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Within the quasiparticle random phase approximation, we compare two-neutrino double beta de-
cay amplitudes calculated with zero-range and finite-range nucleon-nucleon interactions. We find
that if, as is customary, interaction constants are fit to energies of giant Gamow-Teller states and to
B* strengths, the two interactions lead to very similar two-neutrino double beta amplitudes. We
discuss additional approximations related to the inclusion (or neglect) of the Hartree-Fock part of
the pairing interaction, and to the treatment of differences between the initial and final nuclear
ground states. The numerical values of the amplitudes depend more on the way these approxima-
tions are made than on the form of the nucleon-nucleon force.

Double beta (8B) decay is a rare transition between
two nuclei of the same mass number involving a change
of the nuclear charge by two units. The observation of
neutrinoless (0v) double beta decay would constitute
proof that there exist massive Majorana neutrinos. But
before the mass can be quantitatively determined from
such an experiment, the nuclear amplitudes that govern
the decay must be reliably calculated. Two-neutrino (2v)
BB decay, the rate of which does not depend on the na-
ture of the neutrino, is useful for testing our ability to un-
derstand the relevant nuclear structure.

The shell model is in principle the ideal way to evalu-
ate the corresponding nuclear amplitudes. However, a
complete treatment for heavier nuclei is not possible, and
one has to rely on sophisticated but stringent approxima-
tions.!

Substantial activity has been recently devoted to the
application of another method, the quasiparticle random
phase approximation (QRPA) to double beta decay.
While also involving dramatic approximations, the
QRPA has several advantages: It automatically satisfies
the model-independent Gamow-Teller sum rule
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and allows easy evaluation of B~ and B™ strengths, the
first and second terms in the sum rule (1). These strength
functions can be measured; S~ strength has long been
studied in (p,n) reactions at forward angles,2 and Bt
strength has recently become accessible through (n,p) re-
actions at TRIUMF.® The QRPA correctly describes the
main features of these strengths, in particular the ener-
gies of the giant Gamow-Teller resonances. (However, in
the light s,d shell nuclei with small neutron excess QRPA
overestimates* the B+ strength by a factor of ~2 com-
pared to the shell model with an identical interaction.)
Consistent inclusion in the QRPA of ground-state corre-
lations, particularly those associated with the particle-
particle (p-p) component of the neutron-proton interac-
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tion, leads to suppression of the 2v decay rate.

Two issues should be considered in this context. The
first involves the suitability of the ‘“collective” QRPA
framework for calculating suppressed quantities like dou-
ble beta decay rates. We discuss this question in previous
publications,” 7 comparing the QRPA and exact results
in simplified situations. We conclude that the two solu-
tions are qualitatively similar, both leading to a vanishing
of the amplitude M2} (defined below) for similar values
of the interaction parameters. The second issue is more
quantitative. Several research groups have by now ap-
plied the QRPA to both 2v and Ov decay, and their re-
sults are not in exact agreement with one another. In this
report, we address the sources of the discrepancies be-
tween the results of Refs. 5-7 and those of 8-11.

For simplicity we restrict the discussion to the 2v de-
cay mode governed by the amplitude
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All QRPA calculations predict a change of sign (a zero
crossing) of MZ} when plotted vs 8pp» the strength of the
particle-particle component of the neutron-proton in-
teraction. But the various calculations yield different
values of M} near g,, =0, and different slopes of the
M2y versus 8, curve near the crossing point. These
translate into disagreements in predicted 2v lifetimes.
How significant are the discrepant features and what
causes them?

One obvious difference between the various calcula-
tions is the form of the neutron-proton interaction.
References 5-7 use a zero-range & force, while Refs. 8-11
employ a finite-range, G-matrix based interaction. Nei-
ther interaction is parameter free; before comparing the
two, we discuss how the strengths are fit. The approach
first suggested in Ref. 5 (and now widely accepted) is to
adjust the particle-hole (p-h) interaction constant so that
the energy of the giant Gamow-Teller state is correctly
reproduced, and then fit the particle-particle interaction
constant independently to the experimental B+ strength
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in selected nuclei. Roughly the same p-p interaction is
used in the BCS gap equations; the interaction strengths
required to obtain the experimental pairing gaps are
within ~10% of those determined from the B8* decay.
Following this fitting procedure, one obtains coupling
constants that vary between 0.8 and 1.3 of their bare
values for the G-matrix based interactions.® ! The p-p
couplings are usually smaller than their p -h counterparts.
With the 8-force based interaction®~’ this latter tendency
is more marked—the effective p -p interaction constant is
only =40% of the p -h constant.

Given this renormalization procedure, we may inquire
how significant the choice of nucleon-nucleon interaction
really is. In Fig. 1(a) we compare the amplitudes M3}
calculated with the 6-force interaction and with the G-
matrix based interaction.'” (The value g,, =1 for the 8-
function curves has somewhat arbitrarily been chosen to
correspond to the constant a] from Ref. 6 =—390
MeV fm?3; we do not mean to imply that the “Pandya re-
lation” is obeyed.) The results obtained with these very
different forces are displayed again in Fig. 1(b), where we
plot M2% against the total B strength in the final nu-
cleus ®Se. This figure is a more meaningful comparison
than the one above because the adjustment of the interac-
tion constants to reproduce the total B strength is ex-
plicitly displayed. The two dashed (or two solid) curves
lie quite close to each other. We conclude from this and
similar results in other nuclei that the numerical
discrepancies between the calculations of Refs. 5 and 6
and Refs. 8 and 10 are due only in small part to the form
of the neutron-proton interaction.

There are, however, significant differences between the
dashed and solid curves in Figs. 1(a) and 1(b). The
dashed curves incorporate the approximations, discussed
below, used in Refs. 8-11; the solid lines reflect the ver-
sions employed in Refs. 5-7. Part of the difference, most
pronounced at unphysically small g,, values, is related to
an approximation used in evaluating (2). In the QRPA,
the states |m ) of the intermediate odd-odd nucleus are
treated as “one-phonon” states built on the “phonon vac-
uum” representing, by necessity, the ground state of ei-
ther the initial or the final even-even nucleus. The two
sets of states |m ) constructed this way are not identical.
In Refs. 5 and 6, we replaced the state |f) by |i) and
vice versa in (2) and averaged the two resulting ampli-
tudes. In Ref. 8-10, by contrast, Eq. (2) was generalized
and the term |m ) { m| replaced by the expression
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where X, Y are the QRPA amplitudes and 7 refers to the
“phonons” of the final nucleus while n refers to the ini-
tial. The summation in (2) must be extended to both /7
and 7 in this case.

Both approximations are expected to work well far
away from closed shells, where the initial and final nuclei
have similar structure. In the exactly solvable model
treated in Ref. 6 the averaging procedure is more accu-
rate; in other cases, e.g., the two-level model of Ref. 7,
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FIG. 1. Amplitudes M2} for the decay "°Ge— "°Se. Solid
lines are obtained when, as in Refs. 5-7, the HF term (4) is in-
cluded in the BCS equations and the amplitudes from initial and
final nuclei are averaged. Dashed lines are obtained without the
HF term and with the overlap expression (see text) inserted in
(2). Within each pair, the two curves correspond to the finite-
range G-matrix-based interaction (Ref. 12) and to the contact §
force (Ref. 6). In the latter case g,, = —a;/390 MeV fm?, where
aj is the coupling constant for S =1, T =0 component of the §
force. (a) The amplitude is plotted against the coupling con-
stant g,, that renormalizes the interaction matrix elements for
T =0,J =1. (b) Plotted versus the total 8" strength.

the overlap approximation is better. In real nuclei it is
unclear which is preferable. Our numerical comparison
suggests that while averaging tends to give smaller M2}
at g,, =0, the two approximations lead to similar ampli-
tudes near g,, =1, the physically interesting region.

The slopes of the different curves in Fig. 1(a) near the
zero-intersect are important because they determine the
sensitivity of the 2v amplitudes to g,, in the physical re-
gion. Here the differences between the two sets of lines
can be traced to the treatment of pairing. All QRPA cal-
culations®~!! adjust the strength of the pairing force so
that the experimental odd-even mass differences (pairing
gaps) are correctly reproduced. The T =1 nucleon-
nucleon interaction, however, enters the BCS equations
in two ways, through the pairing gap
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and through the single-particle (Hartree-Fock) term

ta=— 2+ 17T (2T +1)05(148,,)
J.b
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In an ab initio treatment both (3) and (4) would be includ-
ed. However, when the single-particle energies are based
on an empirical potential (e.g., the Woods-Saxon well) the
situation is less clear. It is often argued that the HF part
has little effect, or that it is to some extent already
present in the empirical single-particle potential, making
its inclusion in the BCS equations redundant. Here, in
any event, it has a noticeable effect. In our work>® the
HF term was included in the BCS equations, resulting in
relatively gentle slopes in the MZ} vs 8pp curves. In Refs.
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8-11 the HF term was not included and the resulting
curves were steeper. It appears difficult to decide without
further investigation which of the treatments is more ac-
curate. Clearly, though, the precise form of these ap-
proximations affects the calculated 2v rates far more than
the choice of an effective nucleon-nucleon force.

We have noted the effect of approximations on the
slope of MZ% near the crossing. In this connection, it is
worth pointing out that the curves become steeper there
because the QRPA equations approach an instability. It
is generally agreed that the quality of the QRPA dimin-
ishes near such points. Although this problem is mitigat-
ed by renormalizing g,, to B™ strengths, an alternative
that avoids the instability altogether is desirable. Work
in this direction is currently in progress.
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