Zhong, Dongping and Pal, Samir Kumar and Zewail, Ahmed H. (2001) Femtosecond Studies of Protein-DNA Binding and Dynamics: Histone I. ChemPhysChem, 2 (4). pp. 219-227. ISSN 1439-4235. doi:10.1002/1439-7641(20010417)2:4<219::AID-CPHC219>3.0.CO;2-K. https://resolver.caltech.edu/CaltechAUTHORS:20160819-085642263
![]() |
PDF
- Published Version
See Usage Policy. 324kB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20160819-085642263
Abstract
In this contribution, we report studies of the nature of binding interactions and dynamics of protein histone I (H1) with ligands in solution and as a complex with DNA, an important biological process for the higher-order structure in chromatin. With femtosecond time resolution, we examined the role of solvation by water, the micropolarity at the interface of the binding site(s) of H1, and the rigidity of the complex structure. We used two biologically common fluorescent probes: 2-(p-toluidino)naphthalene-6-sulfonate (TNS) and 5-(dimethylamino)naphthalene-1-sulfonyl chloride (DC). By noncovalently attaching TNS and covalently adducting DC to the binding sites we found that the solvation dynamics, which occur within 1 ps, for the probe at the protein surface and in bulk solution are comparable, indicating the significant contribution of bulk water shells. However, the local polarity changes significantly, reflecting the change in dielectric properties at the protein/water interface. The binding structure of the protein–DNA complex was examined by the local orientational motion of the probe. The covalently bound DC molecule, sandwiched between the protein and DNA, was found to be frozen, revealing the very rigid structure at the recognition site, while, for noncovalently bound TNS, the complexes displace the probe. The dynamical rigidity of the complex, and the role of solvation and interface polarity, elucidate the strong recognition mechanism between DNA and the protein by electrostatic interactions, which are important to the compactness and to chromatin condensation in the biological function.
Item Type: | Article | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| |||||||||
Additional Information: | © 2001 Wiley-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany. Received: November 30, 2000. Version of Record online: 10 Apr 2001. This work is supported by the National Science Foundation. We would like to thank Dr. Chaozhi Wan for his help. | |||||||||
Funders: |
| |||||||||
Subject Keywords: | femtosecond dynamics; molecular recognition; protein–DNA interactions | |||||||||
Issue or Number: | 4 | |||||||||
DOI: | 10.1002/1439-7641(20010417)2:4<219::AID-CPHC219>3.0.CO;2-K | |||||||||
Record Number: | CaltechAUTHORS:20160819-085642263 | |||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20160819-085642263 | |||||||||
Official Citation: | Zhong, D., Pal, S. K. and Zewail, A. H. (2001), Femtosecond Studies of Protein–DNA Binding and Dynamics: Histone I. ChemPhysChem, 2: 219–227. doi: 10.1002/1439-7641(20010417)2:4<219::AID-CPHC219>3.0.CO;2-K | |||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | |||||||||
ID Code: | 69777 | |||||||||
Collection: | CaltechAUTHORS | |||||||||
Deposited By: | Ruth Sustaita | |||||||||
Deposited On: | 23 Aug 2016 18:11 | |||||||||
Last Modified: | 11 Nov 2021 04:19 |
Repository Staff Only: item control page