A.4). To avoid this difficulty, we make some extra assumptions that allow us to get rid
of the martingale part:

Assumptions 4.4. 1. There exists a function V : X × Θ → R such that for each θ ∈ Θ ,
V (·, θ) ∈ C3(X ) and

∇V (z; θ) =
(
K (z)K (z)′

)−1 F(z; θ), ∀z ∈ X , θ ∈ Θ . (4.4)

2. Define G : X ×Θ → R as follows:

G(z; θ) := D2V (z; θ) : (K (z)K (z)′),

where D2V denotes the Hessian matrix of V . Then there exist an β > 0 and Ĝ : X → R that
is square integrable with respect to the invariant measure, such that

|G(z; θ)− G(z; θ ′)| ≤ |θ − θ ′|β Ĝ(z).

Suppose that the above assumption is true and {X (t)}t∈[0,T ] is a sample path of (3.1). Then, if
we apply Itô’s formula to function V , we get that for every θ ∈ Θ :

dV (X (t); θ) = 〈∇V (X (t); θ), dX (t)〉 +
1
2

G(X (t); θ)dt.

But from (4.4) we have that

〈∇V (X (t); θ), dX (t)〉 =
〈(

K (X (t))K (X (t))′
)−1 F(X (t); θ), dX (t)

〉
= 〈F(X (t); θ), dX (t)〉a(X (t))

and thus

〈F(X (t); θ), dX (t)〉a(X (t)) = dV (X (t))−
1
2

G(X (t); θ)dt.

Using this identity, we can write the log-likelihood function (3.3) in the form

L(θ; X (t)) = (V (X (T ); θ)− V (X (0); θ))

−
1
2

∫ T

0

(
|F(X (t); θ)|2a(X (t)) + G(X (t); θ)

)
dt.

Using this version of the log-likelihood function, we define

L̃N ,δ(θ; z) = −
1
2

N−1∑
n=0

(
|F(zn; θ)|

2
a(zn)
+ G(zn; θ)

)
δ. (4.5)

Now we can prove asymptotic consistency of the MLE, provided that we subsample at the
appropriate sampling rate.
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Theorem 4.5. Let Assumptions 2.1, 2.4, 3.1, 3.5, 3.7 and 4.4 hold and assume that θ ∈ Θ , a
compact set. Let {x(t)}t∈[0,T ] be a sample path of (2.4) at θ = θ0. Define

θ̂ (x; ε) := arg max
θ

L̃N ,δ(θ; x)

with N and δ as in Theorem 4.1 above and L̃N ,δ(θ; x) defined in (4.5). Then,

lim
ε→0

θ̂ (x; ε) = θ0, in probability.

Proof. We apply Lemma A.4 with gε(x, θ) = 1
Nδ L̃ N ,δ(θ; x) and g0(θ) its limit. Note that

lim
ε→0

1
Nδ

L̃N ,δ(θ; x) = lim
T→∞

1
T

L(θ; X)

by Proposition 4.3 and the fact that

lim
T→∞

1
T
(V (X (T ); θ)− V (X (0); θ)) = 0,

which follows from the ergodicity of X . As in Theorem 4.1, the limits are interpreted in L2(Ω ′)
and L2(Ω0) respectively, and almost surely with respect to X (0). As we have already seen, the
maximizer of g0(θ) is θ0. So, Assumption (A.2) is satisfied. Also, Assumptions 3.5 is equivalent
to (A.4). To prove consistency, we need to prove (A.3), which can be viewed as uniform
ergodicity. The proof is again similar to that in [39]. First, we note that by Assumptions 3.5
and 4.4, both gε(·, θ) and g0(θ) are continuous with respect to θ , so it is sufficient to prove (A.3)
on a countable dense subset Θ? of Θ . Then, uniform ergodicity follows from [10, Thm. 6.1.5],
provided that

N[ ]
(
ε,F , ‖ · ‖L1(π)

)
<∞,

i.e. the number of balls of radius ε with respect to ‖ · ‖L1(π) needed to cover

F := {|F(z; θ)|2a(z) + G(z; θ); θ ∈ Θ?
}

is finite. As demonstrated in [39], this follows from the Hölder continuity of |F(z; θ)|2a(z) and
G(z; θ). �

5. Examples

Numerical experiments, illustrating the phenomena studied in this paper, can be found in
the paper [36]. The experiments therein are concerned with a particular case of the general
homogenization framework considered in this paper and illustrate the failure of the MLE when
the data is sampled too frequently, and the role of subsampling to ameliorate this problem. In this
section we construct two examples which identify the term E∞ responsible for the failure of the
MLE.
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5.1. Langevin equation in the high friction limit

We consider the Langevin equation in the high friction limit5:

ε2 d2q

dt2 = −∇q V (q; θ)−
dq

dt
+

√
2β−1 dW

dt
, (5.1)

where V (q; θ) is a smooth confining potential depending on a parameter θ ∈ Θ ⊂ R`,6 β
stands for the inverse temperature and W (t) is a standard Brownian motion on Rd . We write this
equation as a first order system

dq

dt
=

1
ε

p,
dp

dt
= −

1
ε
∇q V (q; θ)−

1

ε2 p +

√
2β−1

ε2

dW

dt
. (5.2)

In the notation of the general homogenization set-up we have (x, y) = (q, p) and

f0 = p, f1 = 0, α0 = 0, α1 = 0

and

g0 = −p, g1 = −∇q V (q), β 7→

√
2β−1 I.

The fast process is simply an Ornstein–Uhlenbeck process with generator

L0 = −p · ∇p + β
−1∆p.

Note that p has mean zero in the invariant measure of this process, and hence Assumption 2.4 is
satisfied. The unique square integrable (with respect to the invariant measure of the OU process)
solution of the Poisson equation (2.10) is Φ = p. Therefore,

F0 = −∇q V (q; θ), F1 = 0, A1 =

√
2β−1 I.

Hence the homogenized equation is7

dX

dt
= −∇V (X; θ)+

√
2β−1 dW

dt
. (5.3)

Consider now the parameter estimation problem for “full dynamics” (5.1) and the “coarse-
grained” model (5.3): We are given data from (5.1) and we want to fit it to Eq. (5.3). Theorem 3.12
implies that for this problem the maximum likelihood estimator is asymptotically biased.8 In fact,
in this case we can compute the term E∞, responsible for the bias and given in Eq. (3.11). We
have the following result.

Proposition 5.1. Assume that the potential V (q; θ) ∈ C∞(Rd) is such that e−βV (q;θ)
∈ L1(Rd)

for every β > 0 and all θ ∈ Θ . Then error term E∞, Eq. (3.11) for the SDE (5.1) is given by the

5 We have rescaled the equation in such a way that we actually consider the small mass, rather than the high friction
limit. In the case where the mass and the friction are scalar quantities the two scaling limits are equivalent.

6 A standard example is that of a quadratic potential V (q; θ) = 1
2 qθq ′ where the parameters to be estimated from

time series are the elements of the stiffness matrix θ .
7 In this case we can actually prove strong convergence of q(t) to X (t) [24,35].
8 Subsampling, at the rate given in Theorem 4.1, is necessary for the correct estimation of the parameters in the drift

of the homogenized equation (5.3).
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formula

E∞(θ) = −Z−1
V
β

2

∫
Rd
|∇q V (q; θ)|2e−βV (q;θ) dq, (5.4)

where ZV =
∫
Rd e−βV (q;θ) dq. In particular, E∞ < 0.

Proof. We have that

L1 = p · ∇q −∇q V · ∇p.

The invariant measure of the process is ε-independent and we write it as

ρ(q, p; θ) dqdp = Z−1e−βH(p,q;θ) dqdp.

Furthermore, since the homogenized diffusion matrix is
√

2β−1 I ,

〈·, ·〉a(z) =
β

2
〈·, ·〉,

where 〈·, ·〉 stands for the standard Euclidean inner product. We readily check that

2
β

L1Γ = L1〈−∇q V, p〉 = −p ⊗ p : D2
q V (q; θ)+ |∇q V (q; θ)|2

and

2
β
〈F,L1Φ〉a = 〈−∇q V,L1 p〉 = |∇q V (q; θ)|2.

Thus,

E∞(θ) = −
β

2

∫
R2d

p ⊗ p : D2
q V (q; θ)Z−1e−βH(p,q;θ) dqdp

= −
1
2

∫
Rd

∆q V (q; θ)Z−1
V e−βV (q;θ) dq = −

β

2

∫
Rd
|∇q V (q; θ)|2 Z−1

V e−βV (q;θ) dq,

which is precisely (5.4). �

5.2. Motion in a multiscale potential

Consider the equation [36]

dx

dt
= −∇V ε(x)+

√
2β−1 dW

dt
(5.5)

where

V ε(x) = V (x)+ p(x/ε),

where the fluctuating part of the potential p(·) is taken to be a smooth 1-periodic function.
Setting y = x/ε we obtain

dx

dt
= −

(
∇V (x)+

1
ε
∇ p(y)

)
+

√
2β−1 dW

dt
(5.6a)

dy

dt
= −

1
ε

(
∇V (x)+

1
ε
∇ p(y)

)
+

1
ε

√
2β−1 dW

dt
. (5.6b)
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In the notation of the general homogenization set-up we have

f0 = g0 = −∇y p(y), f1 = g1 = −∇V (x)

and

α0 = 0, α1 = β =

√
2β−1.

The fast process has generator

L0 = −∇y p(y) · ∇y + β
−1∆y .

The invariant density is ρ(y) = Z−1
p exp(−βp(y)) with Z p =

∫
Td exp(−βp(y))dy. Because

f0 is the gradient of p it follows, by periodicity, that Assumption 2.4 is satisfied. The Poisson
equation for Φ is

L0Φ(y) = ∇y p(y).

Notice that Φ is a function of y only. The homogenized equation is

dX

dt
= −K∇V (X)+

√
2β−1 K

dW

dt
(5.7)

where

K =
∫
Td
(I +∇yΦ(y))(I +∇yΦ(y))′ρ(y) dy.

Suppose now that the potential contains parameters, V = V (x, θ), θ ∈ Θ ⊂ R`. We want to
estimate the parameter θ , given data from (5.5) and using the homogenized equation

dX

dt
= −K∇V (X; θ)+

√
2β−1 K

dW

dt
.

Theorem 3.12 implies that, for this problem, the maximum likelihood estimator is asymptotically
biased and that subsampling at the appropriate rate is necessary for the accurate estimation of the
parameter θ . As in the example presented in the previous section, we can calculate explicitly the
error term E∞. For simplicity we will consider the problem in one dimension.

Proposition 5.2. Assume that the potential V (x; θ) ∈ C∞(R) is such that e−βV (x;θ)
∈ L1(R)

for every β > 0 and all θ ∈ Θ . Then error term E∞, Eq. (3.11) for the SDE (5.5) is given by
the formula

E∞(θ) =
(
−1+ Ẑ−1

p Z−1
p

)βZ−1
V

2

∫
R
|∂x V |2e−βV (x;θ) dx (5.8)

where ZV =
∫
R e−βV (q;θ) dq, Z p =

∫ 1
0 e−βp(y)dy, Ẑ p =

∫ 1
0 eβp(y)dy. In particular, E∞ < 0.

Proof. Eqs. (5.6) in one dimension become

ẋ = −∂x V (x; θ)−
1
ε
∂y p(y)+

√
2β−1Ẇ , (5.9a)

ẏ = −
1
ε
∂x V (x; θ)−

1

ε2 ∂y p(y)+
2β−1

ε2 Ẇ . (5.9b)
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The invariant measure of this system is (notice that it is independent of ε)

ρ(y, x; θ) dxdy = Z−1
V (θ)Z−1

p e−βV (x;θ)−βp(y) dxdy.

The homogenized equation is

Ẋ = −K∂x V (x; θ)+
√

2β−1 K Ẇ .

The cell problem is

L0φ = ∂y p

and the homogenized coefficient is

K = Z−1
p

∫ 1

0
(1+ ∂yφ)

2e−p(y)/σdy.

We have that

〈p, q〉α(x) =
β

2K
pq.

The error in the likelihood is

E∞(θ) =
∫
∞

−∞

∫ 1

0

(
L1Γ (x, y)− 〈F,L1φ〉α(x)

)
ρ(x, y)dydx,

where

Γ = 〈F, φ〉α(x),
F = −K∂x V .

We have that

Γ (x, y) =
β

2K
(−K∂x Vφ) = −

β

2
∂x Vφ.

Furthermore

L1 = −∂x V ∂y − ∂y p∂x + 2β−1∂x∂y .

Consequently

L1Γ (x, y) =
β

2

(
|∂x V |2∂yφ + ∂y p∂2

x Vφ − 2β−1∂2
x V ∂yφ

)
.

In addition,

〈F,L1φ〉α(x) =
β

2
|∂x V |2∂yφ.

The error in the likelihood is

E∞(θ) =
β

2

∫
R

∫ 1

0

(
−∂y p∂2

x Vφ + 2β−1∂2
x ∂yφ

)
Z−1

V Z−1
p e−βV (x;θ)−βp(y) dxdy

= −
Z−1

V Z−1
p

2

∫
R
∂2

x V e−βV (x;θ) dx
∫ 1

0
∂yφe−βp(y)dy

+ Z−1
V Z−1

p

∫
R
∂2

x V e−βV (x;θ) dx
∫ 1

0
∂yφe−βp(y)dy
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=
Z−1

V Z−1
p

2

∫
R
∂2

x V e−βV (x;θ) dx
∫ 1

0
∂yφe−βp(y)dy

=
βZ−1

V

2

∫
R
|∂x V |2e−βV (x;θ) dx

(
−1+ Ẑ−1

p Z−1
p

)
.

In the above derivation we used various integrations by parts, together with the formula for the
derivative of the solution of the Poisson equation ∂yφ = −1+ Ẑ−1

p eβp(y), [37, p. 213]. The fact
that E∞ is non-positive follows from the inequality Z−1

p Ẑ−1
p < 1 (for p(y) not identically equal

to 0), which follows from the Cauchy–Schwarz inequality. �

Remark 5.3. An application of Laplace’s method shows that, for β � 1, Z−1
p Ẑ−1

p ∼ e−2β .

6. Conclusions

The problem of parameter estimation for fast/slow systems of SDEs which admit a coarse-
grained description in terms of an SDE for the slow variable was studied in this paper. It was
shown that, when applied to the averaging problem, the maximum likelihood estimator (MLE)
is asymptotically unbiased and we can use it to estimate accurately the parameters in the drift
coefficient of the coarse-grained model using data from the slow variable in the fast/slow system.
On the contrary, the MLE is asymptotically biased when applied to the homogenization problem
and a systematic asymptotic error appears in the log-likelihood function, in the long time/infinite
scale separation limit. However the MLE can lead to the correct estimation of the parameters in
the drift coefficient of the homogenized equation provided that we subsample the data from the
fast/slow system at the appropriate sampling rate.

The averaging/homogenization systems of SDEs that we consider in this paper are of quite
general form and have been studied quite extensively in the last several decades since they
appear in various applications, e.g. molecular dynamics, chemical kinetics, mathematical finance,
atmosphere/ocean science — see the references in [37], for example. Thus, we believe that our
results show that great care has to be taken when using maximum likelihood estimation in order
to infer information about parameters in stochastic systems with multiple characteristic time
scales. Similar caution would apply also to Bayesian methods.

In this paper we have only considered the case where the state space of the fast/slow process
is compact and that the generator of the fast process is a uniformly elliptic operator. Under
these assumptions Theorem 2.2 and, consequently, the averaging and homogenization theorems,
follows from standard elliptic PDE theory. Similar results can also be proved without the
compactness assumption and, under additional assumptions, even for non-uniformly elliptic fast
processes [32–34]. In particular, the regularity of solutions to a Poisson equation of the form (2.5)
with respect to the parameter ξ , together with estimates on the derivatives, when Y = Rd−` and
under the assumption of uniform ellipticity was proved in [33]. Alternatively, one could use a
stopping time argument; see [21] for details.

Similarly, in the non-compact case X = R`, Y = R`−d more work is needed in order to
prove Theorem 3.8 and, in particular, that the invariant measure satisfies Poincaré’s inequality
with an ε-independent constant. The proof of Poincaré’s inequality, essentially, requires to prove
that the generator of the fast/slow system has an ε-independent spectral gap. In the case where the
fast/slow system has a gradient structure with a smooth potential V (x, y), then simple criteria
on the potential have been derived that facilitate determination of whether or not the invariant
measure satisfies the Poincaré inequality. We refer to [41,3] and the references therein for more
details.
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There are various problems, both of theoretical and of applied interest, that remain open and
that we plan to address in future work. We list some of them below.

• Bayesian techniques for parameter estimation of multiscale diffusion processes.
• The development of efficient algorithms for estimating the parameters in the coarse-grained

model of a fast/slow stochastic system. Based on the work that has been done to similar models
in the context of econometrics [25,2] one expects that such an algorithm would involve the
estimation of an appropriate measure of scale separation ε, and of the optimal sampling rate,
averaging over all the available data and a bias reduction step.
• Study classical problems from parameter estimation, generalizing to the framework here. For

example relaxing ergodicity assumptions, studying asymptotic normality of the estimators,
and so forth.
• Investigate whether there is any advantage in using random sampling rates.
• Investigate similar issues for deterministic fast/slow systems of differential equations.
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Appendix

A.1. An ergodic theorem with convergence rates

Consider the SDE

dz

dt
= h(z)+ γ (z)

dW

dt
, (A.1)

with z ∈ Z , where Z is either Rk or Tk , h : Z → Rk, γ : Z → Rk×p and w ∈ Rp a standard
Brownian motion. Assume that h, γ are C∞ with bounded derivatives. Let ψ : Z → R be
bounded, and φ : Z → R be bounded. We denote the generator of the Markov process (A.1)
by A.

Assumptions A.1. Eq. (A.1) is ergodic with invariant measure ν(z)dz. Let

φ =

∫
Z
φ(z)ν(z)dz.

Then the equation

−AΦ = φ − φ,
∫

Z
Φ(z)ν(z)dz = 0

has a unique solution Φ : Z → R, with Φ and ∇Φ bounded.

Lemma A.2. Let

I =
1
√

T

∫ T

0
ψ(z(t))dW (t).

Then there exists a constant C > 0: E|I |2 ≤ C for all T > 0.

Proof. Use the Itô isometry and invoke the boundedness of ψ. �
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Lemma A.3. Time averages converge to their mean value almost surely. Furthermore there is a
constant C > 0:

E
∣∣∣∣ 1
T

∫ T

0
φ(z(t))dt − φ

∣∣∣∣2 ≤ C

T
.

Proof. By applying the Itô formula to Φ we obtain

−

∫ T

0
AΦ(z(t))dt = Φ(z(0))− Φ(z(T ))+

∫ T

0
(∇Φγ ) (z(t))dW (t).

Thus ∫ T

0
φ(z(t))dt = φ +

1
T
(Φ(z(0))− Φ(z(T )))+

1
√

T
I,

I =
1
√

T

∫ T

0
(∇Φγ ) (z(t))dW (t).

The result concerning L2(Ω) convergence follows from boundedness of Φ, ∇Φ and γ , together
with Lemma A.2. Almost sure convergence follows from the ergodic theorem. �

A.2. Consistency of the estimators

Lemma A.4. Let (Ω̃ , F̃ , P̃) be a probability space and gε : Ω̃ ×Θ → R, g0 : Θ → R be such
that

∀θ ∈ Θ, gε → g0 in probability, as ε → 0 (A.2)

and

∀δ, κ > 0 : P

{
ω : sup

|u|>δ

(
gε(ω, θ̂0 + u)− g0(θ̂0 + u)

)
> κ

}
→ 0, as ε → 0, (A.3)

where

θ̂0 = arg sup
θ∈Θ

g0(θ).

Moreover, we assume that

∀δ > 0, sup
|u|>δ

(
g0(θ̂0 + u)− g0(θ̂0)

)
≤ −κ(δ) < 0. (A.4)

If

θ̂ε(ω) = arg sup
θ∈Θ

gε(ω, θ)

then

θ̂ε → θ̂0 in probability.

Proof. First note that ∀δ > 0

P̃
{
|θ̂ε − θ̂0| > δ

}
≤ P̃

{
sup
|u|>δ

(
gε(ω, θ̂0 + u)− gε(ω, θ̂0)

)
≥ 0

}
. (A.5)
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We define

Gε(ω; θ, u) := gε(ω, θ + u)− gε(ω, θ) and G0(θ, u) := g0(θ + u)− g0(θ).

Clearly,

sup
|u|>δ

Gε(ω; θ̂0, u) ≤ sup
|u|>δ

(
Gε(ω; θ̂0, u)− G0(θ̂0, u)

)
+ sup
|u|>δ

G0(θ̂0, u)

and thus

P̃

{
sup
|u|>δ

Gε(ω; θ̂0, u) ≥ 0

}

≤ P̃

{
sup
|u|>δ

(
Gε(ω; θ̂0, u)− G0(θ̂0, u)

)
≥ − sup

|u|>δ
G0(θ̂0, u)

}

≤ P̃

{
sup
|u|>δ

(
Gε(ω; θ̂0, u)− G0(θ̂0, u)

)
≥ κ(δ) > 0

}
(A.6)

by Assumption (A.4). Note that

Gε(ω; θ̂0, u)− G0(θ̂0, u) =
(

gε(ω; θ̂0 + u)− g0(θ̂0 + u)
)
−

(
gε(ω; θ̂0)− g0(θ̂0)

)
.

So, by conditioning on
{
ω: | gε(ω; θ̂0)− g0(θ̂0)| ≥

1
2κ(δ)

}
and (A.5) and (A.6), we get that

P̃
{
|θ̂ε − θ̂0| > δ

}
≤ P̃

{
sup
|u|>δ

(
gε(ω; θ̂0 + u)− g0(θ̂0 + u)

)
≥

1
2
κ(δ) > 0

}

+ P̃
{
|gε(ω; θ̂0)− g0(θ̂0)| ≥

1
2
κ(δ) > 0

}
Both probabilities on the right-hand side go to zero as ε → 0, by Assumptions (A.3) and
(A.2) respectively. We conclude that θ̂ε → θ̂0 in probability. �

A.3. Proof of Propositions 4.2 and 4.3

In this section we present the proofs of Propositions 4.2 and 4.3 which we repeat here, for the
reader’s convenience.

Proposition A.5. Let (x(t), y(t)) be the solution of (2.4) and assume that Assumptions 2.1 and
2.4 hold. Then, for ε, δ sufficiently small, the increment of the process x(t) can be written in the
form

xn+1 − xn = F(xn; θ0) δ + Mn + R(ε, δ),

where Mn denotes the martingale term

Mn =

∫ (n+1)δ

nδ

(
∇yΦβ + α0

)
(x(s), y(s))dV (s)+

∫ (n+1)δ

nδ
α1(x(s), y(s))dU (s)

with ‖Mn‖p ≤ C
√
δ and

‖R(ε, δ)‖p ≤ C(δ3/2
+ εδ

1
2 + ε).
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Proposition A.6. Let g ∈ C1(X ) and let Assumption 3.7 hold. Assume that ε and N are related
as in Theorem 4.1. Then

lim
ε→0

1
N

N−1∑
n=0

g(xn) = Eπg,

where the convergence is in L2 with respect to the measure on initial conditions with density
π(x)ρ(y; x).

For the proofs of Propositions A.5 and A.6, both used in the proof of Theorem 4.1, we will
need the following two technical lemmas. We start with a rough estimate on the increments of
the process x(t).

Lemma A.7. Let (x(t), y(t)) be the solution of (2.4) and assume that Assumptions 2.1 and 2.4
hold. Let s ∈ [nδ, (n + 1)δ]. Then, for ε, δ sufficiently small, the following estimate holds:

‖x(s)− xn‖p ≤ C(ε + δ
1
2 ). (A.7)

Proof. We apply Itô’s formula to Φ, the solution of the Poisson equation (2.10), to obtain

x(s)− xn = −ε(Φ(x(s), y(s))− Φ(xn, yn))+

∫ s

nδ
((L1Φ + f1)) (x(s), y(s))ds

+

∫ s

nδ

(
∇yΦβ + α0

)
(x(s), y(s))dV (s)+

∫ s

nδ
α1(x(s), y(s))dU (s)

+ ε

∫ s

nδ
(L2Φ)(x(s), y(s))ds + ε

∫ s

nδ

(
∇yΦα0

)
(x(s), y(s)) dU (s)

+ ε

∫ s

nδ
(∇xΦα1) (x(s), y(s))dV (s)

=: J1 + J2 + J3 + J4 + J5 + J6 + J7.

Our assumptions on Φ(x, y), together with standard inequalities, imply that

‖J1‖p ≤ Cε, ‖J2‖p ≤ Cδ, ‖J3‖p ≤ Cδ
1
2 ,

‖J4‖p ≤ Cδ
1
2 , ‖J5‖p ≤ Cεδ, ‖J6‖p ≤ Cεδ1/2, ‖J7‖p ≤ Cεδ1/2.

Estimate (A.7) follows from these estimates. �

Using this lemma we can prove the following estimate.

Lemma A.8. Let h(x, y) be a smooth, bounded function, let (x(t), y(t)) be the solution of (2.4)
and assume that Assumptions 2.1 hold. Define

H(x) :=
∫

Y
h(x, y) ρ(y; x)dy.

Then, for ε, δ sufficiently small, the following estimate holds:∫ (n+1)δ

nδ
h(x(s), y(s))ds = H(xn) δ + R(ε, δ) (A.8)

where

‖R(ε, δ)‖p ≤ C(ε2
+ δ3/2

+ εδ1/2).
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Proof. Let φ be the mean zero solution of the equation

−L0φ = h(x, y)− H(x). (A.9)

By Theorem 2.2 this solution is smooth in both x, y and it is unique and bounded. We apply Itô’s
formula to obtain∫ (n+1)δ

nδ
(h(x(s), y(s))− H(x(s))) ds = −ε2(φ(xn+1, yn+1)− φ(xn, yn))

+ ε

∫ (n+1)δ

nδ
L1φ(x(s), y(s))ds + ε2

∫ (n+1)δ

nδ
L2φ(x(s), y(s))ds

+ ε2
∫ (n+1)δ

nδ
(∇xφα0)(x(s), y(s))dU (s)

+ ε

∫ (n+1)δ

nδ
(∇yφβ + ε∇xφα1)(x(s), y(s))dV (s)

=: J1 + J2 + J3 + J4 + J5.

Our assumptions on the solution φ of the Poisson equation (A.9), together with standard estimates
for the moments of stochastic integrals and Hölder’s inequality give the estimates

‖J1‖p ≤ Cε2, ‖J2‖p ≤ Cεδ, ‖J3‖p ≤ Cε2δ,

‖J4‖p ≤ Cε2δ1/2, ‖J5‖p ≤ Cεδ1/2.

The above estimates imply that∫ (n+1)δ

nδ
h(x(s), y(s))ds =

∫ (n+1)δ

nδ
H(x(s))ds + R1(ε, δ)

with

‖R1(ε, δ)‖p ≤ C
(
εδ1/2

+ ε2
)
.

We use the Hölder inequality and the Lipschitz continuity of H(x) to estimate:∥∥∥∥∥
∫ (n+1)δ

nδ
H(x(s))ds − H(xn) δ

∥∥∥∥∥
p

p

=

∥∥∥∥∥
∫ (n+1)δ

nδ
(H(x(s))− H(xn)) ds

∥∥∥∥∥
p

p

≤ δ p−1
∫ (n+1)δ

nδ
‖H(x(s))− H(xn)‖

p
p ds

≤ Cδ p−1
∫ (n+1)δ

nδ
‖x(s)− xn‖

p
p ds

≤ Cδ p
(
δ1/2
+ ε

)p
= R2(ε, δ)

p,

where Lemma A.7 was used and R2(ε, δ) = (εδ + δ3/2). We combine the above estimates to
obtain∫ (n+1)δ

nδ
h(x(s), y(s))ds =

∫ (n+1)δ

nδ
H(x(s))ds + R1(ε, δ)

= H(xn) δ + R1(ε, δ)+ R2(ε, δ),

from which (A.8) follows. �
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Proof of Proposition 4.2 (Proposition A.5). This follows from the first line of the proof of
Lemma A.7, the estimates therein concerning all the Ji with the exception of J2, and the use
of Lemma A.8 to estimate J2 in terms of δF(xn; θ0). �

Proof of Proposition 4.3 (Proposition A.6). We have

1
N

N−1∑
n=0

g(xn) =
1

Nδ

N−1∑
n=0

∫ (n+1)δ

nδ
g(xn)ds

=
1

Nδ

N−1∑
n=0

∫ (n+1)δ

nδ
g(x(s))ds +

1
Nδ

N−1∑
n=0

∫ (n+1)δ

nδ
(g(xn)− g(x(s))) ds

=
1

Nδ

∫ Nδ

0
g(x(s))ds +

1
Nδ

N−1∑
n=0

∫ (n+1)δ

nδ
(g(xn)− g(x(s))) ds

=: I1 + R1.

We introduce the notation

fn :=

∫ (n+1)δ

nδ

(
g(xn)− g(x(s))

)
ds.

By Lemma A.7 we have that x(s) − xn = O(ε + δ
1
2 ) in L p(Ω ′). We use this, together with the

Lipschitz continuity of g and Hölder’s inequality, to estimate:

‖ fn‖
p
p ≤ δ

p/q
∫ (n+1)δ

nδ
E |g(xn)− g(x(s))|p ds

≤ Cδ1+p/q(ε p
+ δ p/2).

Here p−1
+ q−1

= 1. Using this we can estimate R1 using:

‖R1‖p ≤
1

Nδ

N−1∑
n=0

‖ fn‖p ≤ C
1

Nδ
Nδ(1/p+1/q)(ε + δ1/2)

= C
(
ε + δ1/2)

→ 0,

as ε → 0.
Thus it remains to estimate I1. Let T = Nδ. Let ψε solve

−Lhomψ
ε(x, y) = ĝ(x) := g(x)− Eρ

ε

g. (A.10)

Apply Itô’s formula. This gives

1
T

∫ T

0
g(x(s))ds − Eρ

ε

g = −
1
T

(
ψε
(
x(T ), y(T )

)
− ψε

(
x(0), y(0)

))
+

1
εT

∫ T

0

(
∇yψ

εβ)(x(s), y(s)) dV (s)+
1
T

∫ T

0

(
∇xψ

εα)(x(s), y(s)) dU ′(s),

=: J1 + J2

where J2 denotes the two stochastic integrals and we write αdU ′ = α0dU + α1dV , in law. Note
that

Eρ
ε

g→ Eπg
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as ε → 0 by Assumption 3.7. Thus the theorem will be proved if we can show that J1+ J2 tends
to zero in the required topology on the initial conditions. Note that

Eρ
ε

|J1|
2
≤

4

T 2 Eρ
ε

|ψε |2,

Eρ
ε

|J2|
2
≤

1
T

Eρ
ε

〈∇ψε,Σ∇ψε〉.

Here Σ is defined in Assumption 3.7 and ∇ is the gradient with respect to (x ′, y′)′. We note that,
by stationarity, we have that

Eρ
ε

|ψε |2 = ‖ψε‖, Eρ
ε

〈∇ψε,Σ∇ψε〉 = (∇ψε,Σ∇ψε), (A.11)

where ‖ · ‖ and (·, ·) denote the L2(X × Y;µε(dxdy)) norm and inner product, respectively.
Use of the Dirichlet form (see Theorem 6.12 in [37]) shows that(
∇ψε,Σ∇ψε

)
≤ 2

∫
ĝ(x)ψε(x, y)ρε(x, y)dxdy

≤ a‖ĝ‖2 + a−1
‖ψε‖2,

for any a > 0. Using the Poincaré inequality (3.9), together with Assumption 3.7 and
Theorem 3.8, gives

‖ψε‖2 ≤ C2
p‖∇ψ

ε
‖

2
≤ aC−1

γ C2
p‖ĝ‖

2
+ a−1C−1

γ C2
p‖ψ

ε
‖

2.

Choosing a so that a−1C−1
γ C2

p =
1
2 gives

‖ψε‖2 ≤ CEρ
ε

|ĝ|2.

Hence(
ψε,Γ∇ψε

)
≤ CEρ

ε

|ĝ|2,

where the notation introduced in (A.11) was used. The constant C in the above inequalities is
independent of ε. Thus

Eρ
ε

|J1|
2
+ Eρ

ε

|J2|
2
≤

1
T

CEρ
ε

|ĝ|2. (A.12)

Since the measure with density ρε converges to the measure with density π(x)ρ(y; x) the desired
result follows. �
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