
E. D’Ambrosio and B. Kells Vol. 21, No. 2 /February 2004 /J. Opt. Soc. Am. B 233
Asymmetry between the sidebands used for
detecting gravitational waves

in laser interferometric antennas

Erika D’Ambrosio and Bill Kells

California Institute of Technology, M.C. 18-34, Pasadena, California 91125

Received December 9, 2002; revised manuscript received August 1, 2003; accepted September 29, 2003

We develop an analytical approach in order to understand the causes of sidebands imbalance. The results
have been tested by two different and more sophisticated numerical tools. The main static perturbations that
can generate sidebands imbalance are described and fully analyzed, with a special attention to the design of
the Laser Interferometer Gravitational Wave Observatory I, whose typical parameters have been used for nu-
merical estimations of this phenomenon. © 2004 Optical Society of America
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1. INTRODUCTION
Several ground-based interferometers have been designed
and built in order to detect gravitational waves. The La-
ser Interferometer Gravitational Wave Observatory
(LIGO) consists of two antennas in the United States, and
Virgo and GEO are similar projects developed in Europe.
A future kilometer-sized interferometer is being planned
for construction in Japan, where the prototype TAMA300
is already successfully running. The advanced tech-
niques that are used in those interferometers have been
studied and tested for years. In some cases, smaller-
scale prototypes have been involved, as the 40-m proto-
type for LIGO in Pasadena and the 10-m prototype for
GEO in Glasgow. The detection schemes may vary and
in general involve the use of sidebands. These are gen-
erated by modulating the laser light before it enters the
Michelson interferometer. Since the effect of a gravita-
tional wave on the electromagnetic field circulating inside
the long-arm cavities can be represented as a phase shift,
there will be a total of two sets of sidebands: one due to
the modulation at frequency fmod and one at the
gravitational-wave frequency fgw ! fmod . At the operat-
ing point, the amount of carrier light exiting through the
output port of the interferometer is zero. The only signal
detected at the output port is due to the two sets of side-
bands. The output power will therefore contain compo-
nents at 2fgw and 2fmod in addition to the direct-current
signal, but the important term is the one obtained by the
beat of those at fmod 6 fgw . This is the only term propor-
tional to the gravitational-wave amplitude. Applying a
demodulation at fmod allows the interesting term to be
converted at the gravitational-wave frequency fgw . In
planning this scheme, known as heterodyne detection, the
amplitude of the radio-frequency sidebands is assumed to
be identical for the two, but, both in the 40-m prototype
and recently in LIGO I, evidence of an imbalance has
been found. Because of the high sensitivity that is re-
quired for detecting gravitational waves and the techno-
logical challenge implied in assembling and working with
0740-3224/2004/020233-10$15.00 ©
the best of the current state-of-the-art devices, we tackled
this issue in order to investigate the physical mechanisms
for which the sidebands do not interact in the same way
with the interferometer. The experimental data have
shown a difference in the gain of the RF sidebands, with
slow fluctations at around 1 Hz. In the model we pro-
pose, the sidebands imbalance is static, and this corre-
sponds to the mean imbalance observed at the spectral
analyzer. This analytical model is described in Section 3,
and it has some features of its own that we will briefly
discuss since it is different from the generally used optical
modal model. In Section 1, we start with the simple case
of one single mode and longitudinal perturbations. The
more general case is dealt with in Section 2, which is the
core of the paper. In Section 4, we list the distorted con-
figurations that make the sidebands asymmetric, and also
we comment on how such an effect can be minimized, al-
though it cannot be entirely eliminated. This is indeed
the crucial and original point of the research presented
here, besides the analytical tools we develop for studying
the problem.

2. SINGLE-MODE SITUATION
Let us start with a variant of the Michelson interferom-
eter: A recycling mirror, whose high-reflective surface is
taken as a reference point, is placed between the light
source and the beam splitter. The symmetric scheme is
illustrated in Fig. 1, and r1 5 r2 for the mirrors at the
end of the two branches.

In gravitational-wave interferometers, those mirrors
are indeed substituted by long Fabry–Perot cavities that
we are not considering for now. The propagation of the
two sidebands, back and forth between the end mirrors
and the recycling mirror, is represented by

Pround-trip } exp@i~k 6 kmod!l1#cos@~k 6 kmod!l2#,

k 5
2pfCR

c
5

2p
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, kmod 5

2pfmod

c
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,
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with l1 5 l1 1 l2 and l2 5 l1 2 l2 defined in Fig. 1. The
standard conditions for the carrier,

kl1 5 np, kl2 5 mp, m,n P I,

make the sidebands symmetrical. If they are not satis-
fied, the carrier is not resonating, and it is leaking out of
the antisymmetric port. Because of those deviations,

dl1 , dl2 Þ 0⇒Pround-trip

} exp@i~kdl1 6 kmodl1!#cos~kdl2 6 kmodl2!

is the round-trip propagation of the sidebands, and the
peak amplitude for one of the two is increased, while it
decreases for the other. In order to have the same side-
bands amplitude for any dl2 and dl1 , the conditions

exp~ikmodl1! 5 61, exp~ikmodl2! 5 61,

should be satisfied; otherwise, the resonant curves of the
sidebands are peaked on different values of dl1 . This ef-
fect can be compensated by locking the common length on
the laser frequency or adjusting fmod . The distances be-
tween mirrors have been designed in LIGO in such a way
that the macroscopic length l1 is an integer multiple of
lmod/2. Since l2 is not a multiple of lmod/2, the micro-
scopic condition dl2 5 0 has to be satisfied in order to
have the resonant curves of the sidebands equivalent.

If dl2 Þ 0, the amount of light at the dark port is not
the same for the two sidebands, and therefore the maxi-
mum power that can be recycled is not the same, despite
the fact they can both be at their peak value for the
proper macroscopic and microscopic conditions on l1 , cor-
responding to simultaneous resonance of the sidebands.
For the case r1 5 r2 , the effect of those conditions on the
amplitude of the sidebands is better visualized in Fig. 2.
Then we can introduce some frequency-independent im-
perfections that break the symmetry of the Michelson in-
terferometer we are studying.

For example, the propagator

Fig. 1. Laser light enters the cavity through the recycling mir-
ror. There are specific conditions that make the amplitude of
the electromagnetic fields identical at the sideband frequencies
fCR 6 fmod in the steady state.
exp@i~k 6 kmod!l1#H r1 1 r2

2
cos@~k 6 kmod!l2#

1 i
r1 2 r2

2
sin@~k 6 kmod!l2#J

corresponds to a configuration where the reflectivities r1
Þ r2 for the two end mirrors are different. In this case,
dl2 5 0 is the right choice for minimizing the amount of
carrier light at the output port. When the common
length is properly tuned so that dl1 5 0, the sidebands
are balanced. In all other cases, they are not. The side-
band fields gain a different phase shift when they propa-
gate through the recycled Michelson interferometer, so
that, for a full round trip,

Pround-trip } expF i~kdl1 6 kmodl1!

6 i arctan
~r1 2 r2!sin kmodl2

~r1 1 r2!cos kmodl2
G ,

and the modulation frequency ought to be changed, in or-
der to match the varied macroscopic condition on kmod .
The overall design is such that the fields are very sensi-
tive to any asymmetry between the arms of the interfer-
ometer. We will see that a typical asymmetry is related
to the radii of curvature; they might be different for im-
perfections of their own, but more likely the mirrors are
exposed to different power loads, and they are influenced
by different thermal distortions. Even if the power loads
were exactly the same, the arms of the interferometer
would still be different because of the beam splitter.
When the optical path length through the bulk of the
beam splitter is distorted in a nonuniform way, the geo-
metrical symmetry between the two arms is broken, and
it cannot be recovered simply by adjusting dl1 and dl2 .
This is due to a different interaction of the transverse de-
grees of freedom of the electromagnetic field with the op-
tics in the two branches, and the single-mode treatment is
not suitable for analyzing the consequences of such an
asymmetry.

Fig. 2. Power gain at the beam-splitter symmetric port GRT is
simply defined as a function of two longitudinal quantities:
fCRdl2 6 fmodl2 , which corresponds to a differential phase, and
fCRdl1 6 fmodl1 , which corresponds to a common phase for the
sidebands at f 5 fCR 6 fmod .
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3. GENERAL DISTORTED
CONFIGURATIONS
In the previous section, we have treated only one degree
of freedom, neglecting the transverse distribution of the
electromagnetic field. If the dependance on the trans-
verse degrees of freedom is included, besides microscopic
adjustments of the lengths, the modal content of the input
field can be optimized in order to reduce sidebands asym-
metry.

First, we consider a symmetric configuration with ex-
actly the same branches. For this purpose, we assume
that the beam splitter is perfect so that there is no differ-
ence in the modal content of the beams traveling on l1
and l2 .

We also use a radio-frequency modulation with fmod
! fCR so that sidebands and carrier can be expanded
with the same set of modes. This allows us to express
the perturbation operators by the same matrices for car-
rier and sidebands. This approximation also implies that
perturbation operators are not frequency dependent. For
this reason, we do not include the Fabry–Perot arms yet,
restricting our attention to the central area of the inter-
ferometer whose length l1/2 is relatively short compared
with the typical distance the field has to travel before it
experiences a significant variation in its transverse distri-
bution. For example, in LIGO, the spot size is nearly
constant, ;3.6 cm, throughout the recycling cavity.

If all the above assumptions are satisfied, for any sym-
metric configuration of the Michelson interferometer, the
sidebands are balanced. We can generalize the previous
argument about the different reflectivities of the end mir-
rors, using the corresponding modified formula,

exp@i~k 6 kmod!l1#pH m1 1 m2

2
cos@~k 6 kmod!l2#

1 i
m1 2 m2

2
sin@~k 6 kmod!l2#J p,

where the scalars r1 and r2 have been replaced by the ma-
trices m1 and m2 . The transverse propagator p that we
introduced takes into account the different phases ac-
quired by the optical modes of the cavity, when they travel
from the recycling mirror to the end mirrors. The differ-
ential length l2 is supposed to have no effect other than a
purely longitudinal delay so that the same basis and the
same matrix p is used for the two branches. For m1
5 m2 , the sidebands are balanced.

There is another interesting configuration that ensures
sidebands balance: if the perturbations in the two
branches are equal and opposite. In this case, the elec-
tromagnetic field in the two branches will be perturbed in
a differential way. Because of this, the components gen-
erated by the perturbation will exactly cancel each other
at the symmetric port of the beam splitter. At the same
time, the content of the light leaking out of the interfer-
ometer at the output port totally consists of the excited
mode due to the scattering. The formalism we chose in
order to model this phenomenon is illustrated in the next
section.

The common mode circulating in the recycling cavity
and the excited mode that exits through the dark port
form a basis of eigenmodes of the cavity. There is a spe-
cial configuration that helps in simplifying things: if the
output fields and the input fields are selected at the same
distance from the beam splitter.

This allows us to use the same propagator p for the
phase transformation of the transverse modes. The out-
put fields are thus obtained from the circulating field, by
the operator

exp@i~k 6 kmod!l1#pH i
m1 1 m2

2
sin@~k 6 kmod!l2#

1
m1 2 m2

2
cos@~k 6 kmod!l2#J p, (1)

standing for the propagation from the recycling mirror to
the two end mirrors and back through the antisymmetric
port of the beam splitter, exiting the dark port. If the
eigenmode v1 is chosen as the input beam, it follows that
the power at the output will be in the form v2 . Con-
versely, if v2 is the input field, v1 will be the output. This
behavior of the differential configuration may be better
envisioned by applying a time-reversal transformation, so
that v1 enters the interferometer from the output port,
and, because of the geometrical properties of this configu-
ration, v2 is generated and propagated toward the recy-
cling mirror (and vice versa).

The sidebands are balanced: We assume that they are
represented by the same input field as the carrier, as they
are generated by phase modulation and pass through the
same mode cleaner.1

Therefore the input beam for the sidebands is the same
as for the carrier, and it corresponds to the resonating
mode for the symmetrical configuration. Since m1 and
m2 are not diagonal, the total round-trip operator has
completely different features for the carrier and the side-
bands. As an example, we analyze the case of misalign-
ment:

p 5 Fexp~iuG! 0

0 exp~2iuG!
G ,

m1 5 FA1 2 e2 ie

ie A1 2 e2G ,

m2 5 FA1 2 e2 2 ie

2ie A1 2 e2G ,

in the unperturbed basis.
Using the complete and orthonormal set of Hermite–

Gauss eigenmodes, we find that uG is the Guoy phase and
e 5 sin(kwutilt), with k 5 2pfCR /c and w the spot size.
We find that for this differential perturbation, the set of
carrier eigenmodes is2

v1 5 S 1
2 i sin~kdl2!

2 cos~kdl2!sin uG
eD ,

v2 5 S i sin~kdl2!

2 cos~kdl2!sin uG
e

1
D ,
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corresponding to the eigenvalues

l1 5 Acos2~kdl2! 2 e2

3 expF2iuG 1 i
e2 tan2 kdl2

2 tan uG
G

3 exp@i~kdl1 6 kmodl1!#,

l2 5 Acos2~kdl2! 2 e2

3 expF4iuG 2 i
e2 tan2 kdl2

2 tan uG
G

3 exp@i~kdl1 6 kmodl1!#,

while for the sidebands

v1
6 5 S 1

2 i sin~kdl2 6 kmodl2!

2 cos~kdl2 6 kmodl2!sin uG
eD ,

v2
6 5 S i sin~kdl2 6 kmodl2!

2 cos~kdl2 6 kmodl2!sin uG
e

1
D , (2)

corresponding to the eigenvalues

l1
6 5 Acos2~kdl2 6 kmodl2! 2 e2

3 expF2iuG 1 i
e2 tan2~kdl2 6 kmodl2!

2 tan uG
G

3 exp@i~kdl1 6 kmodl1!#,

l2
6 5 Acos2~kdl2 6 kmodl2! 2 e2

3 expF4iuG 2 i
e2 tan2~kdl2 6 kmodl2!

2 tan uG
G

3 exp@i~kdl1 6 kmodl1!#,

where calculations have been done up to O(e2). For ex-
ample if v1 is fed into the interferometer, the field exiting
the dark port would be

vOUT 5 S 2i sin~kdl2!expF2iuG 2
ie2

2 tan uG
G

1

2 cos~kdl2!
F sin2 kdl2

tan uG
1 i~1 1 cos2kdl2!Ge

D
3 exp~3iuG 1 ikl1!, (3)

obtained by applying the operator (1). The antisymmet-
ric port of the beam splitter ought to be set so that ul1u is
maximum. This condition corresponds to dl2 5 0, and
for this choice vOUT } v2 . At the same time, v1

1 5 v1
2* .

Similar considerations to the ones we have done for the
one-dimensional case can be applied here for one eigen-
mode. After one is selected, the longitudinal degrees of
freedom must be tuned accordingly.

The modal content of the carrier and sideband eigen-
modes would be the same if l2 5 0, as we can see from
Eqs. (2). Due to the differential perturbation, the mode
mixing for the sidebands depends on the Schnupp asym-
metry. It follows that, when the system is driven by v1 ,
the sideband eigenmodes v1
6 and v2

6 are both excited.
However, for small perturbations and if the system is non-
degenerate, the modes v2

6 are basically suppressed, and
the optical modes v1

6 are equally close to resonance.
Their coupling with v1 is the same for dl2 5 0, and the
power gain is also the same.

4. UNITARY MODAL MODEL
The considerations we have done for the one-dimensional
case apply in general when the end mirrors are equiva-
lent because of the geometry of the system. The symme-
try is broken only if the end mirrors are different and
therefore we are interested in differential perturbations.

Motivated by this, we developed a model satisfying the
following requirements:

1. Since we want to deal with scattering matrices that
are not frequency dependent, the Fabry–Perot cavities
are not included yet.

2. We also deal with one distortion at a time, while for
more general perturbations, sophisticated numerical tools
are needed beyond a simple 2 3 2 model.

3. The perturbations we aim to model are geometrical
distortions of mirrors with no loss of energy so that time-
reversal properties are easy to interpret.3

We included all these requirements in a model based on
unitary matrices. Since we consider one kind of pertur-
bation, m1 and m2 have the same functional form that
will depend on the size of the distortion. We are also
looking for a functional form that manifestly allows the
operator to be split, since we want to make use of the geo-
metrical properties of the symmetric and antisymmetric
interferometer. These requirements are satisfied by a
model based on the Pauli operators. For example, in Fig.
3, the reflection upon the end mirrors is represented by
the matrices m1 5 m(a) and m2 5 m(b). Using the
generators of SU(2), we can split them as in m(a)
5 m@(a 1 b)/2#m@(a 2 b)/2#. If the perturbation is
due to misaligned mirrors, m(a) 5 exp(iasx). The gen-
eral form would be exp(ian–s). For example, if the per-
turbation consists of a mismatch of the curvature of the
mirrors, the Guoy phases of the cavity modes are affected
at the first order in the distortion. This basically corre-
sponds to a modification of the vacuum propagator p. At
the first order,

dp 5 F i exp~iuG!
duG

dR
DR 0

0 3i exp~3iuG!
duG

dR
DR

G ,

R 5 radius of curvature, (4)

corresponds to the variation of the phases the unper-
turbed modes acquire, when they travel from the recy-
cling mirror to one of the two end mirrors. There are two
optical paths represented by l1 and l2 , each of which is
affected in a different way if DR is not the same in the
two mirrors. At the first order, we can write

m1 5 exp~ia!Fexp~2ib!cos g i sin g

i sin g exp~ib!cos g
G ,
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which is both unitary and symmetric. Similarly we can
express m2 and for the variation in the radius of curva-
ture, g 5 b 5 a/2. We have included the variation cor-
responding to Eq. (4) in m1 so that the formula for the
round-trip propagation can be written in the same form
we have used above,

exp@i~kdl1 6 kmodl1!#pFm1 1 m2

2
cos~kdl2 6 kmodl2!

1 i
m1 2 m2

2
sin~kdl2 6 kmodl2!Gp,

with unperturbed p. The unitary transformation in-
duced by a variation of the radius of curvature is

m1 5 m~a ! 5 exp~iA2a !exp~ian–s!,

n–s 5 sH 5
1

A2
F21 1

1 1G ,
with sH an Hadamard operator and a 5 kw2DR/
(A2R2), where k 5 2pfCR /c and w is the spot size on the
mirror. We have examined the perturbation in the ra-
dius of curvature and in the mirror orientation because
these are the simplest and most representative examples
of a variety of cases.

When the reflective surface of a mirror whose height is
h(x, y) does not match the phase front f(x, y) of the im-
pinging beam, the difference between them along the di-
rection of propagation,

h~x, y ! 2
l

2p
F~x, y !,

is a polynomial that we can expand in terms of Hermite
functions. The simplest case we can study,

h~x, y ! 2
l

2p
F~x, y !

5
l

4p
HmS A2x

w
D HnS A2y

w
D g

2m1nm!n!
, (5)

has the following properties:

Fig. 3. Scattering among the cavity modes is represented by the
operators m(a) and m(b). In the frequency-independent case,
they are unitary matrices that depend on some adimensional pa-
rameter, proportional to the distortion, as for tilt or curvature
mismatch. In the 2 3 2 model we have constructed, we gener-
ated the unitary matrices from the Pauli matrices, overriding the
usual modal-model rules.
^umnumuu00& 5 ig 2
g

2
2b,

^u00umuu00& 5 1 2
g2

2
,

^umnumuumn& 5 1 1 i2b 1 O~g2!,

where the scattering matrix

m 5 expH 2ikFh~x, y ! 2
l

2p
F~x, y !G J

has been expanded as

m 5 1 1 2ikFh~x, y ! 2
l

2p
F~x, y !G

1
1

2 H 2ikFh~x, y ! 2
l

2p
F~x, y !G J 2

1 ...,

and we have defined

^umnu2kFh~x, y ! 2
l

2p
F~x, y !G uumn& 5 2b } g, (6)

with umn the Hermite–Gauss functions fully described in
Subsection 4.B.

Perturbations that are odd in x or y are represented by
b 5 0. If the perturbation is even in both x and y, there
are terms ;g also on the diagonal of m. Since we are in-
terested in small perturbations, we can use

m . exp~ib!

3 F S 1 2
g2

2 D exp~2ib! ig

ig @1 2 O~g2!#exp~ib!
G

and focus on the eigenmode that is closest to u00 . When
we do so there is no need to know explicitly the term
O(g2) in m above. In fact, that would always be mul-
tipled by a quantity that is of the order of g.

In Fig. 4, we have reported the common and differential
perturbation cases for the radius of curvature. For any
situation that is not m1 5 m2 , the differential phase
needs to be adjusted. The optimal choice corresponds to
the maximum absolute value of the eigenvalue: This

Fig. 4. Peak of the field amplitude after one round trip corre-
sponds to a different position of the beam splitter than in the un-
perturbed case. The same microscopic tuning that maximizes
such amplitude for one eigenmode makes dark the output port
for that specific eigenmode. Here a and b are proportional to a
change in the radius of curvature. Using the LIGO typical val-
ues a 5 0.01 corresponds to a variation of the thank you order of
DR ; 400 m over R 5 14571 m.
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Fig. 5. When the optical axes of the two branches are misaligned, the position of the beam splitter must be tuned in order to make all
the light that is associated with the resonating mode recycled. The same tuning is the one that ensures there is no resonating mode at
the output port and restores a symmetric interaction of the sidebands with the interferometer, provided the driving beam is matched
with the resonating eigenvector.
guarantees that the output port is dark for the resonating
mode and the maximum amount of power gets recycled.

We can see similar properties in Fig. 5 when the mir-
rors are tilted by any amount. As the differential phase
for the sidebands is 6kmodl2 around the value corre-
sponding to the maximum (which is the best choice for the
carrier), the power associated with the sidebands will be
almost the same since the curve is approximately para-
bolic near its maximum. The equivalence is true only
through second order.

From a quantitative point of view, the situation be-
comes complicated when many modes are involved, al-
though the concepts we have outlined in our analysis are
still valid. In Fig. 6, the power circulating in the recy-
cling cavity is shown for the carrier and the two side-
bands, as a function of the radius of curvature of one mir-
ror.

Two numerical programs have been used: One is a
fast-Fourier-transform model, which make the represen-
tation of the electromagnetic field switch back and forth
between the space and the frequency domain; the other is
a MATLAB code based on a large subset of the Hermite–
Gauss basis. Although for the carrier the two ap-
proaches give the same results, corresponding to the two
curves on the top part of the graph that are practically the
same, when R is far below the ideal value 14571 m, there

Fig. 6. Power stored in the recycling cavity when one of the two
branches is perturbed because of a curvature mismatch. The
design value is 14571 m, and the relative sidebands imbalance is
;20% in the range 13000–13500 m.
is a large inconsistency between the values obtained by
the two programs for the sidebands. However, for distor-
tions

uDRu < 2500 m⇒uau 5 Ukw2

2 S 1

Rpert
2

1

Rdesign
DU

< 0.05, ubu 5 0,

w 5 3.6 cm, k 5
2pfCR

c
5

2p

l
,

l 5 1.064 1026 m,

the agreement between the values obtained by the two
codes is remarkably good.

5. BEYOND THE
FREQUENCY-INDEPENDENT MODEL
We have not yet tackled the full interferometer configura-
tion, with additional Fabry–Perot cavities, where only the
carrier is resonating. This means that the total reflec-
tion from the arms is not simply a general scattering but
depends on the frequency of the electromagnetic field. In
order to extend our model to more complex situations
when the arms are included, we start investigating the ef-
fects of macroscopic and microscopic mistuning on the
electromagnetic field, when this is represented by one de-
gree of freedom only. We include in the very formula we
used for the recycled Michelson interferometer ri
5 ri( f). Taking the end mirrors perfectly reflective and
assuming for the input mirror of the Fabry–Perot the
same reflectivity for its reflective and anti-reflective side,

r1~ f ! 5
2 r1 1 exp~2pif2L1 /c !

1 2 r1 exp~2pif2L1 /c !
, ur1~ f !u 5 1,

r2~ f ! 5
2 r2 1 exp~2pifL2 /c !

1 2 r2 exp~2pifL2 /c !
, ur2~ f !u 5 1,

so that we can write the total round-trip propagation, for
the central part of the interferometer, as an extension of
the unidimensional formula we have used for the recy-
cling cavity
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exp@i~kdl1 6 kmodl1!#

3 H r1~ fCR 6 fmod! 1 r2~ fCR 6 fmod!

2
cos~kdl2 6 kmodl2!

1 i
r1~ fCR 6 fmod! 2 r2~ fCR 6 fmod!

2
sin~kdl2 6 kmodl2!J ,

where we can insert

r1~ fCR 6 fmod!

5 expH i arctan
~1 2 r1

2!sin@2~k 6 kmod!L1#

~1 1 r1
2!cos@2~k 6 kmod!L1# 2 2r1

J ,

(7)

r2~ fCR 6 fmod!

5 expH i arctan
~1 2 r2

2!sin@2~k 6 kmod!L2#

~1 1 r2
2!cos@2~k 6 kmod!L2# 2 2r2

J ,

(8)
as the effective reflectivities.

The same considerations we have been doing for the
central interferometer can be stated again for the Michel-
son with Fabry–Perot arms, with real reflectivities

sin@2~k 6 kmod!L1# 5 sin@2~k 6 kmod!L2# 5 0,

corresponding to the working point of the gravitational-
wave antenna. When the macroscopic condition is satis-
fied,

cos~2kmodL1! 5 cos~2kmodL2! 5 21,

and we can compensate for

r1~ fCR 6 fmod! . 2expS i
1 2 r1

1 1 r1
2kdL1D , (9)

r2~ fCR 6 fmod! . 2expS i
1 2 r2

1 1 r2
2kdL2D , (10)

simply by adjusting dl2 , since Eqs. (9) and (10) do not de-
pend on fmod , and any asymmetry between the sidebands
is canceled when

exp~ikmodl1! 5 21;

otherwise, the microscopic condition

expF ikS dl1 1
1 2 r1

1 1 r1
dL1 1

1 2 r2

1 1 r2
dL2D G 5 1 (11)

must be fulfilled. Note that these conditions are differ-
ent from the ones that are equivalent to set the antisym-
metric port of the beam splitter on the dark fringe of the
carrier.

In fact, from Eqs. (7) and (8), we can derive the reflec-
tivities

r1~ fCR! . expS i
1 1 r1

1 2 r1
2kdL1 /c D , (12)
r2~ fCR! . expS i
1 1 r2

1 2 r2
2kdL2 /c D , (13)

which result in a differential phase, that should be com-
pensated for by tuning

dl2 1
1 1 r1

1 2 r1
dL1 2

1 1 r2

1 2 r2
dL2 5 0

in order to prevent any carrier light from exiting through
the output port of the interferometer. We can use a simi-
lar argument for Eq. (11) that is not equivalent to lock dl1

on the resonant condition for the carrier.
This typical behavior has been known for a long time,

since it was first seen in the results of the numerical
simulations: achieving the same power gain for the two
sidebands was always possible by moving the beam split-
ter. Nonetheless, this spoils the ‘‘contrast.’’4

We will use a rather peculiar case in order to better ex-
plain this phenomenon. Let us assume that everything
is symmetric so that L1 5 L2 and r1 5 r2 . The two
arms are equally detuned so that dL1 5 dL2 . We can
write the equation for the reflectivities

r~ fCR 6 fmod!

5 expF i arctan
~1 2 r2!sin~62kmodL !

~1 1 r2!cos~62kmodL ! 2 2r
G

3 expF i
~1 2 r2!2kdL

1 1 r2 2 2r cos@62kmodL !
G

as a function of r, L, and dL for cos(62kmodL) Þ 21.
Then we insert the above expression in the round-trip
propagator: The configuration is perfectly symmetric,
but the round-trip phase in the recycling cavity shows a
difference for fCR 6 fmod . Because of this structural
asymmetry, the power stored in the recycling cavity is not
the same for the two sidebands. In Fig. 7, the power at
the bright port of the beam splitter is plotted versus dL
for both the sidebands. The effective reflectivities for the
carrier (12) and (13) are compensated for by the choice

dl1 1 2
1 1 r

1 2 r
dL 5 0,

but in order to achieve a symmetric operating point for
the two sidebands, the modulation frequency fmod must be
adjusted. When the general case of more than one cavity

Fig. 7. Example of a frequency-dependent perturbation whose
result is a different bright-port power for the two sidebands.
The physical mechanism is purely longitudinal: The Fabry–
Perot cavities are identical and affected by the same offset, plus
the condition L 5 (2n 1 1)lmod/4 is not satisfied.
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mode is addressed, we can use some analogies with the
analysis we did for the recycled Michelson interferometer.
One of the two eigenmodes of the system is chosen to be
the resonating one, and it is assumed to be matched by
the laser beam.

For this eigenmode, prescriptions similar to the ones
we have been working out in the unidimensional case
play the same role in canceling the effect of the geometri-
cal distortions on the symmetry at 6fmod around fCR .
They restore the balance for that eigenmode but not for
the other ones, and even if a solution can be found that
guarantees the same power gain for the sidebands, the
composition of the corresponding eigenmodes is not the
same. Since the two sidebands are originated by the
same optical mode defined for the carrier, the balance can
never be entirely restored but only minimized. For the
geometrical distortions that break the symmetry of the
interferometers, mechanisms similar to the ones we have
analyzed for the recycling cavity are responsible for the
excitation of higher-order modes and hence for a different
interaction of the sidebands with the interferometer.

In Fig. 8, the power stored in the recycling cavity is
shown for the two sidebands versus the radius of curva-
ture of the external test mass mirror. The value that per-
fectly matches the curvature of the beam, whose spot size
on the internal test mass mirror is conditioned by the
geometrical parameters of the recycling cavity, is

Fig. 8. If the coupling between the recycling and the Fabry–
Perot cavities is not exactly matched, the power stored by the two
sidebands may be different if the macroscopic condition L
5 (2n 1 1)lmod/4 is not fulfilled. There is no geometrical
asymmetry between the two arms, but the frequency dependance
of the arm reflectivities gives rise to a different interaction of the
sidebands with the perturbed interferometer.

Fig. 9. If the absolute value of the arm reflectivity is one, we can
limit our attention to its imaginary part, which is a function of
the phase gained after a full round trip inside the Fabry–Perot
cavity. The two sidebands are located symmetrically around the
carrier whose round-trip phase is zero by definition. This is not
true for the higher-order modes excited by a geometrical mis-
match.
RETM 5 7400 m, and for any deviation from that which
disturbs the arms, the power stored by the two sidebands
becomes different. The peculiarity of this perturbation is
that it is equally affecting the two arms.

Formally we can write

r~ f ! 5
2 r 1 exp~2pif2L/c !pmp

1 2 r exp~2pif2L1 /c !pmp
,

where m is the unitary matrix representing the scatter-
ing, due to the change in the radius of curvature, and p
contains the phase factors, stored in every propagation by
the unperturbed modes.5

As we have seen in the purely longitudinal case, the
imbalance arises when the macroscopic condition L
5 (2n 1 1)lmod/4 is not satisfied, although the interfer-
ometer is perfectly symmetrical.

In order to illustrate the fundamental mechanism, we
refer to Fig. 9, where the imaginary part of the arm re-
flectivity versus the phase gained in a round trip inside
the cavity is shown. When L 5 (2n 1 1)lmod/4, there is
a separation multiple of 2p between the phases corre-
sponding to each mode, at fCR 1 fmod and fCR 2 fmod . If
the above condition fails, we have to distinguish between
the unperturbed and the perturbed case. The interaction
of the two sidebands with the interferometer is still iden-
tical in the former situation, since the arm reflectivities
are complex conjugates of each other, so that they are out
of resonance by the same amount in the recycling cavity.
For the latter case, the situation is complicated by the
fact that other modes are excited in addition to the fun-
damental one. The reflectivity from the long-arm cavity
is equivalent for them to different round-trip phases in
the recycling cavity for fCR 1 fmod and fCR 2 fmod , and
this intrinsic asymmetry cannot be corrected for by micro-
scopic adjustments. This is the most important differ-
ence between the recycled Michelson interferometer and
the configuration with Fabry–Perot cavities according to
the LIGO-like design. The operators are different for
fCR 6 fmod when the complex coupling with the long-arm
cavities is taken into account, and that difference can cer-
tainly be minimized but not entirely canceled.

6. CONCLUSIONS
An essential part of the detection scheme in gravitational-
wave antennas (like LIGO) is the modulation of the laser
light that results in the two first harmonics, named the
sidebands, that are engaged as a reference for any in-
duced variation of the distance between the mirrors in the
Fabry–Perot cavities. The amplitude of them is always
assumed to be the same, when the beam splitter is posi-
tioned in such a way that no carrier light is leaking out of
the dark port. The limit of this assumption has been the
focus of our study. The microscopic conditions that are
needed for making the carrier field resonating are equiva-
lent to the optimal ones for the minimization of the side-
bands imbalance. Our analysis has been confirmed by
two numerical programs that are widely used for simula-
tions in the LIGO Laboratories.6,7

In addition to the simple geometrical perturbations, we
have analyzed the case of frequency-dependent distor-
tions. The role of the macroscopic and microscopic con-
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ditions has been described for both the unidimensional
and the multimodal treatment. If the Fabry–Perot arms
are affected by any imperfection, the effective reflectivity
is perturbed in a way that is strongly frequency depen-
dent. In this case, fmod might need to be optimized too.
When more than one mode is taken into account, the
number of variables that need to be adjusted increases;
the transverse degrees of freedom must also be properly
tuned. However, since the eigenmodes are not the same
for the two sidebands, any feeding beam will result in a
combination of eigenmodes, and by microscopic adjust-
ments, we can only restore a symmetric response for a
pair of them at fCR 6 fmod . These phenomena have been
investigated by studying the analytical results obtained
by a unitary 2 3 2 model. Within a few percent, we ob-
tained predictions consistent with the output of the more
complex programs we employed.

APPENDIX A: GEOMETRICAL
INTERPRETATION
The mechanisms working in the case of frequency-
independent perturbations can be more clearly viewed by
considering the geometrical features of a resonator and a
Michelson interferometer. Figure 10 will serve as an il-
lustration for misalignment. The recycling mirror is as-
sumed to be flat. One of the two end mirrors is tilted so
that the geometrical symmetry of the interferometer is
corrupted. The input beam can be shifted so that it will
impinge on the two end mirrors by the same angle, with
respect to the surface. Both l1 and l2 must be adjusted
so that one eigenmode is resonating and the output port is
set on a dark fringe of that. In this special configuration,
the sidebands are symmetric. In LIGO, the angular per-
turbations of the optics will be sensed and controlled.8

A disturbance that is perhaps more interesting for
LIGO is a variation of the radius of curvature from the
ideal value. This perturbation has also an effect on the
phase of the field, and thus it represents the more general
case. We use again a geometrical construction to de-
scribe the main characteristics of this kind of distortion.
In Fig. 11, two mirrors having different curvature are
shown along the direction of propagation z. Their posi-
tion is determined by their radii of curvature in order to
match the wave front of the same beam.

The sidebands do not interact in the same way with the
interferometer in this case: The phase shift accrued by
the nmth-order Hermite–Gaussian mode is not the same
in the two arms because of the change in the radius of
curvature. The position of the mirrors can be changed in
order to set the output port on the dark fringe of one spe-
cific mode, but in doing this, the wave front of the beam
will no longer match the curvature of the mirrors. As a
consequence, some light is scattered into higher-order
modes, for which the dark-fringe condition does not hold,
and therefore the amplitude of those modes at fCR
6 fmod is not equal. The fundamental difference be-
tween this kind of distortion and tilt is that the phase
change induced on the electromagnetic field is of the order
O(DR) because of the relation between the shape of the
surface of the mirror and the longitudinal degree of free-
dom for propagation. Moreover, each mode acquires a
certain differential phase so that we cannot restore the
dark-fringe condition for all of them. On the contrary,
when the mirrors at the end of the two branches have the
same curvature, the dark-fringe condition for every mode
is the same, and provided that, the sidebands behave in
an analogous way. A similar argument would apply to
the common length because for each mode the resonant
condition is different, but since exp(ikmodl1) 5 21 when
the carrier is off resonance, the sidebands are also by the
same amount. The similar macroscopic condition
kmodl2 5 np is not practical, since it implies the antisym-
metric port is on the dark fringe for the sidebands as well
as for the carrier. On the contrary, l2 has been chosen in
LIGO I to maximize the power transmitted at the output
by the sidebands, since they are used to amplify the gravi-
tational signal by being beaten against the carrier at the
photodetector.

APPENDIX B: HERMITE–GAUSS
EIGENMODES
The intensity distribution of laser beams is concentrated
along the direction of propagation, and their phase fronts
are curved. With fixed waist position and size, the beam
dependance on distance is determined by propagation.

Fig. 10. If the only perturbation is due to misalignment, the
mode sustained by the recycled Michelson interferometer is
given by a Gaussian beam, whose optic axis is misaligned with
respect to the unperturbed cavity axis. The overlap of the elec-
tromagnetic fields impinging on the beam splitter, coming from
the two branches, is the stable eigenmode, while the remaining
part is scattered out of the antisymmetric port and consists of
higher-order modes excited by the tilt.

Fig. 11. For small perturbations l1 2 l2 } R1 2 R2 with li
5 z(Ri); as predicted by the paraxial approximation for the
propagation of Gaussian beams.



242 J. Opt. Soc. Am. B/Vol. 21, No. 2 /February 2004 E. D’Ambrosio and B. Kells
The radius of curvature of the wave front is a function of
the corresponding intersection with the axis of propaga-
tion. The phase shift that is associated with the beam

F~z ! 5 kz 2 ~m 1 n 1 1 !arctan
2z

kw0
2

is a function of the waist position z 5 0 and size w0 , and
is different for each mode of propagation.

The Hermite–Gauss solutions are

umn~x, y, z ! 5 A 2

pw2~z !
expH 2iF~z ! 2 ~x2 1 y2!

3 F 1

w2~z !
1

ik

2R~z !
G J

3 A 1

2m 1 nm!n!
HmF A2x

w~z !
GHn F A2y

w~z !
G

and form a complete and orthogonal set of functions.
Standard modal models use a finite number of those func-
tions for calculating matrix elements in optical problems.
Because of the unitarity that we explicitly required for
constructing our model and the geometrical features we
wanted to include (in order to split the operators in a com-
mon and a differential part), we checked the obtained re-
sults by the physical interpretation.

For example, in the case of a misaligned mirror, the
fundamental eigenmode that we found corresponds to a
Gaussian beam whose axis is shifted so that the two mir-
rors look misaligned by the same amount, from the point
of view of the incoming beam. Furthermore the pre-
dicted adjustment of the differential length,

kdl2 5 e2/~4 tan uG!, e 5 kwutilt ,

can be easily interpreted,

kdz 5 kR~1 2 cos utilt! 5 2kR sin2 utilt/2,
in the simple case of a flat input mirror since uG
5 arctan@kw2/(2R)#.

From the last expression for uG , we can also infer that
any distortion in the radius of curvature will induce a dif-
ferent phase separation F(z) among the modes travers-
ing the two branches, unless the configuration is still
symmetric with the end mirrors changed in the same way
and by the same amount.
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