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Abstract. The estimation of absolute and relative permeabilities for petroleum reservoirs on 
the basis of noisy data at wells is considered. The spatially varying absolute permeability is 
estimated by regularisation combined with a bi-cubic spline approximation. Relative 
permeability is represented by a given function of saturation with unknown coefficients. 
Numerical results provide an indication of the estimability of the two permeabilities in 
conventional petroleum production operations. 

1. Introduction 

Once wells have been drilled down into a reservoir containing a recoverable petroleum, the 
local properties of the reservoir rocks and fluids must be determined. A variety of complex 
acoustical, electronic and magnetic techniques are available that, when lowered into the 
well, can be used to determine the local properties of the formation and fluids in the 
neighbourhood of the well. Estimates of the reservoir properties are needed, however, 
throughout the entire reservoir, not just at the wells, in order to simulate various 
production strategies to try to optimise the recovery of the petroleum. To estimate the 
properties on the reservoir, past production histories are simulated. The properties are 
determined as those that produce the closest possible match of the observed and predicted 
histories. This so-called history-matching process has been addressed in the petroleum, 
hydrology and mathematics literature for some 20 years or so (Jacquard and Jain 1965, 
Neuman 1973, Carter et a1 1974, Chen et a1 1974, Chavent et a1 1975, Wasserman et a1 
1975, Chen and Seinfeld 1975, Yoon and Yeh 1976, Gavalas et a1 1976, Van den Bosch 
and Seinfeld 1977, Shah et a1 1978, Seinfeld and Chen 1978, Neuman and Yakowitz 1979, 
Yakowitz and Duckstein 1980, Yeh and Yoon 1981, Yeh et a1 1983, Tang and Chen 1984, 
Watson et a1 1984, Neuman and Carrera 1985, Sun and Yeh 1985, Yeh 1986, Carrera and 
Neumann 1986, Lee et a1 1986, Lee and Seinfeld 1986). 

In the early stages of production of a petroleum reservoir, it can often be assumed that 
the reservoir contains only a single fluid, oil. In that case the reservoir behaviour is 
described by a single linear parabolic PDE for pressure. The reservoir parameters that 
enter the equation, and are subject to estimation, are the rock porosity cp and the absolute 
permeability k, both of which vary with location in the reservoir. Most of the above cited 
references are addressed to the case of a single-phase reservoir. (In case of an aquifer, 
although the reservoir fluid is water, the pressure is governed by the same PDE as in the 
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case of an oil reservoir.) Generally one must account for the fact that oil and water are 
present together in petroleum reservoirs, and the resulting reservoir model consists of two 
coupled nonlinear PDES. In addition to the porosity q and absolute permeability k, the two- 
phase case is characterised by the relative permeabilities k,, and k,, (subscript o referring 
to oil and w to water) that are presumed to be functions of the local fluid saturation in the 
medium. The precise values of the two relative permeabilities are usually not known. 

The essential difficulties in the petroleum reservoir inverse problem are twofold. First, 
the reservoir properties are spatially varying, and the estimation of a spatially varying 
permeability is well known to be an ill-posed problem (Chavent 1979a, b, Seinfeld and 
Kravaris 1982, Kravaris and Seinfeld 1985). Second, the oil-water reservoir is a highly 
nonlinear system, for which rigorous results concerning its inverse problems do not exist. 

The ill-posed nature of the single-phase permeability estimation problem has been 
attacked by Bayesian approaches (Gavalas et a1 1976, Shah et a1 1978), regularisation 
(Neuman and de Marsily 1976, Seinfeld and Kravaris 1982, Tang and Chen 1984, 
Kravaris and Seinfeld 1985, 1986, Lee et a1 1986) and spline approximation (Banks and 
Lamm 1985). While the Bayesian approach requires a priori statistical information on the 
unknown parameters that may not generally be available, and spline approximation, in and 
of itself, does not guarantee well posedness, the regularisation approach offers both 
rigorous stability and convenient computational implementation. The first step of the 
regularisation formulation is to measure the non-smoothness of the parameter by its norm 
in an appropriate Hilbert space, called the stabilising functional, and then to seek the value 
of the parameter that minimises the weighted sum of the least-squares discrepancy term 
and the stabilising functional. In previous applications of regularisation to the petroleum 
reservoir inverse problem, Lee et a1 (1986) estimated absolute permeability and porosity in 
a single-phase reservoir and Lee and Seinfeld (1986) estimated the absolute permeability in 
a two-phase reservoir. 

The object of the present paper is to develop an algorithm for the simultaneous 
estimation of absolute and relative permeabilities in two-phase petroleum reservoirs. In 
related work on two-phase reservoirs Van den Bosch and Seinfeld (1977) investigated the 
estimation of constant absolute permeability and porosity and relative permeabilities near a 
single producing well where radial symmetry can be exploited. Watson et a1 (1984) 
estimated absolute permeability, porosity and relative permeabilities simultaneously 
assuming that the absolute permeability and porosity are each a constant independent of 
location. The present paper addresses the more practical case in which the absolute 
permeability is spatially varying. (Since the porosity is generally less variable than the 
permeability and is also better identified, we do not consider its estimation here.) 

The next section defines the mathematical model of the oil-water petroleum reservoir. 
Section 3 then defines the inverse problem associated with estimating absolute and relative 
permeabilities. In 0 4 we present a numerical regularisation algorithm, and 0 5 is devoted 
to a detailed computational example. 

T- Y Lee and J H Seinfeld 

2. Mathematical model of two-phase petroleum reservoir 

Consider a two-dimensional oil-water reservoir that has sufficiently large areal extent so 
that we can assume that the pressure change and hence the flow in the vertical direction is 
negligible compared with that in the other two directions (Aziz and Settari 1983, 
pp 204-243). Assuming that the oil and water phases are immiscible, the equations of 
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mass conversation for the oil and water phases are 

for (x, y )  E Cl and 0 < t < T where So and S,, the volume fractions of oil and water with 
respect to the total fluid volume, called oil and water saturations, respectively, satisfy 
So 1 - S,. The oil-water reservoirs that do not include gas phase generally are slightly 
compressible systems, i.e., the porosity, p, and the density of oil, p,, and water, p,, are 
weak functions of pressure. It is customary that the functional dependencies are given by 

the compressibilities of rock, oil and water and are assumed to be constant over the entire 
region of pressure change of the reservoir (Aziz and Settari 1983, p 13). The volumetric 
flow rates of the water and oil phases at the wells located at (xK,  yK) are denoted by qoK and 
q,, K ,  IC= 1, . . ., N,. For injection wells 4,=O and 4, > 0. For production wells, 40 and 4 ,  
are negative and the ratio 4,/4, is proportional to the ratio of the local flow velocities of 
water to oil at the bottom of wells. The thickness of the reservoir, h, is assumed to be 
constant over the whole reservoir domain?. The linear velocities of the oil and water phases 
are assumed to be described by Darcy’s Law, 

cf=(l/p>(dp/dp>, C O = ( ~ / P O > ( ~ P O / ~ P >  and c, = ( l / ~ , ) } d ~ ~ / d p )  where cf, co and c, denote 

(4) 
kkrw 
PW 

VP v 
W- 

where the absolute permeability k is a parameter characterising the fluid conductivity of a 
porous medium, po and p ,  are the viscosities of oil and water, respectively, and the relative 
permeabilities of oil and water, k,, and k,,, respectively, are assumed to be functions of 
fluid (water) saturation within the porous medium independent of flow rate and fluid 
properties. Widely used functional forms of the relative permeabilities, and those employed 
in this study, are 

for Si, < S, < 1 - S,, where irreducible (or connate) water saturation, Si,, and residual oil 
saturation, S,,, are the lower bounds of S, and So, respectively, under which water and oil, 
respectively, become immobile with reasonable pressure and gradients. The relative 
permeabilities are each less than unity and typically their sum is also less than unity for 
Si, < S, < 1 -Sro (Collins 1961, pp 53-5). Equations (1)-(6), together with the no-flux 
boundary condition, 

n Vp=O (7) 
If h is spatially varying then the integrated properties hk and hyl are subject to estimation instead of k and p, 

respectively, in the reservoir parameter estimation problem, but it does not change the structure of problems. 
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for (x, y )  E a SZ and 0 < t < T, and the given initial conditions 

P ( X ,  Y ,  0) =Po(x, Y )  

SW(X, y ,  0) = SwO(x, Y )  
for (x, y )  E SZ describe the water-driven oil recovery process for a petroleum reservoir with 
an impermeable boundary. Equations (1)-(9) are solved numerically using the finite 
difference approximation. Physically these equations describe the movement of both 
phases, usually as water is intentionally pumped down certain wells to drive the oil in place 
toward other wells where it is produced. When the water breaks through at the production 
wells, the displacement process is considered to be complete. 

3. The inverse problem 

It is desired to estimate simultaneously the absolute permeability k and the relative 
permeabilities, k,, and k,,, from data normally available at wells that have been drilled into 
the reservoir. Since k,, and k,, are assumed to be given by equations ( 5 )  and (6), their 
estimation reduces to that of the unknown constant parameters a,, a,, bo and b,. In 
general, a, and a, can be determined if the values of k,, and k, are known at two points 
such as at the connate water or residual oil saturations. Thus, bo and b, are the more 
uncertain and will be the subject of estimation here. The measured data consist of the 
pressure at No wells and at N, discrete times over 0 < t < T and of the water fraction of the 
total flow at each well, 

(10) 
krwlPw 

k,,/Pw + kroIP0 
f, = 

The usual least-squares objective function consists of two contributions, one each from 
the pressure and the water flow observations. We define og as the mean-square error 
between the calculated and measured pressure data 

where (xu, y,) E 0, v = 1, . . ., No denote the locations of the observations, that is the wells, 
and t,, n= 1, . . ., N,  are the observed times. Similarly, we define of‘ as the mean-square 
error in the water flow data, 

Then the least-squares objective function is given by a weighted sum of the two 
contributions 

J d k ,  bo, b,) = wpo; + Waf2 (13) 

where Wp and W, are the weighting coefficients for the pressure and flow rate terms, 
respectively. 

The conventional least-squares identification problem is to estimate k(x, y) ,  bo and b, 
to minimise JLs. The spatial variation of k leads to an ill-posed inverse problem, and hence 
we turn to a regularisation formulation. Kravaris and Seinfeld (1985, 1986) introduced the 
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concept of regularisation for the estimation of coefficients in PDES. Regularisation of a 
problem refers to solving a problem related to the original problem, called the regularised 
problem, the solution of which is both ‘regular’ and approximates the solution of the 
original problem. In Tikhonov’s regularisation formulation (Tikhonov and Arsenin 1977), 
the measure of non-smoothness of the parameter being estimated, called the stabilising 
functional, is represented by a norm of the parameter in an appropriate Hilbert space, for 
example 

where the Sobolev H3(SZ) is the set of functions that are square integrable over l-2 and 
have square-integrable derivatives up to order 3. More precisely Tikhonov’s stabilising 
functional is given by 

where convenient dimensionless variables are (= N,X/XL and = N,y/yL,  where x L  and y L  
are the lateral reservoir dimensions, and N, and Ny are the number of PDE grid cells 
employed along the x and y directions, respectively. The conditions for the coefficients cm 
are CO > 0, Cl > 0, Cz > 0 and C3 > 0 (Tikhonov 1963); or CO 30, C, 3 0, Cz > O  and C3 > 0 
(Tikhonov and Arsenin 1977, pp 69-70). As Trummer (1984) has pointed out, using the 
stabilising functional that includes the Euclidean norm of the parameter itself leads to the 
underestimation of the parameter. Locker and Prenter (1980) suggested the use of a 
stabilising functional with a differential operator. Lee and Seinfeld (1 986) used the 
stabilising functional with the gradient operator (V) so that it does not include the 
Euclidean norm term (CO 

The regularisation formulation of the inverse problem seeks the minimum of the 
smoothing functional, 

0 in equation (15)) for the estimation of absolute permeability. 

J S M ( k ,  bo, bw; P ) = J L S ( k  bo, bw) t -@ST(k)  (16) 
where /? is the regularisation parameter that represents the relative importance given to JST. 
In the present problem, JLs is composed of the two terms as shown in equation (13), hence 
JSM includes three quantities, W,U;, Wfa: and PJST where two of the three weighting 
coefficients W,, Wf and p must be determined independently. Wf/ W, can be chosen as the 
ratio 6;/6f where 6; and 6; denote the variances associated with the pressure and 
production data measurements, respectively (Watson et a1 1980). In the present study, 
6;/cff is assumed to be known and Wf/ W, is chosen as that value. An important question 
regarding the regularisation method is determing a suitable value of ,8 for the given noisy 
data especially where the noise level may or may not be known. The value of ,8 is chosen in 
several different ways (Miller 1970, Tikhonov and Arsenin 1977, pp 87-94, Craven and 
Wahba 1979). Miller suggest that P be determined from the ratio of an upper bound of the 
measurement error to an upper bound of the measure of non-smoothness. Craven and 
Wahba (1979) used the method of generalised cross validation (GCV) to determine the 
regularisation parameter. Since GCV requires parametric sensitivity information, this 
method is not practical for such a large scale problem like reservoir parameter estimation. 
Lee and Seinfeld (1986) developed an algorithm based on Miller’s idea that determines the 
regularisation parameters automatically during the estimation process without requiring a 
a priori information. 

The absolute permeability in a two-phase reservoir is primarily estimated from the 
pressure data (Van den Bosch and Seinfeld 1977, Watson et a1 1984). Thus we can 
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determine p/Wp from the ratio of an upper bound of U; to an upper bound of J S T .  In 
practice, these values are usually not known and Lee and Seinfeld (1986) used the values of 
JST and the pressure discrepancy of the results of the non-regularised (p= 0) estimation to 
determine p. Without loss of generality Wp will be specified as 1/6;. 

Spline approximation of spatially-varying parameters has several merits including a 
built-in smoothing and computational convenience (Banks and Lamm 1985, Kravaris and 
Seinfeld 1986). The spline approximation of the spatially varying absolute permeability is 
given by 

where x * ~ ( @ )  is a cubic B-spline function, 

+e3 e €  [o, 11 

: + ;(e- 1) + ;(e- + ;(e- 1)3 e €  [ i , 2 ]  

; - ( ~ - 2 ) ~ + ; ( e - 2 ) ~  ~ 2 ~ 3 1  

~-;(e-3)+;(e-3)2--(e-3)3 e €  [3,4] 

L o  otherwise 

Ax, and Ay, are the grid spacings for the spline approximation and I= 1, + Nxs(ly- 1) for 
I ,  = 1, . . . , N,., and ly = 1, . . . , Nys. In applying the spline approximation to the parameter 
estimation problem, if the number of spline coefficients, N,., x N,,=N,),  is too few, then 
the spline approximation cannot represent the spatial details properly. On the other hand, 
the number of spline coefficients should not exceed the number of grid cells for the solution 
of the PDES. When the spline approximation is used together with regularisation, the 
smoothing power of the spline approximation becomes less important than in its absence 
and N,, and Nys can be chosen as large as the numbers of grid cells along the x and y 
directions for the solution of the PDES (Lee and Seinfeld 1986). The unknown parameters 
characterising k(x, y )  are now W,, I= 1,. . ., N, .  

The mathematical theory of regularisation does not suggest any guidelines about the 
highest order of the derivative term that is included in equation (1 5). It is clear that in the 
case of discrete regularisation with the spline approximation the choice of Sobolev space is 
closely related to the choice of spline function. We choose the Sobolev space H 3 ( a )  so that 
all nontrivial derivatives of cubic B-spline functions contribute to the evaluation of the 
stabilising functional. 

4. Numerical algorithm 

The reservoir parameter estimation problem is a large nonlinear least-squares problem. 
The number of unknown parameters to be estimated is the same magnitude as the number 
of grid cells for the discretisation of the PDES. That number is of the order of at least one 
hundred in the field applications. In general, because of the size of the estimation problem a 
minimisation that requires the first derivative of the objective function is preferred over one 
that requires the second derivatives. The first-order derivatives of the least-squares 
performance index can be derived using optimal control theory (Chen et a1 1974, Chavent 
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et a1 1975). The functional derivative of JLs with respect to k(x, y )  is 

-=-s,’ SJLS ( &Vt,bW Vp+-Vvll/, kr0 Vp 
6k P W  P O  

and the partial derivatives of JU with respect to bo and bw are 

The adjoint variables @,, and IC/, satisfy the following adjoint equations 

from the terms including the variation o f p  and 

a aP 
- - [ d * W  - *0>1 + d ( C W  + Cf)*W - ( C O  + c f ) * o ) ~  a t  

k ak, k akro 
P w  as, Po as, 

+--vI+bw Vp+--VvII/, vp 

717 

(19) 

from the terms including the variation of Sw for (x, y )  E 52 and 0 < t < T with the terminal 
constraints 

*o(x ,  Y ,  n = 0 

*w(x9 Y ,  T )  = 0 
(24)  

(25)  
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for (x, y )  E C2 and the boundary condition 

v * w + -  
P O  

n. (- kkrw 
P W  

for (x ,  y )  E 8 C2 and 0 < t < T. The discrete adjoint equation can be derived from the discrete 
reservoir equations (1)-(9), which is used in the computations. 

Shah et al(1978) have evaluated the sensitivities of the reservoir state variables ( p  and 
f,) to the parameters. It is considerably more difficult to simultaneously estimate k ,  bo and 
b, than to estimate k only or to estimate k,, and k,, only. Since the quantities appear as 
kk,, and kk,,, p and f, are especially insensitive to changes in k ,  b, and b,. This 
observation suggests that k and (bo, b,) should be estimated separately during the 
minimisation process. 

The problem is to estimate the spline coefficients, W,, I= 1, . . ., N,,  and the 
dimensionless exponents, bo and b,, in the relative permeability expressions, that minimise 
the smoothing functional JSM. Consider the minimisation of JSM by a steepest descent 
technique. The gradient of JsM with respect to W,, I =  1, . . . , N ,  is 

The partial derivatives a J S M / a  W,, I =  1, . . ., N ,  can be directly 
functional derivative 6JLs/6k and the partial derivatives aJsTl8 WI. 
with respect to (bo, b,) is simply 

calculated from the 
The gradient of J S M  

In the following discussion we will refer to (Wl, . . ., WN,)  and (bo, b,) as W and b, 
respectively. The line search step in the steepest descent method starting at (W,  b) along the 
descent direction d, = -gw( W, b) and d b  = -gb(  W, b) is to find the step length s such that 

gw(W+ s d , ,  b + sdb) . d, + gb(W+ s& b + sdb) db=o. (29) 

In its practical application, the line search step represented by equation (29) is dependent 
on the linear scale (unit) of absolute permeability and Lhus is not unique. To see this let 
k^ = ck where c is an arbitrary positive constant. Then W = c W and the line search step is 
to find s  ̂ such that 

The arbitrariness of c suggests a modification of the line search step that finds the set of 
step lengths (r,  s) such that 

gw(w+ r&, b + sdb) * d w = o  

g b (  W +  rdw, b + sdb) ' db=o 

(3 1) 

(32) 

independent of the linear scale c. Thus, the one-dimensional line search is replaced by the 
two-dimensional minimisation of JSM( W + rd,, b + sdb) with respect to r and s. 
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To estimate (k, bo, b,) simultaneously, the following three-step algorithm will be used 
assuming that no a priori information is available for the spatial variation of k(x ,  y )  and p. 
Step 1. Assuming that k(x ,  y) = E over the whole domain, find ( E ,  bo, b,) that minimise 

Step 2. Starting from W,= k ,  I =  1, . . ,, N,, calculated from step 1, minimise JLs with 
respect to (W,  bo, b,). Compute p= W,&JLs at convergence. 
Step 3. Using p and starting from (W,  bo, b,) determined in step 2, minimise JsM with 
respect to W, bo and b,. 

In each step, the minimisation of JLs  or JSM will be carried out by the steepest descent 
method using equations (3 1)-(32). 

Step 2 of the algorithm is the conventional least-squares estimation of k by spline 
approximation, and of bo and b, that give the best fit of observed pressure and flow data. 
As a consequence of spline approximation, step 2 converges to a certain minimum 
although that minimum may not be physically acceptable. The major contribution of step 
3 in the algorithm is to alleviate the ill-conditioning of the estimated k by a regularisation. 
Generally the exponents of the relative permeabilities, bo and b,, will not change 
significantly in step 3. In practice, therefore, step 3 can usually be replaced by 

Step 3‘. Using p, bo and b, and starting from W determined in step 2, minimise JSM with 
respect to W .  

In step 3’ the smoothing functional JSM is minimised with respect to the single set of 
parameters, W ,  and the minimisation can be carried out by a general multivariate gradient 
algorithm. The partial conjugate gradient method of Nazareth (1977) is chosen as it is 
suitable for a large scale minimisation. 

For the numerical implementation of the stabilising functional with the gradient 
operator, JsT with (,=O in equation (15), the weighting coefficients (,,,, m= 1, 2 and 3, 
need to be specified. Since the integration in equation (1 5 )  is based on the length scale of 
discretisation of the PDES, x L / N x  and yL/Ny, the grid spacings for the reservoir PDE, (,,, of 
the derivative terms can be chosen as c l  = c2 = c3 = 1. 

JLS.  - 

5. Computational examples 

In order to test the performance of the algorithm thoroughly, we will introduce a 
hypothetical reservoir for which the true properties are assumed to be known. The 
assumed fluid and reservoir properties are shown in table 1. The assumed true absolute 
permeability distribution is given by 

k(x,y)=0.3-0.1 sin (F) sin (z) (33) 

in units of darcies (1 Darcy=0.987 x lo-’’ m2) for (x, y) E a. The location of wells and 
the true absolute permeability contour map are shown in figure 1. The governing PDES 
(1)-(9) are solved on a 15 x 10 mesh with the time-step size of 23.1 days. The absolute 
permeability k is spline approximated on a 15 x 10 mesh. The observation data are taken 
from nine observation wells that include two production wells with observation time 
interval 23.1 days and perturbed by uniformly distributed random numbers (generated by 
IMSL subroutine GGNML on VAX 11/780) with zero mean and standard deviations 
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Table 1. Specification of reservoir model: (a) properties of water and oil, (b) properties of' 
reservoir. 

(a) 
a, = 0.9 a,, = 1.0 
b, = 2.5 bo = 2.0 
si, = 0.1 s, = 0.2 
,U,= 1 0 - ~  P a s  ,ucO=3x 1 0 - 3 P a s  
c W =  1.94 x 10-9 pa- '  c0=o.97 x 10-9 pa- '  
Production wells 
9, = 0.003fw m3 s - ' 
Injection wells 

go =0.003 (1 - fw)  m3 s- '  

qw=o.ool m3 s - '  90 =o 

(b) 
cf=2.91 x Pa- '  
p=0.2-0.05 sin(2nx/xL) sin(ny/yL) 

p(x,y, 0)= 1.52 x lo7 Pa 
xL XY, x h= 1500 x 1000 x 10 m3 

SW(X, y ,  0) = 0.1 

0.34 atm and 0.0085 for p and fw, respectively. These noisy data are then used to attempt 
to recover (k ,  bo, bw). 

Water-breakthrough time has an important significance in the identifiabilities of the 
parameters. Watson et al(1984) have shown, in the two-phase one-dimensional reservoir 
where water in injected at one end and oil is produced at the other end, that absolute 
permeability can be estimated from the data up to the water-breakthrough time and that 
the prebreakthrough production data carry little information about the relative 
permeabilities. Figure 2 shows the transient pressure and fractional flow of water at the 
production wells located at (450 m, 550 m) and (1050 m, 550 m) calculated on this basis of 
the true (k,  bo, bw). We note that for the conditions of this example the water-breakthrough 
time of this reservoir model occurs at about 6.4 years after the inception of water injection. 
In the following examples, two different time periods of the observed data will be chosen, 
one of 9.5 and the other of 6.4 years. 

Yt 

Y 

X t  0 
X 

Figure 1. Contours of the assumed true absolute permeability profile and location of wells. 
,@ , injection wells; 0, production wells; 0, observation wells. 
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Time [years) 

Figure 2. Transient pressure and fractional flow of water at the two production wells. -, 
well at (450 m, 550 m); ----, well at (1050 m, 550 m). 

The convergence criteria of the minimisation are 

for step 1 and 

l lgwllm < 2 and l k b l i m  < 5 (35) 

for steps 2 and 3. Although the same conditions are used for steps 2 and 3, they are in 
effect more strict for step 3 due to the additional term ~ J S T .  In case of step 3’, only the first 
criterion in equation (35) is used to terminate the iteration. 

Over a period of 9.5 year, 150 pressure and 150 production data are taken at each of 
the nine observation wells and (W, bo, b,) is estimated using the suggested three-step 
algorithm. The results of the estimation are summarised in table 2. The first step is to 
estimate the set ( E ,  bo, b,) that minimises JLs where E denotes a spatially uniform k. 
Although the resultant is not an acceptable estimate of a spatially varying k in most 
cases, it is a reasonable average of the spatially varying k. Two different sets of ( E ,  bo, b,), 
(0.2 Darcy, 1.5, 1.5) and (0.4 Darcy, 3.0, 3.0) were chosen as the starting point of this step. 
The convergence results, (0.289 Darcy, 2.09, 2.51) and (0.286 Darcy, 2.06, 2.48), show 
good agreement indicating the robustness of this step. In figure 3, Ek,,(S,), Ek,,(S,) and 
fw(S,) calculated from these values are depicted by the full curves. This step makes the 
remainder of the algorithm insensitive to the choice of initial guess of (E,  bo, b,). The next 
step is the pure least-squares estimation of (k,  bo, b,) with p=O, where k is represented by 
the set of spline coefficients W. In this step, up and uf decrease substantially and approach 
those calculated from the true (k, bo, b,). The estimated k is shown in figure 4 and (bo ,  
b,)=(1.98, 2.50). From the resultant WPu; and JST, p= 2.63 Darcy-*. Step 3 is the final 
regularised estimation of (k ,  bo, b,) with /3 determined from step 2. The resultant k is shown 
in figure 4 and (bo, b,)=(1.98, 2.50). Table 2 shows that, in step 3, JST is reduced 
significantly due to its inclusion, JLs is reduced slightly due to continued minimisation and 
JSM is increased compared with the values in step 2. Comparison of the k contours in 
figure 4 shows the smoothing effect of regularisation on the ‘hump’ near the lower right 
corner of the reservoir. As an alternative of step 3, step 3’ is the regularised estimation of 
W while bo and b, are fixed to the values determined by step 2 and the same p is used as 
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0.3 

? 
,$ 0.2 

I;’ 

0.1 

0 0.2 0.4 0.6 0.8 1.0 

L al c 

0 0.2 0.4 0.6 0.8 1.0 

Saturation of water Saturation of water 

Figure 3. i k , , ,  Fk,, andf, plotted against S ,  calculated from the resultant (6 bo, b,) of 
Step 1. -, 9 x 150 data; ----, 9 x 100 data. 

step 3. The contours of the resultant k are shown in figure 4, which shows more smoothing 
effect compared with that of step 3. Both the discrepancy and the stabilising functional 
terms are smaller than those of step 3 while step 3’ required more computing time as shown 
in table 2. Throughout the estimation of process, (bo, b,) is estimated accurately even in 
step 1. The entire algorithms, steps 1, 2 and 3, required 63 and 74 iterations (solutions of 
state and adjoint PDES), corresponding to 252 and 297 s of computing time and steps 1, 2 
and 3’, 66 and 77 iterations corresponding to 263 and 308 s (4.0 s per iteration) on a Cray 
X-MP/48 for the given initial guesses (0.2 Darcy, 1.5, 1.5) and (0.4 Darcy, 3.0, 3.0), 
respectively. 

The identifiability condition of relative permeabilities given by Watson et a1 (1984) is 
not directly applicable to the two-dimensional reservoir with multiple injection and multiple 
production wells considered in this study. To investigate the effect of observation time 
period we consider the case in which 100 pressure and 100 production data are taken over 
a period of 6.4 years. Both of the production wells begin to produce water as well as oil but 
flow data after water breakthrough are not available from the well located at (450 m, 
550 m) by the time period of 6.4 years for the given reservoir. As is shown in table 3, this 
example shows the same tendency as the previous example in terms of the insensitivity of 
the result of step 1 to the choice of initial guess and the slight improvement of data match 
in steps 3 and 3’ as compared to step 2. Step 1 is started with (0.2 Darcy, 1.5, 1.5) and 
(0.4 Darcy, 3.0, 3.0) and coverages to (0.329 Darcy, 2.75, 3.49) and (0.328 Darcy, 2.74, 
3.40), respectively. The resultant (0.328-0.329 Darcy) is a reasonable average of 
spatially varying k given in equation (33) although it is 0.4 Darcy higher than that 
estimated in the previous case. In contrast to the previous case, however, the values of (bo, 
b,) are far from the true ones. Nevertheless, as shown in figure 3 by the broken curve, 
lk,(S,) ,  kk,,(S,) and fw(S,) do not disagree substantially with those values calculated in 
the previous case. Step 2 is started with (0.329 Darcy, 2.75, 3.49) and p=O. The resultant 
k surface is shown in figure5 and (bo, b,) is (1.99, 2.53) where (bo, b,) shows good 
agreement with true one. Comparison of (bo, b,) in steps 1 and 2 shows that the flow data 
up to the water breakthrough can be fitted by the wide range of different values of (b,  b,) 
and in this case the estimation of (bo, b,) should be carried out based on the k that matches 
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the observed data accurately. The value of /3 estimated by the algorithm is 3.30 Darcy-2. 
The final (bo, b,) is (1.99, 2.5 1) for step 3 and the estimated k for steps 3 and 3’ are shown 
in figure 5 .  The discrepancy and stabilising functional term of step 3 are smaller than those 
of step 3’ (see table 3) but figure 5 shows about the same degree of smoothing effect for 
the two different regularisation steps. The algorithm required 101 and 104 iterations 
corresponding to 279 and 290 s of computing time (2.8 s per iteration) for step 3 and 70 and 
73 iterations corresponding to 195 and 206 s for step 3’ for the given initial guesses 
(0.2 Darcy, 1.5, 1 S )  and (0.4 Darcy, 3.0,3.0), respectively. 

6. Conclusions 

A numerical algorithm is developed to estimate the spatially varying absolute permeability, 
k, and the exponents in the relative permeability expressions for two-phase petroleum 
reservoirs, based on noisy pressure and flow data. The spatially varying absolute 
permeability is estimated by regularisation with bi-cubic spline approximation. The 
algorithm developed suggests the choice of the regularisation parameter based on the ratio 
of the level of the observation error in pressure data to the measure of non-smoothness of 
parameter. The regularised estimation alleviates the ill-conditioning resulted from the 
conventional least-squares estimation. We demonstrate conditions under which the 
absolute and relative permeabilities can be estimated simultaneously. 
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