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Abstract

Denoising has to do with estimating a signal x0 from its noisy observations y = x0 + z. In this paper,
we focus on the “structured denoising problem”, where the signal x0 possesses a certain structure and z
has independent normally distributed entries with mean zero and variance σ2. We employ a structure-
inducing convex function f(·) and solve minx{ 12‖y − x‖22 + σλf(x)} to estimate x0, for some λ > 0.
Common choices for f(·) include the `1 norm for sparse vectors, the `1− `2 norm for block-sparse signals
and the nuclear norm for low rank matrices. The metric we use to evaluate the performance of an estimate

x∗ is the normalized mean-squared-error NMSE(σ) =
E‖x∗−x0‖22

σ2 . We show that NMSE is maximized as
σ → 0 and we find the exact worst case NMSE, which has a simple geometric interpretation: the mean-
squared-distance of a standard normal vector to the λ-scaled subdifferential λ∂f(x0). When λ is optimally
tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem
minf(x)≤f(x0){‖y − x‖2}. The paper also connects these results to the generalized LASSO problem, in
which, one solves minf(x)≤f(x0){‖y−Ax‖2} to estimate x0 from noisy linear observations y = Ax0 + z.
We show that certain properties of the LASSO problem are closely related to the denoising problem. In
particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as
a function of number of observations. Our results are significant in two ways. First, we find a simple
formula for the performance of a general convex estimator. Secondly, we establish a connection between
the denoising and linear inverse problems.

Keywords: convex optimization, proximity operator, structured sparsity, statistical estimation,
model fitting, stochastic noise, linear inverse, generalized LASSO

1 Introduction

Signals exhibiting structured behavior play a critical role in various applications. In particular, sparse
signals, block-sparse signals, low-rank matrices and their many variations are often the underlying solutions
of problems, with applications ranging from MRI to recommendation systems to DNA microarrays, [1–9].
Hence, a significant amount of work has been dedicated to developing and analyzing algorithms, that can take
advantage of the signal structure. In this work, we will be considering the estimation of structured signals
corrupted by additive noise via convex optimization. Under Gaussian noise assumption, we will provide
an exact characterization of the estimation performances of useful convex algorithms based on proximity
operator. Proximity operator corresponding to a function f(·) at a point y is given by,

proxf (y, λ) = arg min
x

1

2
‖y − x‖22 + λf(x) (1.1)

Proximity operator was first introduced by Moreau in [10]. It has several nice properties, it can often be
evaluated quickly and it constitutes the backbone of the proximal algorithms, [10–17]. The topic of this work
is to understand and characterize the estimation capabilities of proxf (·) when y is the noisy observations
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of an underlying structured signal x0. Our results will be particularly meaningful when f(·) is structure
inducing. The prime example is the `1 norm, in which case (1.1) is known as “soft-thresholding the entries
of y” and has the following closed form solution, [4, 15,31,40,73],

[proxf (y, λ)]i =


yi − λ if yi ≥ λ
0 if |yi| < λ

yi + λ else

. (1.2)

While sparse signal estimation is the fundamental question in compressed sensing and properties of `1 min-
imization has been studied extensively, recent literature shows that, various other signal forms show up in
diverse set of applications and these applications are growing in a daily basis, [7,43–46,48,49,51,52,54–60,70].
Consequently, a uniform treatment of the structured signal recovery problems is highly desirable. With this
intention, we will loosely say, x0 is a structured signal and f(·) : Rn → R is a convex function that exploits
this particular structure. Such structured signal-function pairs include the sparse vectors and the `1 norm,
and the low-rank matrices and the nuclear norm. Chandrasekaran et al. [8] and Bach [9] consider systematic
ways of finding the structure-inducing function given the characteristics of the signal.

With this motivation, we will provide sharp estimation guarantees for the general problem (1.1) where
y = x0 + σv, x0 is a structured signal, and v is the noise vector; whose entries are independent standard
normal. As it has been observed in the relevant literature, [19, 29, 30, 34], when noise has variance σ2, it is
useful to consider the slight modification of (1.1),

proxf (y, σλ) = arg min
x

1

2
‖y − x‖22 + σλf(x), (1.3)

which takes the normalization for σ into account. We focus on finding a tight upper bound on the normalized-
mean-squared-error (NMSE) defined as,

E[‖proxf (x0 + σv, σλ)− x0‖22]

σ2
. (1.4)

NMSE (1.4) is a function of variance σ2, vector x0 and function f(·). We find a formula for the highest value
of NMSE over σ > 0, which is only a function of f(·) and x0. To state our result, we need to introduce some
notation.

• Subdifferential: The set of subgradients of a convex function f(·) at x0 will be denoted by ∂f(x0).

• Distance: Given a nonempty set C, the distance of a vector v to C is dist(v, C) := infu∈C ‖v − u‖2.

• Mean-squared-distance (MSD): Let g ∈ Rn be a vector with standard normal entries and C be a
nonempty set. Define D(C) = E[dist(g, C)2].

The following theorem gives a sample result.

Theorem 1.1 (Worst Case NMSE). Assume f(·) : Rn → R is a convex function, x0 ∈ Rn, λ ≥ 0 and v has
independent standard normal entries. Then,

max
σ>0

E[‖proxf (x0 + σv, σλ)− x0‖22]

σ2
= D(λ∂f(x0)). (1.5)

Furthermore, the worst case NMSE is achieved as σ → 0.

Remark 1: Observe that, the result is not interesting if the function is differentiable at x0, in which case,
subdifferential is a singleton. It becomes useful when the subdifferential is large; which decreases the distance
term D(λ∂f(x0)).
Remark 2: The fact that worst case NMSE is achieved as σ → 0 has been observed in relevant problems
which will be discussed later on [33–35,40]

The quantity D(λ∂f(x0)) may seem abstract at first sight. However, for the problems of interest, the
subdifferential ∂f(x0) is a highly structured and well-studied set, [1, 23, 28]. Several works, [8, 25, 34, 61],
provide useful upper bounds on this quantity for certain structured signal classes.
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k-sparse, x0 ∈ Rn Rank r, X0 ∈ Rd×d k-block sparse, x0 ∈ Rtb

D(λ∂f(x0)) (λ2 + 3)k for λ ≥
√

2 log n
k λ2r + 2d(r + 1) for λ ≥ 2

√
d (λ2 + b+ 2)k for λ ≥

√
b+

√
2 log t

k

Table 1: Closed form upper bounds for D(λ∂f(x0)) corresponding to (1.6), (1.7) and (1.8) (from [34,61]).

1.1 Examples

We will now list some specific examples which are applications of Theorem 1.1 in combination with Table 1.

1. Sparse signal estimation: Assume x0 ∈ Rn has k nonzero entries and v has independent standard
normal entries and y = x0 + σv. Pick f(·) as the `1 norm. Then, for λ ≥

√
2 log n

k ,

E[‖prox`1(y, σλ)− x0‖22]

σ2
≤ (λ2 + 3)k. (1.6)

2. Low-rank matrix estimation: Assume X0 ∈ Rd×d is a rank r matrix, n = d× d. This time, x0 ∈ Rn
corresponds to vectorization of X0 and f(·) is chosen as the nuclear norm ‖ · ‖? (sum of the singular values
of a matrix) [45,48]. Hence, we observe y = vec(X0) + σv and estimate X0 as,

prox?(y, σλ) = arg min
X

1

2
‖y − vec(X)‖22 + σλ‖X‖?.

Then, whenever λ ≥ 2
√
d, normalized mean-squared-error satisfies,

E[‖prox?(y, σλ)−X0‖2F ]

σ2
≤ (λ2 + 2d)r + 2d. (1.7)

3. Block sparse estimation: Let n = t×b and assume the entries of x0 ∈ Rn can be grouped into t known
blocks of size b so that only k of these t blocks are nonzero. To induce the structure, the standard approach
is to use the `1,2 norm which sums up the `2 norms of the blocks, [7, 50, 51]. In particular, denoting the

subvector corresponding to i’th block of a vector x by xi, the `1,2 norm is equal to ‖x‖1,2 =
∑t
i=1 ‖xi‖2. Pick

f(·) = ‖ · ‖1,2 and assume λ ≥
√
b+

√
2 log t

k , v has independent standard normal entries and y = x0 + σv.

E[‖prox`1,2(y, σλ)− x0‖22]

σ2
≤ (λ2 + b+ 2)k. (1.8)

1.2 Relevant literature

Proximity operator with `1 minimization has been subject of various works and results of type (1.6) is
known [4,8,27,29]. Block sparse signals have been studied in [40,50]. NMSE properties of low-rank matrices
has been analyzed in detail by [35–37]. Our main contribution is giving the exact worst case NMSE for
arbitrary convex functions. As a side result, we provide closed form upper bounds such as (1.6), (1.7) and
(1.8). Closer to our results, in [19], Bhaskar et al. considers denoising via structure inducing “atomic norms”
with a focus on line spectral estimation. However, their error bounds are looser than what Theorem 1.1 gives.
For example, in (1.7), we are able to bound the error in terms of the sparsity of the vector; whereas [19]
bounds in terms of the `1 norm of the vector which can be substantially larger. In [20], Chandrasekaran
and Jordan consider the “constrained denoising” problem which enforces the constraint f(x) ≤ f(x0) rather
than penalization σλf(x) in (1.3). As it will be discussed in Section 3, their results are consistent with ours;
however, we additionally show that NMSE bounds are sharp as σ → 0.

A more challenging problem occurs when y is arising from noisy linear observations Ax0 and we have to
solve an underdetermined linear inverse problem. In this case, we can consider a variant of (1.1), namely,

arg min
x

1

2
‖y −Ax‖22 + λf(x). (1.9)

When f(·) is the `1 norm and x0 is a sparse signal (1.9) is known as LASSO. LASSO has been the subject of
great interest as it is a natural and powerful approach to noise robust compressed sensing [43,73–78]. Section
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3 provides certain results on LASSO and connection of our results to the linear inverse problems in more
detail.

Some of the advantages of our results are as follows.

• In various compressed sensing or estimation results, guarantees are orderwise rather than the exact
quantities. For example, while NMSE of O (dr) is orderwise optimal for nuclear norm minimization
(recall (1.7)), it is often critical to know the actual constant term that multiplies dr for real life
applications. For Gaussian noise, it is known that, this constant is as small as 6 rather than being, say,
1000 (set λ = 2

√
d in (1.7)). Consequently, a formula that gives the exact performance is desirable.

• Instead of finding case specific results for various structured signal classes, we are stating our results
for a generic convex function f(·); which allows us to systematically obtain the specific instances. The
only required information is the subdifferential ∂f(x0).

• As it will be discussed in Section 3, we will relate Theorem 1.1 to the linear inverse problem (1.9) and
in fact, we will find a general relation between them, in connection to the recent results of [8, 25]. In
particular, for both problems, the subdifferential based quantity, D(λ∂f(x0)), plays a critical role.

To provide a better intuition about our results, we will now exemplify other possible signal forms and the
associated structure inducing functions.

2 Common structures and the associated functions

We consider the following low dimensional signal models and for each case, we explain the signal structure
and provide the convex function f(·) that exploits the structure.

• Sum of a low rank and a sparse matrix: The matrix of interest X0 can be decomposed into a low
rank piece L0 and a sparse piece S0, hence it is a “mixture” of the low rank and sparse structures. This
model is useful in applications such as video surveillance and face recognition, [57,58]. In this case, function
f(·) should be chosen so that it simultaneously emphasizes sparse and low rank pieces in the given matrix.

f(X) = inf
L+S=X

‖L‖? + γ‖S‖1 (2.1)

(2.1) is known as the infimal convolution of the `1 norm and the nuclear norm, [56,58].

• Discrete total variation: In many imaging applications, [64, 66, 67], the signal of interest x0 rarely
changes as a function of time. Consequently, letting di = x0,i+1−x0,i for 1 ≤ i ≤ n−1, d ∈ Rn−1 becomes a
sparse vector. To induce this structure, one may minimize the total variation of x0, namely ‖x0‖TV = ‖d‖1.

• Nonuniformly sparse signals and weighted `1 minimization: In many cases, we might have prior
information regarding the sparsity pattern of the signal, [52–55]. In particular, the signal x0 might be
relatively sparse over a certain region and dense over another. To exploit this additional information we can
use a modified `1 minimization where different weights are assigned to different regions. More rigorously,
assume the set of entries {1, 2, . . . , n} is divided into t disjoint sets S1, . . . , St that correspond to regions with
different sparsity levels. Then, given a nonnegative weight vector w = [w1 w2 . . . wt], weighted `1 norm ‖x‖w
can be given as:

‖x‖w =

t∑
i=1

wi
∑
j∈Si

|xj |

• Other models: We can include various other models: signals that are sparse and positive, [41,42]; positive
semidefinite constraints, [45,46]; simultaneously sparse and low rank matrices, [68–70]; permutation matrices,
binary vectors, cut matrices, [8]; etc.

3 Main Contributions

3.1 Notation

Before stating our main results, we will introduce the relevant notation. N (0, σ2In) is used to denote the
distribution of a vector in Rn with independent Gaussian entries with variance σ2 and mean zero. For a
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convex function f(·) : Rn → R, the set of subgradients of f(·) at x is denoted by ∂f(x). ∂f(x) is a nonempty,
convex and compact set, [88]. Given a set A and λ ∈ R, λA will denote the set obtained by scaling elements
of A by λ. The cone obtained by A is given as,

cone(A) = {λx ∈ Rn
∣∣x ∈ A, λ ≥ 0}.

When A,B are two sets, A+B will denote the Minkowski sum {a + b
∣∣a ∈ A and b ∈ B}. The closure of a

set A will be denoted by Cl(A). We will now briefly describe our notation on convex geometry. The distance
between a set nonempty set C and a point x ∈ Rn is given as: dist(x, C) = mins∈C ‖x− s‖2. When C is closed
and convex, there exists a unique point in C that is closest to x called the “projection of x on C”. This point
will be denoted by Proj(x, C). Basically, Proj(x, C) ∈ C and,

‖x− Proj(x, C)‖2 = dist(x, C).

The polar cone of C, which is always closed and convex, will be denoted by C∗ and is given as:

C∗ = {v
∣∣ 〈v,x〉 ≤ 0 for all x ∈ C}.

3.1.1 Useful concepts

Mean-squared-distance Let C be a nonempty subset of Rn. The mean-squared-distance (MSD) to C will
be denoted by D(C) and is defined as,

D(C) = E[dist(g, C)2], (3.1)

where g ∼ N (0, I). The relevant definitions have been used in [34, 61]. This definition is closely related to
the concepts like “statistical dimension” of [25] and “Gaussian width” of [8].

Feasible sets and tangent cones: Given a convex function f(·) : Rn → R, the descent set at x0 is given as
Ff (x0) = {z

∣∣f(x0 + z) ≤ f(x0)}. Then, the tangent cone at x0 is defined as Tf (x0) = Cl(cone(Ff (x0))). In
particular, when x0 is not a minimizer of f(·), we have Tf (x0) = cone(∂f(x0))∗. In fact, this will be the only
assumption we will be making besides the convexity of f(·). The details of this result can be found in [84,86].
In a similar manner, for a convex set C and x0 ∈ C, the set of feasible directions at x0 is denoted by FC(x0)
and is given by FC(x0) = {z

∣∣x0 +z ∈ C}. Then, the tangent cone at x0 becomes TC(x0) := Cl(cone(FC(x0))).

3.2 Results on denoising

Throughout the discussion below, we assume x0 is not a minimizer of f(·).

Theorem 3.1 (Constrained denoising). Let C be a nonempty, convex and closed set and let x0 be an arbitrary
vector in C. Let,

proxC(y) = arg min
x∈C
‖y − x‖2. (3.2)

Assume v ∼ N (0, In). Then,

max
σ>0

E[‖proxC(x0 + σv)− x0‖22]

σ2
= D(TC(x0)∗). (3.3)

Furthermore, the equality above is achieved as σ → 0. Now, let f(·) : Rn → R be a convex function and
choose C = {x ∈ Rn

∣∣f(x) ≤ f(x0)}. For this choice, we have,

max
σ>0

E[‖proxC(x0 + σv)− x0‖22]

σ2
= D(Tf (x0)∗) = D(cone(∂f(x0))). (3.4)

Remark: The constrained and the regularized denoising problems are closely related. To relate these, con-
sider the right hand sides of (3.4) and (1.5), in particular, the quantities, D(cone(∂f(x0))) and D(λ∂f(x0)).
Since λ∂f(x0) is subset of cone(∂f(x0)), for all λ ≥ 0, one has,

D(cone(∂f(x0))) ≤ D(λ∂f(x0)).
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Figure 1: We assumed x0 is a k sparse vector in R500 and picked f(·) to be the `1-norm. The solid red line

corresponds to D(cone(∂f(x0))) and dashed blue lines correspond to D(λ∂f(x0)) for λ from 0 to 1.5. In case of

`1 minimization, both quantities are solely functions of the sparsity. Observe that D(cone(∂f(x0))) is always upper

bounded by D(λ∂f(x0)).

On the other hand, as it will be discussed later on, when f(·) is a norm, making use of the results of [25], we
can actually obtain,

0 ≤ min
λ≥0

D(λ∂f(x0))−D(cone(∂f(x0))) ≤ 2
sups∈∂f(x0) ‖s‖2

f( x0

‖x0‖2 )
. (3.5)

(3.5) can be simplified for structure inducing functions. For example, when x0 is a k sparse vector in Rn,
right hand side can be replaced by 2

√
n
k . For the low-rank and block-sparse signals described in Section 1.1,

we can use 2
√

d
r and 2

√
t
k respectively.

Our next result considers a mixture of constrained and regularized estimators.

Theorem 3.2 (General upper bound). Assume C is a nonempty, convex and closed set and f(·) : Rn → R
is a convex function. Assume x0 ∈ C, λ ≥ 0 and v ∼ N (0, In). Consider the following estimator,

proxf,C(y, σλ) = arg min
x∈C

σλf(x) +
1

2
‖y − x‖22. (3.6)

For any σ > 0, we have,

E[‖proxf,C(x0 + σv, σλ)− x0‖22]

σ2
≤ D(λ∂f(x0) + TC(x0)∗). (3.7)

3.3 Connecting the NMSE to the linear inverse problem

We now turn our attention to the connection between the noiseless linear inverse problem and normalized
MSE. Linear inverse problem is the problem of recovering a signal of size n fromm noiseless linear observations
y = Ax0. To tackle this problem, when m < n, in a generic setup, a common approach is to make use of a
structure inducing function f(·) and solving,

min
x
f(x) subject to y = Ax. (3.8)

It is known that, for structured signals, (3.8) exhibits a phase transition from failure to success as the number
of observations increases. Works by Chandrasekaran et al. [8] and Amelunxen et al. [25] showed that, this
phase transition occurs around m ≈ D(cone(∂f(x0))). This is impressive as D(cone(∂f(x0))) not only
corresponds to the worst case NMSE of the constrained denoising (3.2); but also to a seemingly unrelated
problem (3.8). This observation was first made by Donoho et al. in [40]. Authors in [40] effectively claimed
that, the worst case NMSE of optimally tuned (1.3) corresponds to the phase transition point of (3.8). We
show that, this is indeed the case as minλ≥0 D(λ∂f(x0)) ≈ D(cone(∂f(x0))) (recall (3.5)). Hence, our results
combined with [8, 25] rigorously justifies the claims in [40].
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3.4 Relation to LASSO

As a next step, we will now briefly extend our results to the estimation of x0 from noisy linear observations
of x0. While many generic compressed sensing problems deal with matrices with independent identically
distributed entries, we will be stating our results for a random partial unitary matrix A. In other words, A
is generated uniformly at random among the matrices satisfying A ∈ Rm×n and AAT = Im.

Matrices with independent standard normal entries and uniformly random unitary matrices are clearly
not identical; however, they are closely related. For instance, both matrices have uniformly distributed null
spaces with respect to the Haar measure. This ensures that, the two matrices have statistically identical
behavior for the purposes of the noiseless linear inverse problem (3.8), [25].

We observe y = Ax0 +σv where v ∼ N (0, I). This is the standard setup for noisy linear inverse problems
and it is used in numerous papers including [29, 30, 43, 73–75]. In order to estimate x0 from y, we will be
using the following generalized setup,

min
x
‖y −Ax‖22 subject to x ∈ C. (3.9)

We can again relate this problem to the classic LASSO when x0 is sparse and when we choose C = {x ∈
Rn

∣∣ ‖x‖1 ≤ ‖x0‖1}. When f(·) is an arbitrary function, we can use C = {x ∈ Rn
∣∣ f(x) ≤ f(x0)}.

We have the following result that relates optimal LASSO cost and the LASSO error to D(TC(x0)∗) and
also D(cone(∂f(x0))).

Theorem 3.3. Assume C is a nonempty, closed and convex set and x0 ∈ C. Assume A ∈ Rm×n is a partial
unitary matrix generated uniformly at random. Let the noise vector v ∼ N (0, I) be independent of A and
y = Ax0 + σv. Denote the minimizer of (3.9) by x∗ = x∗(y,A). Conditioned on A, define the normalized
LASSO cost and “projected LASSO error” as follows,

FLASSO(A) = lim
σ→0

E[‖y −Ax∗‖22]

σ2
, ηLASSO(A) = max

σ>0

E[‖Ax∗ −Ax0‖22]

σ2
,

where the expectation is over v. Then, there exists constants c1, c2 > 0 such that,

• Whenever m < D(TC(x0)∗), with probability 1− c1 exp(−c2 (m−D(TC(x0)∗))2

n ),

ηLASSO(A) = m and FLASSO(A) = 0.

• Whenever m > D(TC(x0)∗), with probability 1− c1 exp(−c2t2),

D(TC(x0)∗)− t√n ≤ηLASSO(A) ≤ D(TC(x0)∗) + t
√
n,

m−D(TC(x0)∗)− t√n ≤FLASSO(A) ≤ m−D(TC(x0)∗) + t
√
n

Here, the probabilities are over the random measurement matrix A.

This theorem suggests that, ηLASSO and FLASSO has a phase transition around the pointm ≈ D(TC(x0)∗);
which not only shows up in (3.4) but also corresponds to the phase transition point of (3.8) (setting
C = {x ∈ Rn

∣∣ f(x) ≤ f(x0)}). When m < D(TC(x0)∗), one cannot recover x0, even from the noise-
less observations Ax0; as a result, it is futile to expect noise robustness. In this regime, our result suggests,
ηLASSO = m. When the number of measurements are more than the phase transition point, interestingly,
ηLASSO stops growing proportionally to m and takes a value around D(TC(x0)∗) depending on the particular
realization of A.

While this is an interesting phenomenon, we should emphasize that, the more critical question is
E[‖x∗−x0‖22]

σ2

rather than the projection of the error term on A. This problem has been investigated for Gaussian mea-
surement matrices and for `1-minimization in a series of work, [29, 30, 76, 77]. However, to the best of our
knowledge, Theorem 3.3 is the first result, that relates the LASSO cost and error to the convex geometry of
the problem in a general framework.
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3.5 Organization of the paper

The rest of this work is dedicated to the technical aspects of the theorems stated in this section. A summary
of the consequent sections are as follows.

• Section 4, Upper bounding the error: We will start by introducing the optimality conditions for the
problem (3.6). Then, we will find a tight upper bound to the resulting MSE. This will prove Theorem 3.2.

• Section 5, Lower bounding the error: We will restrict our attention to the analysis of the proximity
operator (1.3). As σ → 0, we will find a lower bound; which is arbitrarily close to the upper bound. This
will prove Theorem 1.1. We use a similar argument for the constrained problem described in Theorem 3.1.

• Section 6, Further discussion: Following from (3.5), we discuss the relation between optimally tuned
(over λ) “regularized estimator” (1.3) and the “constrained estimator” (3.2).

• Section 7, Connection to LASSO: The proof of Theorem 3.3 will be provided. This proof requires
some technical details related to the intersection of a random subspace and a cone. In particular, we will
characterize certain properties of the intersection by using a modification of the results provided in [25]. We
will also give examples to illustrate generality of our results.

4 Upper Bound and Its Interpretation

For the rest of the paper, we will make the following assumptions.

• f(·) : Rn → R is a convex function.

• C ⊂ Rn is a nonempty, convex and closed set.

• x0 ∈ C.

Notation: When it is clear from context, the minimizer of an optimization over x will be denoted by x∗.
Following from Section 3.1, for a closed and convex set C, the “distance vector” from C to x is defined as
x− Proj(x, C) and is denoted by Π(x, C). Since projection is the nearest point, ‖Π(x, C)‖2 = dist(x, C).

To distinguish the deterministic analysis from stochastic analysis, we will allocate τ and solve,

x∗ = arg min
x∈C

τf(x) +
1

2
‖y − x‖22 (4.1)

when the noise is deterministic. When noise is distributed as N (0, σ2I), we will set τ = σλ and λ will
correspond to the penalty for stochastic noise.

4.1 Upper bounding the error

Lemma 4.1 (Optimality conditions). Let y = x0 +z and assume f(·) is a convex function and C is a convex
and closed set containing x0. Let τ ≥ 0. Consider the problem (4.1). x∗ is the unique optimal solution if
and only if there exists s ∈ ∂f(x∗) and u ∈ TC(x∗)∗ such that:

τs + u + x∗ = y (4.2)

Alternatively, we can state (4.2) in terms of the error vector w∗ = x∗ − x0 and the noise z, as follows.

τs + u + w∗ = z (4.3)

Proof. The fact that “x∗ is the optimal solution if and only if (4.2) holds” follows from Proposition 4.7.2
of [86] and considering the subdifferential of the objective τf(x)+ 1

2‖y−x‖22. On the other hand, uniqueness
follows from the strict convexity of the objective function of the proximity operator (4.1).

The next lemma provides an upper bound on the `2 norm of the error term w∗ = x∗ − x0.

Lemma 4.2. Consider the problem (4.1). Let w∗ = x∗ − x0. Assuming the setup of Lemma 4.1, we have:

‖w∗‖2 ≤ dist(z, τ∂f(x0) + TC(x0)∗).
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Proof. Before starting the proof we emphasize that τ∂f(x0) +TC(x0)∗ is closed due to the fact that τ∂f(x0)
is compact and TC(x0)∗ is closed. From the optimality conditions, there exists s ∈ ∂f(x∗) and u ∈ TC(x∗)∗
such that (4.3) holds. Now, let K := K(C, f,x0) = τ∂f(x0)+TC(x0)∗. Further, let s0 ∈ ∂f(x0), u0 ∈ TC(x0)∗

and w0 = z − τs0 − u0. We will first explore the relation between the dual vectors and w∗. The following
inequality follows from the standard properties of the subgradients.

(w∗)T s ≥ f(x0 + w∗)− f(x0) ≥ (w∗)T s0 =⇒ (w∗)T (s− s0) ≥ 0 (4.4)

Since u ∈ TC(x∗)∗ and −w∗ ∈ TC(x∗), we have:

〈u,w∗〉 ≥ 0 (4.5)

Similarly, u0 ∈ TC(x0)∗ and w∗ ∈ TC(x0), hence:

〈u0,w
∗〉 ≤ 0 (4.6)

Overall, combining (4.4), (4.5) and (4.6), we find:

〈w∗, (u + τs)− (u0 + τs0)〉 ≥ 0 (4.7)

From (4.7), we will conclude that ‖w∗‖2 ≤ ‖w0‖2. (4.7) is equivalent to:

〈w∗, (z−w∗)− (z−w0)〉 = 〈w∗,w0 −w∗〉 ≥ 0 =⇒ ‖w∗‖22 ≤ 〈w∗,w0〉 ≤ ‖w∗‖2‖w0‖2 (4.8)

Hence, we indeed have: ‖w0‖2 ≥ ‖w∗‖2. Since this is true for all s0,u0, we can choose the w0 with the
shortest length, namely, choose w0 to be the distance vector w0 = Π(z, TC(x0)∗ + τ∂f(x0)) to conclude.

As a direct application of Lemma 4.2, we can upper bound the expected errors as follows when z is
stochastic.

Proposition 4.1. Let σ > 0, λ ≥ 0. In problem (4.1), let z = σv, where v ∼ N (0, I). Then,

• Denote the minimizer of (4.1) by x∗ = x∗(τ, z). Letting τ = σλ,

E[‖x∗ − x0‖22]

σ2
≤ D(λ∂f(x0) + TC(x0)∗). (4.9)

• Let λ∗ = arg minλ≥0 D(λ∂f(x0) + TC(x0)∗). By choosing τ = λ∗σ in (4.1) and using (4.9) we have,

E[‖x∗ − x0‖22]

σ2
≤ min

λ≥0
D(λ∂f(x0) + TC(x0)∗) (4.10)

• Setting C = Rn in (4.9), we show ≤-direction of Theorem 1.1.

• Setting f(·) = 0 in (4.9), we show ≤-direction of Theorem 3.1.

Proof. Let τ = σλ and w∗(τ, z) = x∗(τ, z)− x0. From Lemma 4.2, the noise in (4.1) satisfies:

‖w∗(τ, z)‖2 ≤ dist(z, σλ∂f(x0) + TC(x0)∗) = dist(σv, σλ∂f(x0) + TC(x0)∗).

Taking the squares of both sides and normalizing by σ2, we find,

‖w∗(τ, z)‖22
σ2

≤ dist(v, λ∂f(x0) + TC(x0)∗)2.

Now, taking the expectations of both sides and using v ∼ N (0, I), we end up with the first statement (4.9).
Second statement follows immediately. For third statement, observe that if C = Rn (i.e. no constraint) then
FC(x0) = Rn and TC(x0)∗ = {0}. Finally, if f(·) = 0 (i.e. no penalization), ∂f(x0) = λ∂f(x0) = {0}.
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4.2 First order approximation

In this section, we will consider the first order approximation of the proximal denoising problem around x0

and we will argue that, the error term of the first order problem is exactly same as the upper bound provided
in Lemma 4.2. This will provide a good intuition for our consecutive results, which argue that the least
favorable noise distribution that maximizes normalized MSE occurs as σ → 0.
Notation: Given w,x0, f(·), ε > 0, the ratio f(x0+εw)−f(x0)

ε is nondecreasing as a function of ε. Furthermore,
the “directional derivative” along w is defined as [84,88],

lim
ε→0

f(x0 + εw)− f(x0)

ε
= f ′(x0,w) (4.11)

It is known that, [88], there is a trivial relation between the directional derivative and the subgradients,

f ′(x0,w) = sup
s∈∂f(x0)

〈w, s〉 . (4.12)

We will extensively make use of this equality later on. Finally, let us denote the “set of maximizing subgra-
dients” of f(·) at x0 along w, via ∂f(x0,w). In particular,

∂f(x0,w) := {s ∈ ∂f(x0)
∣∣sTw = sup

s′∈∂f(x0)

(s′)Tw} (4.13)

∂f(x0,w) basically corresponds to a face of the subdifferential along w. Observe that, the supremum on the
right hand side is the directional derivative of f(·) at x0 along w.

4.2.1 Approximated problem

• Approximating the function f(·) at x0: We will use the first order approximation f̂x0
(·) of f(·) at

x0, which is achieved via directional derivatives. In particular, we will let:

f̂x0
(x) = f(x0) + sup

s∈∂f(x0)

〈s,x− x0〉 (4.14)

It is known that, f(·) behaves like f̂x0
(·) in the close proximity of x0, [86]. (4.14) can be viewed as a

generalization of the first order approximation of differentiable functions. Furthermore, observe that,
f̂x0

(x) ≤ f(x) for all x due to convexity and the subgradient property.

• Approximating the set C at x0: We will find an approximation of C by considering the tangent cone
of C at x0. This follows from the fact that TC(x0) provides a good approximation of the set of feasible
perturbations FC(x0) around 0 as we have TC(x0) = Cl(cone(FC(x0))). Hence, the approximation to
the set C will be:

Ĉx0
= x0 + TC(x0) (4.15)

• The approximated problem around x0: Approximated problem is obtained by approximating the
function and the set simultaneously and considering (4.1) with the new function and set f̂ , Ĉ.

min
x∈Ĉx0

τ f̂x0(x) +
1

2
‖y − x‖22 (4.16)

As it is argued in Lemma B.1, the first order approximation of f(·) is a convex function and hence
(4.16) is a convex problem.

The nice property of the problem (4.16) is the fact that, it can be solved exactly. It also provides an
insight about what to expect as the minimax risk. We will now show that, the error in the approximated
problem is exactly equal to the upper bound given in Lemma 4.2. Hence, the error in the original problem
is always upper bounded by the error in the approximated problem. However, intuitively, the approximation
will be tight when the noise variance is sufficiently small, hence when the variance σ is small, the error in
the original problem will be approximately equal to the upper bound.

Before analysis of the approximated problem, we will provide a lemma which shows that the subgradients
of f̂x0

can be found exactly. The proof can be found in the Appendix B.
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Lemma 4.3. Let f̂x0 be same as in (4.14). For any x, we have,

∂f̂x0(x) = ∂f(x0,x− x0) (4.17)

Basically, the subgradients of f̂x0 are the maximizing subgradients of f(·), i.e., the set of subgradients
that maximizes the inner product with x− x0.

The next result, characterizes a useful property of the projection on a convex set, [86].

Lemma 4.4. Let K be a closed and convex set and v be an arbitrary vector. We have,

〈Proj(v,K),Π(v,K)〉 = sup
u∈K
〈u,Π(v,K)〉

In words, the projection vector maximizes the inner product with the distance vector over K.

We have the following result regarding the first order approximated problem (4.16).

Proposition 4.2 (Solution for the approximated problem). Let f̂x0 and Ĉ be same as (4.14) and (4.15)
respectively. Let x̂ = x̂(τ, z) denote the optimal solution of (4.16). Then, we have:

x̂− x0 = Π(z, τ∂f(x0) + TC(x0)∗) (4.18)

Proof. Let ŵ = x̂ − x0. From optimality conditions, x̂ is the unique minimizer of (4.16) if and only if, it
satisfies,

τs + u + ŵ = z (4.19)

where s ∈ ∂f̂x0(x̂) and u ∈ TĈx0
(x̂)∗. Using Lemma 4.3, s ∈ ∂f̂x0(x̂) is identical to s ∈ ∂f(x0, x̂− x0).

Assume (4.18) holds, then z − ŵ = τs + u for some u ∈ TC(x0)∗ and s ∈ ∂f(x0). We will show that,
(4.19) holds for this particular ŵ, s,u and x̂ is indeed the minimizer of (4.16). Since z−u is the closest point
to τ∂f(x0), we have:

ŵ = Π(z− u, τ∂f(x0)), τs = Proj(z− u, τ∂f(x0))

In conjunction with Lemma 4.4, this implies 〈ŵ, s〉 = sups′∈∂f(x0) 〈s′, ŵ〉 which in turn implies s ∈ ∂f(x0, x̂−
x0) = ∂f̂x0(x̂) based on Lemma 4.3. In a similar manner, we have:

ŵ = Π(z− τs, TC(x0)∗), u = Proj(z− τs, TC(x0)∗)

Using Moreau’s decomposition theorem (see Lemma A.3), this implies that ŵ ∈ TC(x0) and 〈ŵ,u〉 = 0.
Now, we will argue that u ∈ TĈx0

(x̂)∗ to conclude. Let v ∈ FĈx0
(x̂). This implies v + x0 + ŵ ∈ Ĉx0 or

alternatively, v + ŵ ∈ TC(x0). Hence,
〈v + ŵ,u〉 ≤ 0

Using 〈ŵ,u〉 = 0, we find for all v ∈ FĈx0
(x̂), 〈v,u〉 ≤ 0. This will still be true when we take the closure

and the cone of the set FĈx0
(x̂(τ, z)) which gives 〈v,u〉 ≤ 0 for all v ∈ TĈx0

(x̂) and implies u is in the polar

cone of TĈx0
(x̂).

This shows that the approximated problem (4.16) can be solved exactly and its error exactly matches
with the upper bound found in Lemma 4.2. This observation provides a good interpretation of Lemma 4.2.

The next corollary follows immediately from Proposition 4.2 and gives MSE results under stochastic noise.
The proof is based on taking the expectation of (4.18) over z.

Corollary 4.1 (Approximated MSE). Assume v ∼ N (0, I). Let z = σv in the approximated problem (4.16)
and let τ = σλ. Denote the minimizer by x̂(λ, z). Then,

E[‖x̂(λ, z)− x0‖22] = σ2E[dist(v, λ∂f(x0) + TC(x0)∗)2].

The next section is dedicated to showing that the bounds we have provided so far are in fact sharp. In
particular, as σ → 0, the original problem (4.1) behaves same as the approximated problem (4.16).
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5 Tight lower bound when σ → 0

We will now focus our attention to the ≥-direction of Theorem 1.1 and hence the regularized estimator (no
constraint),

x∗(τ, z) = arg min τf(x) +
1

2
‖(x0 + z)− x‖22 (5.1)

We will show that, one can find a good lower bound for the estimation error ‖x∗(τ, z)− x0‖2 in (5.1). The

following proposition states that f(·) can be approximated by f̂x0
(recall (4.14)) around x0 along all directions

simultaneously. This result is a stronger version of (4.12) and is due to Lemma 2.1.1 of Chapter VI of [88].

Proposition 5.1. Assume f(·) is a convex function on Rn. Then, for any given δ0 > 0, there exists some
ε0 > 0 such that, for all w ∈ Rn, with ‖w‖2 ≤ ε0, the following holds:

0 ≤ f(x0 + w)− f̂x0
(x0 + w) ≤ δ0‖w‖2 (5.2)

While it is clear that f̂x0(·) is an under estimator of f(·) at all points, upper bounding f(·) in terms of

f̂x0
(·) and a small first order term will be quite helpful for the perturbation analysis.

5.1 Deterministic lower bound

The following lemma provides a deterministic lower bound on the error x∗(τ, z) − x0. Unlike the previous
sections, there will be no set constrained (i.e. C) in the consequent analysis.

Lemma 5.1. Consider the problem (5.1). Let w0 := Π(z, τ∂f(x0)). Assume τ ≤ C0‖w0‖2 for some constant
C0 > 0. Using Proposition 5.1, choose δ0, ε0 > 0 ensuring (5.2). Then, whenever ‖w0‖2 ≤ ε0,

‖x∗(τ, z)− x0‖2 ≥ (1−
√

2δ0C0)dist(z, τ∂f(x0)).

Proof. To begin with, observe that, ‖w0‖2 = dist(z, τ∂f(x0)). Let s0 = Proj(z,τ∂f(x0))
τ . From Lemma 4.4,

s0 ∈ ∂f(x0,w0) where ∂f(x0,w0) is given by (4.13). Let us rewrite the objective function of (5.1) as a
function of the perturbation w = x− x0.

g(w) = τ(f(x0 + w)− f(x0)) +
1

2
‖z−w‖22

Using the facts that ‖w0‖2 ≤ ε0, τ ≤ C0‖w0‖2 and w0 + τs0 = z, we have the following,

g(w0) = τ(f(x0 + w0)− f(x0)) +
1

2
‖z−w0‖22

= τ(〈s0,w0〉+ (f(x0 + w0)− f̂x0
(x0 + w0))) +

1

2
‖z−w0‖22

≤ τ(〈s0,w0〉+ δ0‖w0‖2) +
1

2
‖w0‖22 − 〈z,w0〉+

1

2
‖z‖22

≤ C0δ0‖w0‖22 +
1

2
‖w0‖22 − 〈z− τs0,w0〉+

1

2
‖z‖22

= (C0δ0 −
1

2
)‖w0‖22 +

1

2
‖z‖22

= (C0δ0 −
1

2
)dist(z, τ∂f(x0))2 +

1

2
‖z‖22. (5.3)

Letting w∗(τ, z) = x∗(τ, z) − x0, g(w∗(τ, z)) should be smaller than the right hand side of (5.3) as x∗(τ, z)
should outperform x0 + w0. Choose s∗ ∈ ∂f(x0,x

∗(τ, z)− x0). Then, g(w∗(τ, z)) can be lower bounded as
follows:

g(w∗(τ, z)) ≥ τ 〈s∗,w∗(τ, z)〉+
1

2
‖z−w∗(τ, z)‖22

= τ 〈s∗,w∗(τ, z)〉 − 〈z,w∗(τ, z)〉+
1

2
‖w∗(τ, z)‖22 +

1

2
‖z‖22

= −〈w∗(τ, z), z− τs∗〉+
1

2
‖w∗(τ, z)‖22 +

1

2
‖z‖22 (5.4)
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Now, using s∗ ∈ ∂f(x0,w
∗(τ, z)),

〈w∗(τ, z), s∗〉 ≥ 〈w∗(τ, z), s0〉 =⇒ −〈w∗(τ, z), z− τs∗〉 ≥ − 〈w∗(τ, z), z− τs0〉

Combining this and (5.4), g(w∗(τ, z)) satisfies:

g(w∗(τ, z)) ≥ 1

2
‖w∗(τ, z)‖22 − ‖w∗(τ, z)‖2dist(z, τ∂f(x0)) +

1

2
‖z‖22 (5.5)

From Lemma 4.2, it is known that ‖w∗(τ, z)‖2 ≤ dist(z, τ∂f(x0)). Now, calling a = ‖w∗(τ, z)‖2, b =
dist(z, τ∂f(x0)), and t = 2C0δ0, g(w∗(τ, z)) ≤ g(w0) implies,

a2

2
− ab ≤ (

t− 1

2
)b2.

Setting u = a/b and using 1 ≥ u, t ≥ 0, we have:

ub2 − u2b2/2 ≥ (1− t)b2/2 =⇒ 2u− u2 ≥ (1− t) =⇒ u2 − 2u+ (1− t) ≤ 0

Overall, 1 ≥ u ≥ 1−
√
t. Equivalently, ‖w∗(τ, z)‖2 ≥ (1−

√
2C0δ0)dist(z, τ∂f(x0)).

This lemma shows that, when z is sufficiently small, then the error ‖w∗‖2 will be close to its upper
bound given in Lemma 4.2. Observe that, we assumed τ ≤ C0dist(z, τ∂f(x0)) for some C0 > 0. The
setup of Theorem 1.1 already prepares the background for this assumption as it chooses τ = σλ and z ∼
N (0, σ2I). Together, these will ensure z, τ is approximately proportional and Lemma 4.2 is applicable, with
high probability, for sufficiently large C0. The choice τ = σλ for a fixed λ, is in fact a well-known property
of the soft thresholding operator, [4, 30,35,40,73,74].

5.2 Stochastic lower bound for regularized NMSE

To finish the proof of Theorem 1.1, we need to show that the upper bound can be achieved as σ → 0. This
will be the topic of this section.

Proposition 5.2. Consider program (5.1) with τ = σλ and z = σv where v ∼ N (0, In). Then, we have:

lim
σ→0

E[‖x∗(σλ, σv)− x‖22]

σ2
= D(λ∂f(x0))

Proof. To begin with, observe that D(λ∂f(x0)) > 0 as λ∂f(x0) is a compact set. Let w∗ = x∗(σλ, σv)− x.
Denote the probability density function of an N (0, cI) distributed vector by pc(·). We can write:

E[‖w∗‖22] =

∫
z∈Rn

‖w∗‖22pσ(z)dz

We will split the error term into three parts where the integration is performed over the following sets.

• S1 = {a ∈ Rn
∣∣‖a‖2 ≥ C1σ}.

• S2 = {a ∈ Rn
∣∣‖a‖2 ≤ C1σ, dist(a, λσ∂f(x0)) ≥ ε1σ}.

• S3 = {a ∈ Rn
∣∣‖a‖2 ≤ C1σ, dist(a, λσ∂f(x0)) ≤ ε1σ}.

where C1, ε1 are positive scalars to be determined later on. Recall that v = z
σ and define the associated

restricted integrations Ii, Îi, which are given as:

Ii =

∫
z∈Si
‖w∗‖22pσ(z)dz

Îi =

∫
σv∈Si

dist(v, λ∂f(x0))2p1(v)dz

From Proposition 4.1, E[‖w∗(σλ, σv)‖22] = I1 + I2 + I3 ≤ σ2(Î1 + Î2 + Î3). To proceed,
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• We will first argue that Î1 and Î3 are smaller compared to Î2.

• Then, we will argue that I2 is close to Î2.

• These will yield:
I1 + I2 + I3 ≥ I2 ≈ Î2 ≈ Î1 + Î2 + Î3

Claim: We have,
Î2 ≥ D(λ∂f(x0))− [ε21 +Q(C1)] (5.6)

where Q(C1)→ 0 as C1 →∞.

Proof. Using the boundedness of ∂f(x0), let R = Rx0
= sups∈∂f(x0) ‖s‖2. dist(v, λ∂f(x0))2 can be upper

bounded as,
dist(v, λ∂f(x0))2 ≤ (‖v‖2 + λR)2 ≤ 2(‖v‖22 + λ2R2).

Observe that, Î1 is calculated over the region ‖v‖2 ≥ C1. As C1 → ∞, since the multivariate Gaussian
distribution have finite moments, we have Î1 := Q(C1)→ 0.

Î3 can be upper bounded by the integration of ε21 over Rn which yields Î3 ≤ ε21. Finally, using,

3∑
i=1

Îi = D(λ∂f(x0))

we have Î2 ≥ D(λ∂f(x0))− ε21 −Q(C1).

The following lemma finishes the proof by using Lemma 5.1.

Lemma 5.2. Let R = sups∈∂f(x0) ‖s‖2. Based on Proposition 5.1, for any δ0 > 0, there exists ε0 > 0 so
that,

f(x0 + w)− f̂x0
(x) ≤ δ0‖w‖2 for all ‖w‖2 ≤ ε0. (5.7)

Now, for any given (fixed) ε1, C1, δ0, ε0, choose σ sufficiently small to ensure (C1 + Rλ)σ < ε0. Then, for
all such σ’s,

I2 ≥ σ2(1−
√

2δ0λε
−1
1 )Î2. (5.8)

Following from (5.8) and letting δ0 → 0 (by choosing ε0 properly) and keeping σ accordingly small, we
obtain,

lim
σ→0

E[‖w∗(λ, z)‖22
σ2Î2

≥ lim
σ→0

I2

σ2Î2
≥ 1. (5.9)

Since this is true for arbitrary ε1, C1 letting C1 → ∞ and ε1 → 0 and using the relation (5.6), we can
conclude,

lim
σ→0

E[‖w∗(λ, z)‖22]

σ2
≥ D(λ∂f(x0)). (5.10)

Proof. To show the result, we will use Lemma 5.1. To apply Lemma 5.1 with w0 = dist(z, σλ∂f(x0)), we
will show that, all z ∈ S2 satisfy the requirements.

• First, observe that, for any z ∈ S2, from triangle inequality, we have,

dist(z, σλ∂f(x0)) ≤ σλR+ σC1 ≤ (λR+ C1)σ ≤ ε0.

• Secondly, we additionally have,

τ = σλ ≤ λ

ε1
dist(z, σλ∂f(x0)).

• Using these and (C1 + λR)σ < ε0, we can apply Lemma 5.1 for all z ∈ S2 to obtain,

‖w∗(λ, z)‖2 ≥ (1−
√

2δ0λε
−1
1 )dist(z, σλ∂f(x0)) (5.11)
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Integrating over S2, we find (5.8). Recall that, σ is under our control and all z ∈ S2 = S2(σ) with σ < ε0
λR+C1

satisfies (5.11); which is only a function of δ0 when C1, ε1 are fixed. We can let δ0 → 0, while keeping σ
sufficiently small compared to ε0, to obtain, (5.9) after an integration over S2.

(5.9) is true for any constants C1, ε1 > 0 as σ → 0. Letting C1 →∞, ε1 → 0 and using (5.6), we obtain,

lim
C1→∞,ε1→0

Î2
D(λ∂f(x0))

= 1.

Finally, combining this with (5.9), and letting σ → 0 as a function of C1 → ∞, ε1 → 0, we get the desired
result (5.10). Hence, this shows the ≥–direction in Theorem 1.1 as σ → 0.

6 Further discussion on proximal denoising

The remaining two things are the proofs for Theorem 3.1 and discussion of (3.5) which relates Theorem 3.1
and 1.1. We should remark that, for Theorem 3.1, Proposition 4.1 already provides the upper bound on
the estimation error. In order to show the exact equality in (3.3), we use arguments which are similar to
Proposition 5.2 in nature. This time, instead of arguing the function f(·) can be well approximated by the
directional derivatives in a small neighborhood, we consider the first order approximation of FC(x0) by the
tangent cone TC(x0). The reader is referred to Appendix E for the proof.

We will now discuss the relation between the terms D(cone(∂f(x0))) and D(λ∂f(x0)); which relates
constrained and regularized estimation results and also the noiseless linear inverse problem (3.8) to each
other. From Propositions 5.2 and 4.1, recall that D(λ∂f(x0)) corresponds to the worst case NMSE of the
λ-regularized proximity operator (1.3). When we tune λ optimally, we can achieve an error as small as
infλ≥0 D(λ∂f(x0)). We related this to D(cone(∂f(x0))) via (3.5). The right hand side is due to Theorem
4.5 of [25] which gives the following bound,

inf
λ≥0

D(λ∂f(x0)) ≤ D(cone(∂f(x0))) +
2 sups∈∂f(x0) ‖s‖2

f( x0

‖x0‖2 )
(6.1)

when f(·) is a norm. This bound can be enhanced by choosing an x that maximizes f( x
‖x‖2 ) while ensuring

∂f(x) = ∂f(x0). We will now provide some observations on (6.1). Later on, we will exemplify how this
upper bound is quite simple and powerful for well-known structure inducing functions. We will also propose
an alternative upper bound of our own that only depends on the subdifferential ∂f(x0) and does not require
f(·) to be norm.

6.1 Observations on the upper bound

Upper bounding infτ≥0 D(x0, τf) in terms of D(cone(∂f(x0))) requires technical argument involving Gaus-
sian concentration. While (6.1) looks simple, magnitudes of sups∈∂f(x0) ‖s‖2 and f( x0

‖x0‖2 ) might not always

be clear.
For the consequent discussion, we will use the following notation. Let,

Rx0
= sup

s∈∂f(x0)

‖s‖2 and fmax(x0) = sup
∂f(x)=∂f(x0)

f

(
x

‖x‖2

)
. (6.2)

fmax(x0) corresponds to the largest value of f( x
‖x‖2 ) while keeping subdifferential fixed. Since infτ≥0 D(x0, τf)

and D(cone(∂f(x0))) depends only on the set subdifferential we can use fmax(x0) to get a better bound on
the right hand side of (6.1).

We will now briefly investigate this quantity for the classical sparsity inducing functions and argue that
it has a simple interpretation in general.

• `1 norm: If x0 is a k sparse signal, then, subgradient is given as:

∂‖x0‖1 =

{
s ∈ Rn

∣∣{si = sgn(x0,i) when x0,i 6= 0

si ∈ [−1, 1] else

}
(6.3)
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Hence, subgradients only depend on the sign of the signal. This way, by keeping sgn(x0) same and
normalizing the magnitudes, we can make f( x0

‖x0‖2 ) as large as
√
k. On the other hand, Rx0 is trivially

equal to
√
n and it is achieved by choosing |si| = 1 for all 1 ≤ i ≤ n. Consequently, we find:

Rx0

fmax(x0)
=

√
n

k
(6.4)

• Nuclear norm: We now assume x0 is a vectorized form of a rank r matrix X0 ∈ Rd×d where n = d2.
Assume, X0 has singular value decomposition UΣVT where Σ ∈ Rr×r has positive diagonals. Set of
subgradients of the nuclear norm at X0 can be given as [23],

∂‖X0‖? = {S
∣∣UTSV = Ir and ‖(Id −UUT )S(Id −VVT )‖? ≤ 1} (6.5)

In a very similar manner to the `1 norm, subgradients of the nuclear norm depends only on the singular
vectors of X0 and not on its singular values. Consequently, by normalizing singular values of X0 without
modifying S we can make f( x0

‖x0‖2 ) as high as
√
r. On the other hand, supS∈∂‖X0‖? ‖S‖F is

√
d and it

is achieved when all singular values of S are equal to 1. This yields,

Rx0

fmax(x0)
=

√
d

r
(6.6)

• `1,2 norm: Let x0 ∈ Rn for n = tb as described in (1.8). Subdifferential of `1,2 yields Rx0 =
√
t,

[23]. Similar to `1 norm, normalizing `2 norms of the individual blocks of x0, it can be shown that
fmax(x0) =

√
k. Hence,

Rx0

fmax(x0)
=

√
t

k
(6.7)

The reason behind these examples is to provide the reader with an intuition about the quantity
Rx0

fmax(x0) .

From these examples, we observe the following relation,

Rx0

fmax(x0)
≈
(

Ambient dimension

Degrees of freedom

)1/2

(6.8)

For `1 minimization, this is fairly clear as a sparse signal has k degrees of freedom. For a d×d rank r matrix,
degrees of freedom is r(2d − r), [47], which lies between dr and 2dr and the ambient dimension that the

matrix belongs is d2. From (6.6), we indeed have:
√

d
r =

√
d2

dr .

6.1.1 Simple bounds on optimal tuning for common functions

From (6.4) and (6.6), we can state the following results as straightforward observations.

Proposition 6.1 (Sandwiching optimally tuned NMSE). Let x0 ∈ Rn.

• Assume, x0 is a k sparse signal (recall (1.6)). Then, using D(cone(∂‖x0‖1)) ≥ k, we have:

1 ≤ minλ≥0 D(λ∂‖x0‖1)

D(cone(∂‖x0‖1))
≤ 1 + 2

√
n

k3
(6.9)

• Assume x0 corresponds to a rank r matrix with size d × d where n = d2 (recall (1.7)). Using
D(cone(∂‖x0‖?)) ≥ rd,

1 ≤ minλ≥0 D(λ∂‖x0‖?)
D(cone(∂‖x0‖?))

≤ 1 + 2

√
1

r3d
(6.10)

• Assume x0 is a block sparse signals (recall (1.8)) where n = tb has t blocks of size b and k of the blocks
are nonzero. Using D(cone(∂‖x0‖1,2)) ≥ kb,

1 ≤ minλ≥0 D(λ∂‖x0‖1,2)

D(cone(∂‖x0‖1,2))
≤ 1 + 2

√
t

b2k3
(6.11)
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Proof. For the proof, we combine (6.4), (6.6), (6.7) with the facts that,

D(cone(∂‖x0‖1)) ≥ k, D(cone(∂‖x0‖?)) ≥ rd, D(cone(∂‖x0‖1,2)) ≥ bk. (6.12)

Then, we apply (6.1). These bounds trivially arise from the specific structure of the sub-differentials of the
`1, nuclear norm and `1,2 norm. For (6.12), the reader is referred to [23,24,68] for a detailed discussion. Note
that k, 2dr−r2 and bk are the “degrees of freedom” for the k sparse signal, rank r matrix and k block-sparse
signal hence (6.12) is intuitive.

6.1.2 Alternative upper bounds

We should emphasize that, different bounds can be developed. We will next consider a bound that does not
involve the term f(x); however requires the following assumption.

Assumption 6.1. There exists a nontrivial subspace T = T (f,x0) and a vector e = e(f,x0) so that, for all
s ∈ ∂f(x0), we have:

Proj(s, T ) = e (6.13)

This assumption is related to the concept of decomposable norms, [23,24,56,68], and is known to be true
for sparsity inducing functions. If there are many such subspaces, we will choose the one with the largest
dimension. In general, T is called the support of the sparse signal and e is known as the “sign” vector. For
example, for `1 norm, T is the set of vectors, whose location of the nonzero entries are same as that of x0.
On the other hand, e is simply the vector sgn(x0).

For the nuclear norm described in (6.5), T is the set of matrices X satisfying (Id−UUT )S(Id−VVT ) = 0
and the sign vector is UVT .

To be able to analyze minτ≥0 D(x0, τf), for a given vector v, we are interested in the optimal regularizer
τ(v) that minimizes dist(v, τ∂f(x0)) over all τ ≥ 0. In general, τ(v) may not be unique. In this case,
we will use the smallest value. Assumption 6.1 implies an interesting property for τ(v), namely, τ(v) is a
‖e‖−1

2 -Lipschitz function of v. In other words, the optimal regularizer cannot change too much with a small
change in v. More rigorously, for all v1,v2 ∈ Rn,

‖τ(v1)− τ(v2)‖2 ≤
‖v1 − v2‖2
‖e‖2

(6.14)

Based on this observation, we have the following result. The proof can be found in Lemma C.4 of
Appendix C.

Proposition 6.2. Suppose Assumption 6.1 holds. Let Lx0
= ‖e‖−1

2 . Then,

inf
τ≥0

D(x0, τf) ≤ D(cone(∂f(x0))) + 2π(R2
x0
L2
x0

+Rx0
Lx0

√
D(cone(∂f(x0))) + 1) (6.15)

The right hand side of (6.15) involves the quantity Rx0
Lx0

. For the norms we considered, this quantity

is actually equal to
Rx0

fmax(x0) as we have ‖e‖2 = fmax(x0). Consequently, there is a close relation between the

two upper bounds (6.1) and (6.15). Observe that, unlike (6.1), (6.15) only depends on the properties of the
subdifferential set ∂f(x0) rather than the particular value of f(x0).

Finally, we should emphasize that ‖e‖22 is closely related to the “generalized sparsity” of the signal. The
reader is referred to [23,24,56,68] for a comprehensive discussion.

7 Calculation of the LASSO Cost

This section will make use of the results of [25]. Let us introduce the concept of statistical dimension and its
relation to Gaussian squared-distance.

Definition 7.1 (Statistical dimension, [25]). Let C ∈ Rn be a closed and convex cone. Statistical dimension
of C is denoted by δ(C) and is defined as,

δ(C) = E[‖Proj(g, C)‖22],

where g ∼ N (0, In).
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When C is a linear subspace, the statistical dimension reduces to the regular notion of dimension. In
general, δ(C) is a good measure of the size of C and C behaves like a δ(C) dimensional linear subspace, [25].
It is also closely related to the Gaussian width that has been the topics of papers [8,20]. When C is a convex
and closed cone, δ(C) and D(C) are related as follows,

δ(C∗) = D(C)

This follows from Moreau’s decomposition (Fact A.3) as follows,

D(C) = E[dist(g, C)2] = E[‖Π(g, C)‖22] = E[‖Proj(g, C∗)‖22] = δ(C∗)

Again using Moreau’s decomposition, it can be shown that δ(C) + δ(C∗) = E[‖g‖22] = n.

7.1 Proof of Theorem 3.3

We first present the proof of Theorem 3.3. To do this, we will make use of Theorem I of [25]; which
characterizes the probability of nontrivial intersection for two randomly oriented cones. To rotate a cone C
randomly, we will multiply its elements by a unitary matrix U; which is drawn uniformly at random.

UC := {Ua
∣∣a ∈ C}

Theorem 7.1 (Kinematic Formula, [25]). Let A,B be two arbitrary closed and convex cones, one of which is
not a subspace. Let U be a unitary matrix chosen uniformly at random with respect to Haar measure. Then,
for any ε > 0, the followings hold:

δ(A) + δ(B) ≤ n− ε√n =⇒ P(A ∩UB = ∅) ≥ 1− 4 exp(− ε
2

16
)

δ(A) + δ(B) ≥ n+ ε
√
n =⇒ P(A ∩UB = ∅) ≤ 4 exp(− ε

2

16
)

Theorem 7.1 shows that, two cones will intersect with high probability when δ(A) + δ(B) > n. In order
to prove Theorem 3.3, we introduce a useful variation of Theorem 7.1, which probabilistically characterizes
the statistical dimension of the intersection when two cones do intersect. Basically, we show that, when
δ(A) + δ(B), with high probability, δ(A∩UB) is around δ(A) + δ(B)−n. The detailed discussion of this can
be found in Appendix D. We now proceed with the proof of Theorem 3.3 and as a first step, we will prove
the results on the projected LASSO error ηLASSO.

7.2 Finding ηLASSO

Proof of Theorem 3.3, Calculation of ηLASSO. We will reduce (3.9) to a problem that is equivalent to the
regular constrained denoising (3.2). Consider the set,

AC = {Ax
∣∣x ∈ C}

Hence, finding Ax∗ is equivalent to finding the solution of:

min
u∈AC

‖y − u‖2 (7.1)

where y = Ax0 + σv. From Theorem 3.1, we know that, for fixed A and Gaussian v, the worst case NMSE
A(x− x0) satisfies:

ηLASSO = max
σ>0

E[‖A(x− x0)‖22]

σ2
= D(TAC(Ax0)∗) (7.2)

Hence, we simply need to characterize D(TAC(Ax0)∗) to conclude. To do this, we will make use of the fact
that A ∈ Rm×n is a uniformly random partial unitary matrix and we will first characterize TAC(Ax0)∗. The
following lemma, provides this characterization.

Lemma 7.1. Assume AAT = Im and let C(x0,A
T ) = TC(x0)∗ ∩ Range(AT ). Then,

TAC(Ax0)∗ = AC(x0,A
T ) (7.3)
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Proof. Assume s ∈ AC(x0,A
T ) and u ∈ FAC(Ax0). Then, there exists x ∈ C such that, u = A(x− x0) and

s′ ∈ C(x0,A
T ) such that As′ = s. Then,

〈s,u〉 = 〈As′,A(x− x0)〉 =
〈
ATAs′,ATA(x− x0)

〉
=
〈
s′,ATA(x− x0)

〉
= 〈s′,x− x0〉 ≤ 0

Hence s ∈ TAC(Ax0)∗. Conversely, assume s 6∈ AC(x0,A
T ) and let s′ = AT s. s′ 6∈ TC(x0)∗ because

s′ ∈ Range(AT ) however As′ 6∈ AC(x0,A
T ). Consequently, there exists x ∈ C such that 〈x− x0, s

′〉 > 0. It
follows,

0 < 〈x− x0, s
′〉 =

〈
x− x0,A

TAs′
〉

= 〈A(x− x0),As′〉 = 〈A(x− x0), s〉 .
where Ax−Ax0 ∈ TAC(Ax0). This implies s 6∈ TAC(Ax0)∗. Overall, we find (7.3).

Based on Lemma 7.1, we can write,

ηLASSO = D(TAC(Ax0)∗) = m− δ(TAC(Ax0)∗) = m− δ(AC(x0,A
T )),

and calculate δ(AC(x0,A
T )) with high probability. Recall from Lemma 7.1 that, C(x0,A

T ) is the intersection
of a cone with the uniformly random subspace Range(AT ). Hence Theorem 7.1 is applicable. We will now
split the problem in two cases.

• Case 1 m < D(TC(x0)∗): In this case, using Theorem 7.1 with t = D(TC(x0)∗)−m√
n

, we find, with

probability 1− c1 exp(−c2 (m−D(TC(x0)∗))2

n ), TC(x0)∗ ∩Range(AT ) = {0}. Consequently, TAC(Ax0)∗ =
A{0} = {0} which gives ηLASSO = m.

• Case 2 m > D(TC(x0)∗): In this case, we use a modification of Theorem 7.1 which characterizes the
statistical dimension of the intersection of a random subspace and a cone. This is, in fact, the topic
of Appendix D. From Proposition D.1, there exists constants c1, c2 > 0 such that, with probability
1− c1 exp(−c2t2), we have:

|δ(TC(x0)∗ ∩ Range(AT ))− (m−D(TC(x0)∗))| ≤ t√n
Equivalently, we have:

m−D(TC(x0)∗)− t√n ≤ δ(C(x0,A
T )) ≤ m−D(TC(x0)∗) + t

√
n (7.4)

On the other hand, since C(x0,A
T ) ⊂ Range(AT ), multiplication with partial unitary A preserves

the distances over Range(AT ) and is isometric, hence it will preserve the statistical dimension (see
properties of statistical dimension in [25]) and will yield,

δ(AC(x0,A
T )) = δ(C(x0,A

T ))

Overall, using (7.2) and applying Lemma 7.1, we have ηLASSO = m− δ(C(x0,A
T )). Now, using (7.4),

with the same probability, we find:

D(TC(x0)∗)− t√n ≤ ηLASSO ≤ D(TC(x0)∗) + t
√
n

7.3 Pinpointing the LASSO Cost

The next result directly follows from characterization of ηLASSO in Section 7.2 and Proposition E.1 and gives
the result on the LASSO cost FLASSO. Basically, we use the fact that FLASSO + ηLASSO = m.

Proposition 7.1 (LASSO cost). Assume A,v,x0, f is same as in Theorem 3.3. Consider the cost function
fobj(x0,A,v) = minx∈C ‖y −Ax‖22 in (3.9). Conditioned on A, define the asymptotic LASSO cost as:

FLASSO(A) = lim
σ→0

E[fobj(x0,A,v)]

σ2

where the expectation is over v ∼ N (0, Im). Then, there exists constants c1, c2 > 0 such that,

• Whenever m < D(TC(x0)∗), with probability 1− c1 exp(−c2 (m−D(TC(x0)∗))2

n ), FLASSO = 0.

• Whenever m > D(TC(x0)∗), with probability 1− c1 exp(−c2t2),

m−D(TC(x0)∗)− t√n ≤ FLASSO ≤ m−D(TC(x0)∗) + t
√
n.

19



7.4 Numerical results

Remark: To relate Theorem 3.3 to the level-set constrained problem minf(x)≤f(x0) ‖y−Ax‖2, we will make
use of the fact that Tf (x0)∗ = cone(∂f(x0)) when x0 is not a minimizer of f(·) (see [84]).

7.4.1 LASSO with the `1 norm

We considered the following `1 constrained optimization,

min
x
‖y −Ax‖22 subject to ‖x‖1 ≤ ‖x0‖1. (7.5)

We let x0 to be a k sparse vector and chose k to be 20, 40 and 60 while varying number of measurements
m from 20 to 400. The ambient dimension is n = 500. We have performed 50 realization of the problem in
which A is generated as a random unitary matrix and σv is the noise vector, where v ∼ N (0, I) and σ is
sufficiently small.

We have estimated the quantities ηLASSO and FLASSO by averaging ‖y−Ax∗‖22 and ‖Ax∗−Ax0‖22 over
50 realizations.

Finally, in order to verify our results, we estimate the term D(cone(‖x0‖1)). This is done by making
use of the classical results on `1 phase transitions, (see [3, 26, 28]). In particular, see Theorem 4 of [26].
For example, when n = 500 and x0 is 20 sparse, we find D(cone(‖x0‖1)) ≈ 89. Similarly, 40 and 60 gives
D(cone(‖x0‖1)) ≈ 142 and 186 respectively.

Figure 2 illustrates our results. In Figure 2(a), we observe that we can accurately predict projected
LASSO error based on Theorem 3.3. The dashed red line is what we theoretically expect and the blue, green
and black markers are the experimental results for k = 20, 40 and 60 respectively.

Figure 2(b) demonstrates that, LASSO cost can be similarly predicted. We should note that, in both
figures there is an apparent phase transition. When the number of measurements are not sufficient, (m <
D(cone(‖x0‖1))), we observe that ηLASSO increases linearly in m actually it is equal to m. On the other hand,
when the number of measurements are sufficient, ηLASSO stays same and is simply equal to D(cone(‖x0‖1)).

Recall that, m > D(cone(‖x0‖1)) regime is the regime where the noiseless compressed sensing problem
succeeds. For `1 minimization, [33] argues that, there is in fact a phase transition for noise sensitivity,
and when m > D(cone(‖x0‖1)), the LASSO will recover x0 robustly and when m < D(cone(‖x0‖1)), the

normalized error
‖x∗−x0‖22

σ2 will be unbounded as σ → 0. Overall, we observe that the phase transition for
ηLASSO and FLASSO occurs exactly at m ≈ D(cone(‖x0‖1)); which is also known to be the noise sensitivity
threshold [33].

It should be emphasized that the more popular formulation of LASSO is,

min
x

1

2
‖y − x‖22 + λ‖x‖1.

This has been studied in a series of papers [29–31, 33] and [29, 30, 74] give analytical characterization of the
asymptotic LASSO error E[‖x∗ − x0‖22]. On the other hand, our results hold for arbitrary convex functions
and are not limited to `1 minimization. Now, we will illustrate this with an example on nuclear norm.

7.4.2 LASSO with the nuclear norm

We next considered a scenario where x0 is a vectorized form of a 30 × 30, rank 4 matrix. We observe
y = Ax0 + σv where A is an m× 900 partial unitary and v ∼ N (0, I). We solve,

min
x
‖y −Ax‖22 subject to ‖x‖? ≤ ‖x0‖? (7.6)

where ‖ · ‖? returns the nuclear norm of the 30× 30 matrix form of x0.
To predict the LASSO cost, we made use of the results of [46], which approximates D(cone(‖x0‖?)) based

on the asymptotic singular value distribution of the n×n i.i.d. Gaussian matrices in a similar manner to the
`1 phase transition calculations.

Using results of [46], we estimate D(cone(‖x0‖?)) ≈ 389. We then repeat the same experiment that is
described in the previous section where we vary m from 30 to 900 in the intervals of 30 and average the
results to estimate ηLASSO and FLASSO.

This time, we additionally approximated the actual asymptotic LASSO error ELASSO = limσ→0
E[‖x∗−x0‖22]

σ2 .
Figure 3 shows the projected error and the actual error as a function of m. We observe that, projected error
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Figure 2: a) represents the expected projected LASSO error ‖A(x∗ − x0)‖22 when A ∈ Rm×n is partial unitary. b)
represents the LASSO cost i.e. E[‖y−Ax∗‖22]. Results are for `1 minimization, and for three different sparsity levels
of k = 20, 40 and 60. Vector length is n = 500. Measurements run from m = 20 to 400.
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Figure 3: Simultation is performed for a 30× 30 matrix of rank 4. The blue markers are the projected LASSO error;
which matches with theory. Green markers are the (total) normalized LASSO MSE; which is unbounded on the left
side of the phase transition line and a decreasing function of m on the right side of the PT line m = D(cone(∂f(x0)))
(recall Section 3.3).

can again be accurately predicted from our theoretical results. The LASSO is not robust for the regime
m < D(cone(‖x0‖?)) and ELASSO is unbounded. Conversely, when m > D(cone(‖x0‖?)) the error becomes
finite and decreases as a function of m. At m = n = 900, we see that ELASSO = ηLASSO. This is not sur-
prising due to the fact that ‖A(x∗−x0)‖2 = ‖x∗−x0‖2 when m = 900 as A becomes a full (square) unitary
matrix and preserves the `2 norm. Figure 4(a) provides the LASSO cost for the same simulation. The cost
satisfies FLASSO = m−ηLASSO as predicted by our theory. Figure 4(a) also illustrates how D(cone(∂f(x0)))
corresponds to the stability phase transition of (7.6) (recall Section 3.3).

7.4.3 LASSO for Gaussian matrices

We additionally performed the same simulations in Section 7.4.1 and solved (7.5) for i.i.d. Gaussian A rather

than partial unitary. Estimation of the quantities
E[‖A(x∗−x0)‖22]

σ2 and
E[‖y−Ax∗‖22]

σ2 are carried out in the in
the exact same manner. In Figure 4(b) the dashed red line is the theoretical prediction for ηLASSO when
A is unitary and the blue, green and black markers are the results for i.i.d. Gaussian A. Hence, Figure
4(b) indicates that, our results for partial unitary compression matrices also holds for Gaussian compression
matrices and the results might be universal. This would not be surprising given the recent advances of the
universality of the phase transitions, [71, 72].
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Figure 4: a) The LASSO cost as a function of measurements for 30 × 30, rank 4 matrix. b) This figure is same as
Figure 2(a) except i.i.d. Gaussian measurement is used rather than partial unitary.

8 Discussion of the results

We have considered the proximal denoising problem and provided sharp MSE upper bounds that are achiev-
able in the small noise regime. Our bounds depend on the convex geometry of the problem (1.1) and can be
captured by distance to the scaled subdifferential λ∂f(x0) or to the subdifferential cone cone(∂f(x0)). These
are meaningful quantities when x0 is a structured signal and f(·) is properly chosen to induce structure.
Surprisingly, our estimation bounds are closely related to the recovery phase transition of the linear inverse
problem (3.8).

We also showed an interesting phase transition for the generalized LASSO problem. When the number of
measurements m are smaller than D(cone(∂f(x0))), there is no noise robustness and the cost value is equal
to 0. On the other hand, when the number of measurements are more than D(cone(∂f(x0))), the cost is
around m−D(cone(∂f(x0))). This indicates that behavior of LASSO is closely related to the same quantity
D(cone(∂f(x0))).

We should again emphasize that, while `1-minimization is often the primary interest, our results apply
to all convex functions.

8.1 Future directions

• Analysis of Generalized LASSO: While we considered some basic properties of the generalized LASSO
problem (3.9), the most critical one is yet to be explored. We believe there is a simple formula that
predicts the LASSO error in,

min
x
‖y −Ax‖22 + λf(x) (8.1)

which depends on the number of measurements m, the subdifferential ∂f(x0) and the regularizer λ.
The generalized LASSO analysis will be a unification of the results on noiseless compressed sensing
(3.8) and compression-less denoising problem (1.1). Results of Chandrasekaran et al. and Amelunxen
et al. [8,25] apply to noiseless linear inverse problem (3.8) and we have mostly focused on estimation via
convex functions without linear measurements. With generalized LASSO analysis, one will hopefully
be able to predict the behavior of the noisy linear inverse problem and extend the results of [29,30,74],
from `1-minimization to arbitrary functions.

• Universality in denoising: Assume the noise vector z has independent and identically distributed (i.i.d.)
entries but the distribution is not normal. In this case, unfortunately our MSE bounds are no longer
accurate. A simple example is the scenario where x0 is a sparse signal, and the entries of z are equally
likely to be σ and −σ. If x0 is k sparse, D(cone(‖x0‖1)) ∼ k log 2n

k , [28].

On the other hand, assuming σ is sufficiently small and setting λ = 1 in (1.3), soft-thresholding reveals
that the estimate x∗ satisfies,

x∗i =

{
0 if x0,i = 0

x0,i − sgn(x0,i)σ + zi else
(8.2)
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Overall, this gives E[
‖x∗−x0‖22

σ2 ] = 2k; which is smaller than D(cone(∂f(x0))) for the regime k � n.

While this shows that estimation error may depend on the distribution, one can actually introduce
further randomization to the noise. Given z, assume we observe x0+Uz where U is a uniformly random
unitary matrix. We believe that, if one first generates and fixes U and then takes the expectation over
z, the worst case normalized MSE will in fact be around D(cone(∂f(x0))), under mild assumptions.
Possible such assumptions are i.i.d.’ness and subgaussianity of the entries of z; which are used in [71]
to show the universality of the compressed sensing phase transitions for `1 minimization.
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APPENDIX

A Auxiliary results

Fact A.1 (Hyperplane separation theorem, [86]). Assume C1, C2 ⊆ Rn are disjoint closed sets at least one
of which is compact. Then, there exists a hyperplane H such that C1, C2 lies on different open half planes
induced by H.

Fact A.2 (Properties of the projection, [86,87]). Assume C ⊆ Rn is a nonempty, closed and convex set and
a,b ∈ Rn are arbitrary points. Then:

‖Proj(a)− Proj(b)‖2 ≤ ‖a− b‖2

The projection Proj(a, C) is the unique vector satisfying,

Proj(a, C) = arg min
v∈C
‖a− v‖2 (A.1)

The projection Proj(a, C) is also the unique vector s0 that satisfies,

〈s0,a− s0〉 = sup
s∈C
〈s,a− s0〉 (A.2)

In other words, a and C lies on different half planes induced by the hyperplane that goes through Proj(a, C)
and that is orthogonal to a− Proj(a, C).

Fact A.3 (Moreau’s decomposition theorem, [10]). Let C be a closed and convex cone in Rn. For any v ∈ Rn,
the followings are equivalent:

• v = a + b, a ∈ C,b ∈ C∗ and aTb = 0.

• a = Proj(v, C),b = Proj(v, C∗).

Definition A.1 (Lipschitz function). h(·) : Rn → R is called L-Lipschitz if for all x,y ∈ Rn, |h(x)−h(y)| ≤
L‖x− y‖2.

The next lemma provides a concentration inequality for Lipschitz functions of Gaussian vectors, [81].

Fact A.4. Let g ∼ N (0, I) and h(·) : Rn → R be an L-Lipschitz function. Then for all t ≥ 0:

P(|h(g)− E[h(g)]| ≥ t) ≤ 2 exp(− t2

2L2
)

Lemma A.1. For any g ∼ N (0, I), c > 1, we have:

P(‖g‖2 ≥ c
√
n) ≤ 2 exp(− (c− 1)2n

2
)

Proof. E[‖g‖2] ≤
√

E[‖g‖22] =
√
n. Secondly `2 norm is a 1-Lipschitz function due to the triangle inequality.

Hence:

P(‖g‖2 ≥ c
√
n) ≤ P(‖g‖2 ≥ (c− 1)

√
n+ E[‖g‖2]) ≤ 2 exp(− (c− 1)2n

2
)

Lemma A.2. Let C be a closed and convex cone in Rn. Then, D(C) + D(C∗) = n.

Proof. Using Fact A.3, any v ∈ Rn can be written as Proj(v, C)+Proj(v, C∗) = v and 〈Proj(v, C),Proj(v, C∗)〉 =
0. Hence,

‖v‖2 = ‖Proj(v, C∗)‖2 + ‖Proj(v, C)‖2 = dist(v, C)2 + dist(v, C∗)2

Letting v ∼ N (0, I) and taking the expectations, we can conclude.
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B Subdifferential of the approximation

Proof of Lemma 4.3. Recall that f̂x0(x0 + v) − f(x0) is equal to the directional derivative f ′(x0,v) =
sups∈∂f(x0) 〈s,v〉. Also recall the “set of maximizing subgradients” from (4.13). Clearly, ∂f ′(x0,v) =

∂f̂x0(x0 + v). We will let x = w + x0 and investigate ∂f ′(x0,w) as a function of w.
If w = 0 : For any s ∈ ∂f(x0) and any v by definition, we have:

f ′(x0,v)− f ′(x0, 0) = f ′(x0,v) = sup
s′∈∂f(x0)

〈v, s′〉 ≥ 〈v, s〉

hence s ∈ ∂f ′(x0, 0). Conversely, assume s 6∈ ∂f(x0), then there exists v such that:

f(v + x0) < f(x0) + 〈v, s〉

By convexity for any ε > 0:

f(εv + x0)− f(x0)

ε
≤ f(v + x0)− f(x0) < 〈v, s〉

Taking ε→ 0 on the left hand side we find:

f ′(x0,v)− f ′(x0, 0) = f ′(x0,v) < 〈v, s〉

which implies s 6∈ ∂f ′(x0, 0).
If w 6= 0: Now, consider the case w 6= 0. Assume, s ∈ ∂f(x0,w). Then, for any v, we have:

f ′(x0,w + v)− f ′(x0,w) = sup
s1∈∂f(x0)

〈w + v, s1〉 − sup
s2∈∂f(x0)

〈w, s2〉 (B.1)

= sup
s1∈∂f(x0)

〈w + v, s1〉 − 〈w, s〉 ≥ 〈v, s〉 (B.2)

Hence, s ∈ ∂f ′(x0,w). Conversely, assume s 6∈ ∂f(x0,w). Then, we’ll argue that s 6∈ ∂f ′(x0,w).
Assume f ′(x0,w) = c‖w‖22 for some scalar c = c(w). We can write s = aw + u where uTw = 0. Choose
v = εw with |ε| < 1. We end up with:

f ′(x0,w + v)− f ′(x0,w) = ε sup
s1∈∂f(x0)

〈w, s1〉 = cε‖w‖22 ≥ 〈s,v〉 = aε‖w‖22

Consequently, we have cε ≥ aε for all |ε| < 1 which implies a = c. Hence, s can be written as cw + u.
Now, if s ∈ ∂f(x0) then s ∈ ∂f(x0,x − x0) as it maximizes 〈s′,w〉 over s′ ∈ ∂f(x0). However we assumed
s 6∈ ∂f(x0,x − x0). Observe that u = s − cw and ∂f(x0,x − x0) − cw lies on n − 1 dimensional subspace
H that is perpendicular to w. By assumption u 6∈ ∂f(x0,x − x0) − cw. We’ll argue that this leads to
a contradiction. By making use of convexity of ∂f(x0,x − x0) − cw and invoking Hyperplane separation
theorem (Fact A.1), we can find a direction h ∈ H such that:

〈h,u〉 > sup
s′∈∂f(x0,x−x0)−cw

〈h, s′〉 (B.3)

Next, considering εh perturbation, we have:

f ′(x0,w + εh)− f ′(x0,w) = sup
s1∈∂f(x0)

(ε 〈h, s1〉 − sup
s2∈∂f(x0)

〈w, s2 − s1〉) (B.4)

Denote the s1 that establish equality by s∗1.
Claim: As ε→ 0, 〈s∗1,w〉 → c‖w‖22.

Proof. Recall that ∂f(x0) is bounded. Let R = sups′∈∂f(x0) ‖s′‖2. Choosing s1 ∈ ∂f(x0,x− x0), we always
have:

f ′(x0,w + εh)− f ′(x0,w) ≥ ε 〈s1,h〉 ≥ −εR‖h‖2
On the other hand, for any s1 we may write:

ε 〈h, s1〉 − sup
s2∈∂f(x0)

〈w, s2 − s1〉 ≤ εR‖h‖2 + 〈s1,w〉 − c‖w‖22
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Hence, for s∗1, we obtain:

εR‖h‖2 + 〈s∗1,w〉 − c‖w‖22 ≥ −εR‖h‖2 =⇒ 〈s∗1,w〉 ≥ c‖w‖22 − 2εR‖h‖2

Letting ε→ 0, we obtain the desired result.

Claim: Given ∂f(x0), for any ε′ > 0 there exists a δ > 0 such that for all s1 ∈ ∂f(x0) satisfying 〈s1,w〉 >
c‖w‖22 − δ we have dist(s1, ∂f(x0,x− x0)) < ε′.

Proof. Assume for some ε′ > 0, claim is false. Then, we can construct a sequence s(i) such that dist(s(i), ∂f(x0,x−
x0)) ≥ ε′ but 〈s(i),w〉 → c‖w‖22. From the well-known Bolzano-Weierstrass Theorem and the compactness of
∂f(x0) ⊆ Rn, s(i) will have a convergent subsequence whose limit s(∞) will be inside ∂f(x0) and will satisfy
〈s∞,w〉 = c‖w‖22 = f ′(x0,w). On the other hand, dist(s(∞), ∂f(x0,x−x0)) ≥ ε′ =⇒ s(∞) 6∈ ∂f(x0,x−x0)
which is a contradiction.

Going back to what we have, using the first claim, as εh→ 0, 〈s∗1,w〉 → c‖w‖22. Using the second claim,
this implies for some δ which approaches to 0 as ε→ 0, we have:

sup
s1∈∂f(x0)

(ε 〈h, s1〉 − sup
s2∈∂f(x0)

〈w, s2 − s1〉) ≤ ε(δ‖h‖2 + sup
s′∈∂f(x0,x−x0)−cw

〈s′,h〉)

Finally, based on (B.3), whenever ε is chosen to ensure δ‖h‖2 < 〈h,u〉 − sups′∈∂f(x0,x−x0)−cw 〈s′,h〉 we
have,

f ′(x0,w + εh)− f ′(x0,w) < ε 〈h,u〉 ,
which contradicts with the initial assumption that s is a subgradient of f ′(x0, ·) at w, since,

f ′(x0,w + εh)− f ′(x0,w) ≥ 〈s, εh〉 = ε 〈u,h〉 .

Lemma B.1. f̂x0
(x) is a convex function of x.

Proof. To show convexity, we need to argue that the function f ′(x0,w) is a convex function of w = x− x0.
Observe that g(w) = f(x0 + w) − f(x0) is a convex function of w and behaves same as the directional
derivative f ′(x0,w) for sufficiently small w. More rigorously, from (4.11), for any w1,w2 ∈ Rn and δ > 0
there exists ε > 0 such that, we have:

g(εw1) ≤ f ′(x0, εw1) + δε, g(εw2) ≤ f ′(x0, εw2) + δε

Hence, for any 0 ≤ c ≤ 1:

f ′(x0, ε(cw1 + (1− c)w2)) ≤ g(ε(cw1 + (1− c)w2))

≤ cg(εw1) + (1− c)g(εw2)

≤ cf ′(x0, εw1) + (1− c)f ′(x0, εw2) + εδ

Making use of the fact that f ′(x0, εs) = εf ′(x0, s) for any direction s, we obtain:

f ′(x0, cw1 + (1− c)w2) ≤ cf ′(x0,w1) + (1− c)f ′(x0,w2) + δ

Letting δ → 0, we may conclude with the convexity of f ′(x0, ·) and problem (4.16).

C Swapping the minimization over τ and the expectation

Lemma C.1 ( [82, 83]). Assume g ∼ N (0, In) and let h(·) : Rn → R be an L-Lipschitz function. Then, we
have:

Var(h(g)) ≤ L2

We next show a closely related result.

29



Lemma C.2. Assume g ∼ N (0, In) and let h(·) : Rn → R be an L-Lipschitz function. Then, we have:

|h(g)− E[h(g)]| ≤
√

2πL

Proof. From Lipschitzness of h(·), letting a = h(g)−E[h(g)] and invoking Lemma A.4 for all t ≥ 0, we have:

P(|a− E[a]| ≥ t) = P(|a| ≥ t) ≤ 2 exp(− t2

2L2
)

Denote the probability density function of |a| by p(·) and let Q(u) = P(|a| ≥ u). We may write:

E[|a|] =

∫ ∞
0

up(u)du =

∫ 0

∞
udQ(u) = [uQ(u)]0∞ +

∫ ∞
0

Q(u)du

Using Q(u) ≤ 2 exp(− u2

2L2 ) for u ≥ 0, we have:

[uQ(u)]0∞ = [2u exp(− u2

2L2
)]0∞ = 0

Next, ∫ ∞
0

Q(u)du ≤
∫ ∞

0

2 exp(− u2

2L2
)du =

√
2πL

Lemma C.3. Suppose Assumption 6.1 holds. Recall that τ(v) = arg minτ≥0 dist(v, τ∂f(x0)). Then, for all
v1,v2,

|τ(v1)− τ(v2)| ≤ ‖v1 − v2‖2
‖e‖2

(C.1)

Hence, τ(v) is ‖e‖−1
2 -Lipschitz function of v.

Proof. Let ai = Proj(vi, cone(C)) for 1 ≤ i ≤ 2. Using Lemma A.2, we have ‖a1 − a2‖2 ≤ ‖v1 − v2‖2 as
∂f(x0) is convex. Now, we will further lower bound ‖v1 − v2‖2 as follows:

‖Proj(a1 − a2, T )‖2 ≤ ‖a1 − a2‖2 ≤ ‖v1 − v2‖2
Now, observe that ‖PT (a1 − a2)‖2 = ‖τ(v1)e− τ(v2)e‖2. Hence, we may conclude with (C.1).

Lemma C.4. Let C be a convex and closed set. Define the set of τ that minimizes dist(v, τC),
T(v) = {τ ≥ 0

∣∣ arg min
τ≥0

dist(v, τC)}

and let τ(v) = infτ∈T(v) τ . τ(v) is uniquely determined, given C and v. Further, assume τ(v) is an L
Lipschitz function of v and let R := R(C) = maxu∈C ‖u‖2. Then,

min
τ≥0

E[dist(g, τC)2] ≤ D(cone(C)) + 2π(R2L2 +RL
√

D(cone(C)) + 1)

Proof. Let g ∼ N (0, I) and let τ∗ = E[τ(g)]. Now, from triangle inequality:

|τ(v)− τ∗| ≤ t =⇒ dist(v, τ∗C) ≤ dist(v, τ(v)C) +Rt

Consequently,

E[dist(g, τ(g)C)] ≤ min
τ≥0

E[dist(g, τC)] ≤ E[dist(g, τ∗C)] ≤ E[dist(g, τ(g)C) +R|τ(g)− τ∗|]

This gives:
E[dist(g, τ∗C)]− E[dist(g, τ(g)C)] ≤ RE[|τ(g)− τ∗|]

Observing E[dist(g, τ(g)C)] = E[dist(g, cone(C))] ≤
√

D(cone(C)), and using Lemma C.2 we find:

E[dist(g, τ∗C)]−
√

D(cone(C)) ≤
√

2πRL

This yields:
E[dist(g, τ∗C)]2 −D(cone(C)) ≤

√
2πRL(2

√
D(cone(C)) +

√
2πRL)

Using Lemma C.1 we have E[dist(g, τ(g)C)]2 ≥ E[dist(g, τ(g)C)2]− 1, which gives:

min
τ≥0

E[dist(g, τC)2]−D(cone(C)) ≤ 2πR2L2 + 2
√

2πRL
√

D(cone(C)) + 1
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D Intersection of a cone and a subspace

D.1 Intersections of randomly oriented cones

Based on Kinematic formula (Theorem 7.1), one may find the following result on the intersection of the two
cones. We first consider the scenario in which one of the cones is a subspace.

Proposition D.1 (Intersection with a subspace). Let A be a closed and convex cone and let B be a linear
subspace. Denote δ(A) + δ(B) − n by δ(A,B). Assume the unitary U is generated uniformly at random.
Given ε > 0, we have the following:

• If δ(A) + δ(B) + ε
√
n > n,

P(δ(A ∩UB) ≥ δ(A,B) + ε
√
n) ≤ 8 exp(− ε

2

64
)

• P(δ(A ∩UB) ≤ δ(A,B)− ε√n) ≤ 8 exp(− ε2

64 ).

Proof. Denote A ∩ UB by C. Let H be a subspace with dimension n − d chosen uniformly at random
independent of U. Observe that, UB ∩H is a δ(B)− d dimensional random subspace for d < δ(B). Hence,
using Theorem 7.1 with A and UB ∩H yields:

δ(A) + δ(B)− d ≤ n− t√n =⇒ P(A ∩UB ∩H = {0}) ≥ 1− 4 exp(− t
2

16
) (D.1)

δ(A) + δ(B)− d ≥ n+ t
√
n =⇒ P(A ∩UB ∩H = {0}) ≤ 4 exp(− t

2

16
) (D.2)

Observe that (D.1) is true even when d ≥ δ(B) since if d ≥ δ(B), UB ∩H = {0} with probability 1.
Proving the first statement: Let γ = δ(A) + δ(B) − n, γε = γ + ε

√
n and γε/2 = γ + ε

2

√
n. We assume

γε > 0. Observing A ∩UB ∩H = C ∩H, we may write:

P(C ∩H = {0}) ≤ P(C ∩H = {0}
∣∣δ(C) ≥ γε) + P(δ(C) ≤ γε) (D.3)

and P(δ(C) ≤ γε) ≥ P(C ∩H = {0})− P(C ∩H = {0}
∣∣δ(C) ≥ γε) (D.4)

If, γε > n, P(δ(C) ≤ γε) = 1. Otherwise, choose d = max{γε/2, 0}.
Case 1: If d = 0, then, γε/2 ≤ 0 and H = Rn. This gives,

P(C ∩H = {0}
∣∣δ(C) ≥ γε) = P(C = {0}

∣∣δ(C) ≥ γε) = 0 (D.5)

Also, choosing t = ε
2

√
n in (D.1) and using γ ≤ − ε

2

√
n, we obtain:

P(C ∩H = {0}) = P(C = {0}) ≥ 1− 4 exp(− ε
2

64
) (D.6)

Case 2: Otherwise, d = γε/2 > 0. Applying Theorem 7.1, we find:

P(C ∩H = {0}
∣∣δ(C) ≥ γε) ≤ 4 exp(− ε

2

64
) (D.7)

Next, choosing t = ε
2

√
n in (D.1), we obtain:

P(C ∩H = {0}) ≥ 1− 4 exp(− ε
2

64
) (D.8)

Overall, combining (D.4), (D.5), (D.6), (D.7) and (D.8), we obtain:

P(δ(C) ≤ γε) ≥ 1− 8 exp(− ε
2

64
)

Proving the second statement: In the exact same manner, this time, let γ−ε = γ−ε√n, γ−ε/2 = γ− ε
2

√
n.

If γ−ε < 0,
P(δ(C) ≤ γ−ε) ≤ P(δ(C) < 0) = 0
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Otherwise, let d = γ−ε/2, we may write,

P(δ(C) ≥ γ−ε) ≥ P(C ∩H 6= {0})− P(C ∩H 6= {0}
∣∣δ(C) ≤ γ−ε) (D.9)

in an identical way to (D.4). Repeating the previous argument and using (D.2), we may first obtain,

P(C ∩H 6= {0}) ≥ 1− 4 exp(− ε
2

64
)

and using Theorem 7.1,

P(C ∩H 6= {0}
∣∣δ(C) ≤ γ−ε) ≤ 4 exp(− ε

2

64
)

Combining these, gives the desired result.

P(δ(C) ≥ γ−ε) ≥ 1− 8 exp(− ε
2

64
)

E Proof of Theorem 3.1 – Lower bound

Theorem E.1. Let C be a closed and convex set, v ∼ N (0, I) and let x∗(σv) = arg minx∈C ‖x0 + σv− x‖2.
Then, we have,

lim
σ→0

E[‖x∗(σv)− x0‖22]

σ2
= D(TC(x0)∗)

Proof. Let 1 ≥ α, ε > 0 be numbers to be determined. Denote probability density function of a N (0, cI)
distributed vector by pc(·). From Lemma F.1, the expected error E[‖x∗ − x0‖22] is simply,∫

v∈Rn
‖Proj(σv, FC(x0))‖22p1(v)dv

Let Sα be the set satisfying:

Sα = {u ∈ Rn| ‖Proj(u, TC(x0))‖2
‖u‖2

≥ α}.

Let S̄α = Rn−Sα. Using Proposition F.1, given ε > 0, choose ε0 > 0 such that, for all ‖u‖2 ≤ ε0 and u ∈ Sα,
we have,

‖Proj(u, FC(x0))‖2 ≥ (1− ε)‖Proj(u, TC(x0))‖2. (E.1)

Now, let z = σv. Split the error into three groups, namely:

• F1 =
∫
‖z‖2≤ε0,z∈Sα ‖Proj(z, FC(x0))‖22pσ(z)dz, T1 =

∫
‖v‖2≤ ε0σ ,v∈Sα

‖Proj(v, TC(x0))‖22p1(v)dv.

• F2 =
∫
‖z‖2≥ε0,z∈Sα ‖Proj(z, FC(x0))‖22pσ(z)dz, T2 =

∫
‖v‖2≥ ε0σ ,v∈Sα

‖Proj(v, TC(x0))‖22p1(v)dv.

• F3 =
∫
z∈S̄α ‖Proj(z, FC(x0))‖22pσ(z)dz, T3 =

∫
v∈S̄α ‖Proj(v, TC(x0))‖22p1(g)dv.

The rest of the argument will be very similar to the proof of Proposition 5.2. We know the following from
Proposition 4.1:

T1 + T2 + T3 = D(TC(x0)∗)

F1 + F2 + F3 = E[‖x∗ − x0‖22] ≤ σ2(T1 + T2 + T3)

To proceed, we will argue that, the contributions of the second and third terms are small for sufficiently
small σ, α, ε > 0. Observe that:

T3 ≤
∫
v∈S̄α

α2‖v‖22p1(v)dv ≤ α2n

For T2, we have:

T2 ≤
∫
‖v‖2≥ ε0σ

‖v‖22p1(g)dv = C(
ε0
σ

)
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Since ‖g‖2 has finite second moment, fixing ε0 > 0 and letting σ → 0, we have C( ε0σ ) → 0. For T1, from
(E.1), we have:

F1 ≥ (1− ε)2σ2T1

Overall, we found:
E[‖x∗ − x0‖22]

σ2
≥ F1

σ2
≥ (1− ε)2 T1

T1 + T2 + T3
D(TC(x0)∗)

Writing T1 = D(TC(x0)∗)− T2 − T3 ≥ D(TC(x0)∗)− α2n− C( ε0σ ), we have:

T1

T1 + T2 + T3
≥ D(TC(x0)∗)− α2n− C( ε0σ )

D(TC(x0)∗)

Letting σ → 0 for fixed α, ε0, ε , we obtain:

lim
σ→0

E[‖x∗ − x0‖22]

σ2D(TC(x0)∗)
≥ (1− ε)2 D(TC(x0)∗)− α2n

D(TC(x0)∗)

Since, α, ε can be made arbitrarily small, we obtain limσ→0
E[‖x∗−x0‖22]
σ2D(TC(x0)∗) = 1.

The next result shows that, as σ → 0, we can exactly predict the cost of the constrained problem.

Proposition E.1. Consider the setup in Theorem E.1. Let w∗(σv) = x∗(σv)− x0. Then,

lim
σ→0

E[‖σv −w∗(σv)‖22]

σ2
= D(TC(x0))

Proof. Let w∗ = w∗(σv) and z = σv. z−w∗ satisfies two conditions.

• From Lemma F.1, ‖z−w∗‖2 = dist(z, FC(x0)) ≥ dist(z, TC(x0)).

• Using Lemma F.4, ‖z−w∗‖22 + ‖w∗‖22 ≤ ‖z‖22.

Consequently, when v ∼ N (0, I), we find:

nσ2 = E[‖z‖22] ≥ E[‖z−w∗‖22] + E[‖w∗‖22] ≥ σ2E[Proj(v, TC(x0)∗)2] + E[‖w∗‖22]

Normalizing both sides by σ2 and subtracting D(TC(x0)) = E[Proj(v, TC(x0)∗)2] and E[‖w∗‖22] we find:

D(TC(x0)∗)− E[‖w∗‖22]

σ2
≥ E[‖z−w∗‖22]

σ2
−D(TC(x0)) ≥ 0

where we used Lemma A.2. Now, letting σ → 0 and using the fact that limσ→0
E[‖w∗‖22]

σ2 = D(TC(x0)∗), we
find the desired result.

F Approximation results on convex cones

F.1 Standard observations

Remark: Throughout the section, C will be a nonempty, closed and convex set in Rn.

Property F.1. Let x0 ∈ C and y = x0 + z ∈ Rn. From Lemma A.1, recall that, Proj(y, C) is the unique
vector that is equal to arg minu∈C ‖y − u‖2. By definition of feasible set FC(x0), we also have, Proj(y, C) =
Proj(z, FC(x0)).

Lemma F.1. For all z ∈ Rn and x0 ∈ C, we have:

‖Proj(z, FC(x0))‖2 ≤ ‖Proj(z, TC(x0))‖2
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Proof. Setting f(·) = 0 and y = x0 + z in Lemma 4.2, we have:

‖Proj(z, FC(x0))‖2 = ‖x∗ − x0‖2 ≤ dist(z, TC(x0)∗) = ‖Proj(z, TC(x0))‖2

The following lemma shows that projection onto the feasible cone is arbitrarily close to the projection
onto the tangent cone as we scale down the vector. This is due to Proposition 5.3.5 of Chapter III of [88].

Lemma F.2. Assume x0 ∈ C. Then, for any z ∈ C,

lim
ε→0

Proj(εw, FC(x0))

ε
→ Proj(w, TC(x0))

Hence,

• If Proj(w, TC(x0)) = 0, using Lemma F.1, Proj(z, FC(x0)) = 0.

• If Proj(w, TC(x0)) 6= 0,

lim
ε→0

‖Proj(εw, FC(x0))‖2
‖Proj(εw, TC(x0))‖2

= 1.

F.2 Uniform approximation to the tangent cone

Proposition F.1. Let C be a closed and convex set including x0. Denote the unit `2-sphere in Rn by Sn−1

and let 1 ≥ α > 0 be arbitrary. Given α, ε > 0, there exists an ε0 > 0 such that, for all w ∈ Sn−1,
‖Proj(w, TC(x0))‖2 ≥ α and for all 0 < t ≤ ε0, we have:

‖Proj(tw, FC(x0))‖2
t‖Proj(w, TC(x0))‖2

≥ 1− ε (F.1)

In particular, setting α = 1, given ε > 0, there exists ε0 > 0 such that, for all t ≤ ε0 and all w ∈ TC(x0)∩Sn−1,
‖Proj(tw, FC(x0))‖2 ≥ (1− ε)t.

Remark: Note that, statements of Propositions F.1 and 5.1 are quite similar.

Proof. Given α > 0, consider the following set:

S = {w ∈ Sn−1|‖Proj(w, TC(x0))‖2 ≥ α}

This set is closed and bounded and hence compact. Define the following function on this set:

c(w) = max{c > 0
∣∣ ‖Proj(cw, FC(x0)‖2
‖Proj(cw, TC(x0))‖2

≥ 1− ε}

c(w) is strictly positive due to Lemma F.2 and it can be as high as infinity. Furthermore, from Lemma F.3,
we know that whenever c < c(w):

‖Proj(cw, FC(x0)‖2
‖Proj(cw, TC(x0))‖2

≥ 1− ε

as well. Let s(w) = min{1, c(w)}. If s(w) is continuous, since Sn−1 is compact s(w) will attain its minimum
which implies c(w) ≥ s(w) ≥ ε0 > 0 for some ε0. Again, this also implies, for all w ∈ Sn−1, and 0 < t ≤ ε0,

‖Proj(tw, FC(x0)‖2
‖tProj(w, TC(x0))‖2

≥ 1− ε

To end the proof, we will show continuity of s(w).
Claim: s(w) is continuous.
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Proof. We will show that limw2→w1 s(w2) = s(w1). To do this, we will make use of the continuity of the

functions ‖Proj(c1w, FC(x0)‖2, ‖Proj(c1w, TC(x0)‖2 and ‖Proj(c1w,FC(x0)‖2
‖Proj(c1w,TC(x0)‖2 when the denominator is nonzero.

Given w1, let c1 = min{2, c(w1)}.
Case 1: If ‖Proj(c1w1,FC(x0)‖2

‖Proj(c1w1,TC(x0))‖2 > 1−ε, then c(w1) > 2 and for all w2 sufficiently close to w1, ‖Proj(c1w2,FC(x0)‖2
‖Proj(c1w2,TC(x0))‖2

is more than 1− ε and hence c(w2) ≥ 2 > 1. Hence, s(w1) = s(w2).

Case 2: Now, assume ‖Proj(c1w1,FC(x0)‖2
‖Proj(c1w1,TC(x0))‖2 = 1− ε which implies c1 = c(w1). Using the “strict decrease” part

of Lemma F.3, for any ε′ > 0 and c′ = c1 − ε′, ‖Proj(c′w1,FC(x0)‖2
‖Proj(c′w1,TC(x0))‖2 > 1− ε. Then, for w2 sufficiently close to

w1, ‖Proj(c′w2,FC(x0)‖2
‖Proj(c′w2,TC(x0))‖2 > 1− ε which implies c(w2) ≥ c′. Hence, c(w2) ≥ c1 − ε′ for arbitrarily small ε′ > 0.

Conversely, for any ε′ > 0 and c′ = c1 + ε′, ‖Proj(c′w1,FC(x0)‖2
‖Proj(c′w1,TC(x0))‖2 < 1 − ε. Then, for w2 sufficiently close to

w1, ‖Proj(c′w2,FC(x0)‖2
‖Proj(c′w2,TC(x0))‖2 < 1− ε which implies c(w2) ≤ c′. Hence, c(w2) ≤ c1 + ε′ for arbitrarily small ε′ > 0.

Combining these, we obtain c(w2)→ c(w1) as w2 → w1. This also implies s(w2)→ s(w1).

This finishes the proof of the main statement (F.1). For the α = 1 case, observe that, ‖w‖2 = 1 and
‖Proj(w, TC(x0))‖2 = 1 implies w ∈ TC(x0).

Lemma F.3. Let x0 ∈ Rn and let w have unit `2-norm and set lT = ‖Proj(w, TC(x0))‖2. Define the
function,

g(t) =

{
‖Proj(tw,FC(x0))‖2

t for t > 0

lT for t = 0

Then, g(·) is continuous and non increasing on [0,∞). Furthermore, it is strictly decreasing on the interval
[t0,∞) where t0 = supt{t > 0

∣∣g(t) = lT }.

Proof. Due to Lemma F.1, g(t) ≤ lT and from Lemma F.2, the function is continuous at 0. Continuity at
t 6= 0 follows from the continuity of the projection (see Fact A.2). Next, if g(t) = lT , using the fact that
FC(x0) contains 0, the second statement of Lemma F.4 gives,

Proj(tw, TC(x0)) = Proj(tw, FC(x0)) ∈ FC(x0).

From convexity, Proj(t′w, TC(x0)) ∈ FC(x0) for all 0 ≤ t′ ≤ t. Hence, g(t′) = lT . This implies g(t) = lT for
t ≤ t0.

Now, assume t1 > t0 and t1 > t2 > 0 for some t1, t2 > 0. Then, g(t1) < lT , hence, the third statement of
Lemma F.4 applies. Setting α = t2

t1
in Lemma F.4, we find,

‖Proj(t1w, FC(x0))‖2 <
‖Proj(t2w, FC(x0))‖2

t2
t1

,

which implies the strict decrease of ‖Proj(tw,FC(x0))‖2
t over t ≥ t0.

For the rest of the discussion, given three points A,B,C in Rn, the angle induced by the lines AB and
BC will be denoted by AB̂C.

Lemma F.4. Let K be a convex and closed set in Rn that includes 0. Let z ∈ Rn and 0 < α < 1 be arbitrary,
let p1 = Proj(z,K), p2 = Proj(αz,K). Denote the points whose coordinates are determined by 0,p1,p2, z by
O,P1, P2 and Z respectively. Then,

• ZP̂1O is either wide or right angle.

• If ZP̂1O is right angle, then p1 = p2

α = Proj(z, TK(0)).

• If ZP̂1O is wide angle, then ‖p1‖2 < ‖p2‖2
α ≤ ‖Proj(z, TK(0))‖2.

Proof. Acute angle: Assume ZP̂1O is acute angle. If ZÔP1 is right or wide angle, then 0 is closer to z
than p1 which is a contradiction. If ZÔP1 is acute angle, then draw the perpendicular from Z to the line
OP1. The intersection is in K due to convexity and it is closer to z than p1, which again is a contradiction.
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Figure 5: Possible configurations of the points in Lemma F.4.

Right angle: Now, assume ZP̂1O is right angle. Using Fact A.2, there exists a hyperplane H that
separates z and K passing through P1 which is perpendicular to z−p1. The line P1O lies on H. Consequently,
for any α ∈ [0, 1], the closest point to αz over K is simply αp1. Hence, p2 = αp1. Now, let q1 :=
Proj(z, TK(0)). Then, Proj(αz, TK(0)) = αq1. If q1 6= p1 then, ‖q1‖2 > ‖p1‖2 since ‖z− q1‖2 < ‖z− p1‖2
and:

‖q1‖22 = ‖z‖22 − ‖z− q1‖22 > ‖z‖22 − ‖z− p1‖22 ≥ ‖p1‖22
where the last inequality follows from the fact that ZP̂1O is not acute. Then,

lim
α→0

‖Proj(z, TK(0))‖2
‖Proj(z,K)‖2

=
‖q1‖2
‖p1‖2

> 1

which contradicts with Lemma F.2.
Wide angle: Finally, assume ZP̂1O is wide angle. We start by reducing the problem to a two dimensional

one. Obtain K′ by projecting the set K to the 2D plane induced by the points Z,P1 and O. Now, let
p′2 = Proj(αz,K′). Due to the projection, we still have:

‖z− p′2‖2 ≤ ‖z− p2‖2 ≤ ‖z− αp1‖2 (F.2)

and ‖p′2‖2 ≤ ‖p2‖2. Next, we will prove that ‖p′2‖2 > ‖αp1‖2 to conclude. Figure 5 will help us explain
our approach. Let the line UP1 be perpendicular to ZP1. Assume, it crosses ZO at S. Let P ′Z ′ be parallel
to P1Z1. Observe that P ′ corresponds to αp1. H is the intersection of P ′Z ′ and P1U . Denote the point
corresponding to p′2 by P ′2. Observe that P ′2 satisfies the following:

• P1 is the closest point to Z in K hence P ′2 lies on the left of P1U (same side as O).

• P2 is the closest point to Z ′. Hence, Z ′P̂2P1 is not acute angle. Otherwise, we can draw a perpendicular
to P2P1 from Z ′ and end up with a shorted distance. This would also imply that Z ′P̂ ′2P1 is not acute
as well. The reason is, due to projection, |Z ′P ′2| ≤ |Z ′P2| and |P ′2P1| ≤ |P2P1| hence,

|Z ′P1| ≥ |Z ′P2|2 + |P2P1|2 ≥ |Z ′P ′2|2 + |P ′2P1|2 (F.3)

• P ′2 has to lie below or on the line OP1 otherwise, perpendicular to OP1 from Z ′ would yield a shorter
distance than |P ′2Z ′|.

• p2 6= αp1. To see this, note that Z ′P̂ ′O is wide angle. Let q ∈ Rn be the projection of αz on the line
{cp1

∣∣c ∈ R} and point Q denote the vector q. If Q lies between O and P1, q ∈ K and |QZ ′| < |P ′Z ′|.
Otherwise, P1 lies between Q and P ′ hence |P1Z

′| < |P ′Z ′| and p ∈ K. This implies P2, P
′
2 6= P ′.

Based on these observations, we investigate the problem in two cases illustrated by Figure 5.
Case 1 (S lies on Z ′Z): Consider the lefthand side of Figure 5. If P ′2 lies on the righthand side of P ′U ,
this implies |P ′2O| > |P ′O| which is what we wanted.

If P ′2 lies on the region induced by OP ′TT ′ then P1P̂
′
2Z
′ is acute angle as P1Ẑ

′P ′2 > P1Ẑ
′P ′ is wide,

which contradicts with (F.3).
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If P ′2 lies on the remaining region T ′TU , then Z ′P̂ ′2P1 is acute. The reason is, P ′2Ẑ
′P1 is wide as follows:

P ′2Ẑ
′P1 ≥ P ′2T̂P1 ≥ UT̂P1 > UP̂ ′P1 =

π

2

Case 2 (S lies on OZ ′): Consider the righthand side of Figure 5. Due to location restrictions, P ′2 lies on
either P1P

′H triangle or the region induced by OP ′HU . If it lies on P1P
′H then, OP̂ ′P ′2 ≥ OP̂ ′H (thus

wide); which implies |OP ′2| > |OP ′| as OP̂ ′P ′2 is wide angle and P ′ 6= P ′2.
If P ′2 lies on OP ′HU then, P1P̂

′
2Z
′ < P1ĤZ

′ = π
2 hence P1P̂

′
2Z
′ is acute angle which contradicts with

(F.3).
In all cases, we end up with |OP ′2| > |OP ′| which implies ‖p2‖2 ≥ ‖p′2‖2 > α‖p1‖2 as desired.
Finally, apply Lemma F.1 on αz to upper bound ‖p2‖2 by α‖Proj(z, TK(0))‖2.
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