CaltechAUTHORS
  A Caltech Library Service

Compact Ambient Pressure Pyroelectric Ion Source for Mass Spectrometry

Neidholdt, Evan L. and Beauchamp, J. L. (2007) Compact Ambient Pressure Pyroelectric Ion Source for Mass Spectrometry. Analytical Chemistry, 79 (10). pp. 3945-3948. ISSN 0003-2700. doi:10.1021/ac070261s. https://resolver.caltech.edu/CaltechAUTHORS:20160818-152923301

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20160818-152923301

Abstract

We present the construction and implementation of a compact, low-power ambient pressure pyroelectric ionization source. The source comprises a z-cut lithium niobate or lithium tantalate crystal with an attached resistive heater mounted in front of the atmospheric pressure inlet of an ion trap mass spectrometer. Positive and negative ion formation alternately results from thermally cycling the crystal over a narrow temperature range. Ionization of 1,1,1,3,3,3−hexafluoro-2-propanol or benzoic acid results in the observation of the singly deprotonated species and their clusters in the negative ion mass spectrum. Ionization of triethylamine or triphenylamine with the source results in observation of the corresponding singly protonated species of each in the positive ion mass spectrum. Although processes in which ion formation occurs directly on the highly charged crystal surface may contribute to the observed signal, ion formation appears to result mainly from electrical discharges occurring on the surface of the crystal, from one z face to another. This dielectric breakdown originates from the high electric fields generated at the surface of pyroelectric crystals when they are thermally cycled by as little as 30 K from ambient temperature. Ion formation is largely unaffected by contamination of the crystal faces. This robust source might prove particularly useful in applications where unattended operation in harsh environments, long service lifetimes, and durability are desirable characteristics.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1021/ac070261sDOIArticle
ORCID:
AuthorORCID
Beauchamp, J. L.0000-0001-8839-4822
Additional Information:© 2007 American Chemical Society. Received 7 February 2007; accepted 4 April 2007; published online 14 April 2007; published in print 15 May 2007. The authors gratefully acknowledge support from the National Science Foundation through grant CHE-0416381 as well as support from the Beckman Institute at Caltech.
Funders:
Funding AgencyGrant Number
NSFCHE−0416381
Caltech Beckman InstituteUNSPECIFIED
Issue or Number:10
DOI:10.1021/ac070261s
Record Number:CaltechAUTHORS:20160818-152923301
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20160818-152923301
Official Citation:Neidholdt, E. L., & Beauchamp, J. L. (2007). Compact Ambient Pressure Pyroelectric Ion Source for Mass Spectrometry. Analytical Chemistry, 79(10), 3945-3948. doi:10.1021/ac070261s
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:69762
Collection:CaltechAUTHORS
Deposited By: Melissa Ray
Deposited On:22 Aug 2016 22:18
Last Modified:11 Nov 2021 04:19

Repository Staff Only: item control page