
Proceedings o f 1993 International Joint Conference on Neural Networks

An Algorithm for Learning from Hints

Y. S. Abu-Mostafa

California Institute of Technologx Pasadena, CA 91 125, USA

Abstract

To take advantage of pr ior knowledge (hints) about
the f u n c t i o n w e w a n t t o learn, we introduce a
method that generalizes learning f r o m examples to
learning f r o m hints. A canonical representation of
hints is defined and illustrated. All hints are repre-
sented t o the learning process by examples, and ex-
amples of the f u n c t i o n are treated o n equal foot ing
wi th the rest of the hints. Dur ing learning, exam-
ples f r o m diflerent hints are selected f o r processing
according t o a given schedule. We present two types
of schedules; fixed schedules that specify the relative
emphasis of each hint, and adaptive schedules that
are based on h o w well each hint has been learned
so far . OUT learning method is compatible wi th a n y
descent technique.

1 Introduction

Consider the situation where we want to learn an
unknown function f . Typically, f is represented to
us by a set of input-output examples. Hints de-
scribe the situation where, in addition to the set
of examples of f , we have prior knowledge of cer-
tain facts about the function. We wish to use this
side information to our advantage. However, hints
come in different shapes, and the main difficulty of
using them is the lack of a systematic way of incor-
porating heterogeneous pieces of information into
a manageable learning process. If what we know
about f is that it is scale-invariant, monotonic over
part of its domain, and represented by a given set
of examples, we still have to integrate this informa-
tion before we can learn the function. This paper
concerns itself with the development of a system-
atic method that integrates different types of hints
in the same learning process.

How to take advantage of a given hint can be
an art just like how to choose a learning model. In

the case of invariance hints for instance, preprocess-
ing of the input can achieve the invariance through
normalization, or the model itself can be explic-
itly structured to satisfy the invariance. Whenever
such a method of direct implementation is feasible,
the full benefit of the hint is automatically real-
ized. This paper does not offer a superior alterna-
tive to direct implementation. However, w h e n di-
rect implementat ion is not a n option, we prescribe 0,

systematic method f o r incorporating practically a n y
hint in a n y descent method f o r learning. The goal
is to automate the use of hints in learning to a de-
gree where we can effectively use a large number
of simple hints that may be available in a practical
situation.

We start by introducing the basic nomenclature
and notation. The environ,ment X is the set 011
which the unknown function f is defined. The
points in the environment are distributed accord-
ing to some probability distribution P. f takes on
values from some set Y

f : X - i Y

Often, Y is just (0 , l) or the interval [O, l] . The
learning process takes pieces of information about
(the otherwise unknown) f as input and produces
a hypothesis g

that attempts to approximate f . The degree to
which a hypothesis g is considered an approxima-
tion of f is measured by a distance or ‘error’

g : X - + Y

The error E is based on the disagreement between
g and f as seen through the eyes of the probability
distribution P.

Two popular forms off the error measure are

E = Pr[g(z) # f (41

E = E[(s (x) - f(4)21
and

1653

where Pr[.] denotes the probability of an event, and
E[.] denotes the expected value of a random vari-
able. The underlying probability distribution is P.
E will always be a non-negative quantity, and we
will take E(g, f) = 0 to mean that g and f are
identical for all intents and purposes. We will also
assume that when the set of hypotheses is parame-
terized by real-valued parameters (e.g., the weights
in the case of a neural network), E will be well-
behaved as a function of the parameters (in order
to allow for derivative-based descent methods). We
make the same assumptions about the error mea-
sures that will be introduced in section 2 for the
hints.

In the learning f r o m examples paradigm, a num-
ber of points z1,. , X N are picked from X (usually
independently according to the probability distri-
bution P) and the values of f on these points are
provided. Thus, the input to the learning process
is the set of examples

(21, f (z 1)) , . ’ ‘ , (X N , f (z N))

and these examples are used to guide the search for
a good hypothesis. In this paper, we will consider
the set of examples of f as only one of the avail-
able hints and denote it by Ho, The other hints
HI , . . . , KM will be additional known facts about
f, such as invariance properties for instance.

The paper is organized as follows. Section 2 de-
velops a canonical method for representing differ-
ent hints. This is the first step in dealing with any
hint that we encounter in a practical situation. Sec-
tion 3 lays the foundations for learning from hints
in general, and section 4 presents specific imple-
mentations. We discuss the overall picture in the
conclusion.

2 Representation of Hints
We have so far described what a hint is in very
general terms such as ‘a known property of f’ or ‘a
fact about f’. Indeed, all that is needed to qualify
as a hint for our purposes is to have a litmus test
that f passes and that can be applied to the set of
hypotheses. In other words, a hint H, is formally
a subset of the hypotheses, namely those satisfying
the hint.

This definition of H, can be extended to a def-
inition of ’approximation of H,’ in several ways.
For instance, g can be considered to approximate
H, within c if there is a function h that strictly
satisfies H, for which E(g, h) 5 E. In the context

of learning, it is essential to have a notion of ap-
proximation since exact learning is seldom achiev-
able. Our definitions for approximating different
hints will be part of the scheme for representing
those hints.

The first step in representing H, is to choose
a way of generating ‘examples’ of the hint. For
illustration, suppose that H , asserts that

f : [-1,+1] + [-1,+1]

is an odd function. An example of H, would have
the form

f(-) = -f
for a particular 2 E [-1,+1]. To generate N ex-
amples of this hint, we generate z1,. . . , X N and as-
sert for each z, that f(-z,) = -f(z,). Suppose
that we are in the middle of a learning process, and
that the current hypothesis is g when the example
f(-z) = -f(z) is presented. We wish to measure
how much g disagrees with this example. This leads
to the second component of the representation, the
error measure e,. For the oddness hint, e, can be
defined as

em = (g (z) + g(-z)12

so that e , = 0 reflects total agreement with the
example (i.e., g(-z) = -g(z)). The form of the
examples of H, as well as the choice of the error
measure e , are not unique.

Once the disagreement between g and an exam-
ple of H, has been quantified through e,, the dis-
agreement between g and H , as a whole is auto-
matically quantified through E,, where

Em = &(em)

The expected value is taken w.r.t. the probability
rule for picking the examples. This rule is also not
unique. Therefore, E, will depend on our choices
in all three components of the representation; the
form of examples, the probability distribution for
picking the examples, and the error measure e,.
In what follows, we will construct representations
for different types of hints.

Perhaps the most common type of hint is the
invariance hint. This hint asserts that f(z) =
f(z’) for certain pairs z,z’. For instance, “f is
shift-inva.riant” is formalized by the pairs z, z‘ that
are shifted versions of each other. To represent the
invariance hint, an invariant pair (z, z’) is picked as
an example. The error associated with this example
is

em = (g(z) - g(z’)I2

1654

A plausible probability rule for generating (z, z’) is
to pick x and x’ according to the original proba-
bility distribution P conditioned on x,x‘ being an
invariant pair.

Another related type of hint is the monotonic-
ity hint (or inequality hint). The hint asserts for
certain pairs x,x’ that f(x) 5 f(x’). For instance,
“f is monotonically nondecreasing in x” is formal-
ized by all pairs x, x’ such that x < d. To represent
a monotonicity hint, an example (x,x’) is picked,
and the error associated with this example is

The third type of hint we discuss here is the
approximation hint. The hint asserts for certain
points 2 E X that f(x) E [az ,bz] . In other words,
the value of f at z is known only approximately.
The error associated with an example x of the ap-
proximation hint is

(s(x) - ad2 if g(x) < a2

0 if g(x) E [a,, bz]
e m = { (dz) - b d 2 if g(x) > bz

Another type of hints arises when the learning
model allows non-binary values for g where f itself
is known to be binary. This gives rise to the bi-
nary hint (or Boolean hint). Let X C X be the set
where f is known to be binary (for Boolean func-
tions, X is the set of binary input vectors). The
binary hint is represented by examples of the form
x, where x E X . The error function associated with
an example x (assuming 0/1 binary convention, and
assuming g(x) E [0, I]) is

em = g(x)(l- dz))

This choice of e , forces it to be zero when g(x)
is either 0 or 1, while it would be positive if g(z)
is between 0 and 1. A natural probability rule for
generating the examples is to pick x according to
the original probability distribution P conditioned
on x E X .

It is worth noting that the set of examples of
f can be formally treated as a hint, too. Given
(z l , f (z ~) > , - . - , (~ N , ~ (z N)) , the examples hint
asserts that these are the correct values off a t these
particular points xn. Now, to generate an ‘example’
of this hint, we independently pick a number n from
1 to N and use the corresponding (xn, f(xn)). The
error associated with this example is eo (we fix the
convention that m = 0 for the examples hint)

Assuming that the probability rule for picking ri is
uniform over { 1, . . , N } ,

. N

Eo = €(eo) = ; C (S (X n) - f (zn))2
n=l

In this case, EO is also the best estimator of E =
€[(g(z)-f(x))’] given x1,-*- ,XN that areindepen-
dently picked according to the original probability
distribution P. This way of looking at the exam-
ples of f justifies their treatment exactly as one of
the hints, and underlines the distinction between E
and EO.

In a practical situation, we try to infer as many
hints about f as the situation will allow. Next,
we represent each hint according to the guide-
lines discussed in this section. This leads to a list
HO H I , 1 . , HM of hints that are ready to produce
examples upon the request of the learning algo-
rithm. We now address how the algorithm should
pick and choose between these examples as it moves
along.

3 Learning Schedules
If the learning algorithm had complete information
about f, it would search for a hypothesis g for which
E (g , f) = 0. However, f being unknown means
that the point E = 0 cannot be directly identified.
The most any learning algorithm can do given the
hints Ho, H I , . , HM is to reach a hypothesis g for
which all the error measures EO, El , , EM are ze-
ros. Indeed, we have required that E = 0 implies
that E, = 0 for all m.

If that point is reached, regardless of how it is
reached, the job is done. However, it is seldom the
case that we can reach the zero-error point because
either (1) it does not exist (i.e., no hypothesis can
satisfy all the hints simultaneously, which implies
that no hypothesis can replicate f exactly), or (2)
it is difficult to reach (Le,, the computing resources
do not allow us to exha.ustively search the space of
hypotheses looking for that point). In either case,
we will have to settle for a point where the Em’s
are ’as small as possible’.

How small should each E, be? A balance has to
be struck, otherwise some Em’s may become very
small at the expense of the others. This situation
would mean that some hints are over-learned while
the others are under-learned. We will discuss learn-
ing schedules that use different criteria for balanc-
ing between the hints. The schedules are used by
the learning algorithm to simultaneously minimize
the Em’s.

1655

The implementation of a given schedule goes
as follows: (1) The algorithm decides which hint
(which m for m = 0,1,. . . , M) to work on next, ac-
cording to some criterion; (2) The algorithm then
requests a batch of examples of this hint; (3) It per-
forms its descent on this batch; and (4) When it is
done, it goes back to step (1). We make a distinc-
tion between fixed schedules, where the criterion for
selecting the hint can be ‘evaluated’ ahead of time
(albeit time-invariant or time-varying, determinis-
tic or stochastic), and adaptive schedules, where the
criterion depends on what happens as the algorithm
runs. Here are some fixed and adaptive schedules:

Simple Rotation: This is the simplest pos-
sible schedule that tries to balance between the
hints. It is a fixed schedule that rotates between
Ho, Hl, ... , H M . Thus, at step k, a batch of N ex-
amples of H , is processed, where m = k mod (M +
1). This simple-minded algorithm tends to do well
in situations where the Em’s are somewhat similar.

Weighted Rotation: This is the next step in
fixed schedules that tries to give different emphasis
to different Em’s. The schedule rotates between the
hints, visiting H , with frequency v,. The choice
of the v,’s can achieve balance by emphasizing the
hints that are more important or harder to learn.

Maximum Error: This is the simplest adap-
tive schedule that tries to achieve the same type
of balance as simple rotation. At each step k , the
algorithm processes the hint with the largest error
E,. The algorithm uses estimates of the Em’s to
make its selection.

Maximum Weighted Error: This is the adap-
tive counterpart to weighted rotation. It selects the
hint with the largest value of vmEm. The choice of
the u,’s can achieve balance by making up for dis-
parities between the numerical ranges of the Em’s.
Again, the algorithm uses estimates of the Em’s.

Adaptive schedules attempt to answer the ques-
tion: Given a set of values for the Em’s, which hint
is the most under-learned? The above schedules
answer the question by comparing the individual
Em’s. Although this works well in simple cases, it
does not take into consideration the correlation be-
tween different hints. As we deal with more and
more hints, the correlation between the Em’s be-
comes more significant. This leads us to the fi-
nal schedule that achieves the balance between the
Em’s through their relation to the actual error E.

Adaptive Minimization: Given the estimates

of Eo, El , - a . , E M , make M + 1 estimates of E , each
based on all but one of the hints:

-@(a, El, E2 , . . . , E M)
E(.E;o, 0 , E2, * * , E M)
-qEO,El,.,.*. , E M)

&(Eo, El, E%, * * * , 0)

...

and choose the hint for which the corresponding
estimate is the smallest.

In other words, E becomes the common thread
between the Em’s. Knowing that we are really try-
ing to minimize E , and that the Em’s are merely a,
vehicle to this end, the criterion for balancing the
E,’s should be based on what is happening to E as
far as we can tell.

References

Abu-Mostafa, Y. S. (1990), Learning from hints
in neural networks, Journal of Complexity 6, 192-
198.

Abu-Mostafa. Y. S. (1993), A method for learn-
ing from hints, Advances in Neural Information
Processing Systems - 5, S. Hanson et a1 (eds), Mor-
gan Kaufmann, 1993.

Al-Mashouq, K. and Reed, I. (1991), Including
hints in training neural networks, Neural Compu-
tation 3, 418-427.

Minsky, M. L. and Papert, S. A. (1969), “Per-
ceptrons,” MIT Press.

Omlin, C. and Giles, C. L. (1992), Training
second-order recurrent neural networks using hints,
Machine Learning: Proceedings of the Ninth Inter-
national Conference (ML-921, D. Sleeman and P.
Edwards (ed.), Morgan Kaufmann.

Suddarth, S. and Holden, A. (1991), Symbolic
neural systems and the use of hints for developing
complex systems, International Journal of Machine
Stiidies 35, p. 291.

Towell, G. and Shavlik, J. W. (19921, Inter-
pretation of artificial neural networks: mapping
knowledge-based neural networks into rules$ Ad-
vances in Neural Information Processing Systems
- 4, J. Moody et a1 (eds), Morgan Kaufmann, 1992.

Wismer, D. A. and Chattergy, R. (1978), “In-
troduction to Nonlinear Optimization,” North Hol-
land.

This work was supported by the United
States AFOSR under Grant No. F49620-92-
J-0398.

1656

